Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/glslang/SPIRV/hex_float.h
9902 views
1
// Copyright (c) 2015-2016 The Khronos Group Inc.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
// http://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_
16
#define LIBSPIRV_UTIL_HEX_FLOAT_H_
17
18
#include <cassert>
19
#include <cctype>
20
#include <cmath>
21
#include <cstdint>
22
#include <iomanip>
23
#include <limits>
24
#include <sstream>
25
26
#include "bitutils.h"
27
28
namespace spvutils {
29
30
class Float16 {
31
public:
32
Float16(uint16_t v) : val(v) {}
33
Float16() {}
34
static bool isNan(const Float16& val) {
35
return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0);
36
}
37
// Returns true if the given value is any kind of infinity.
38
static bool isInfinity(const Float16& val) {
39
return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0);
40
}
41
Float16(const Float16& other) { val = other.val; }
42
uint16_t get_value() const { return val; }
43
44
// Returns the maximum normal value.
45
static Float16 max() { return Float16(0x7bff); }
46
// Returns the lowest normal value.
47
static Float16 lowest() { return Float16(0xfbff); }
48
49
private:
50
uint16_t val;
51
};
52
53
// To specialize this type, you must override uint_type to define
54
// an unsigned integer that can fit your floating point type.
55
// You must also add a isNan function that returns true if
56
// a value is Nan.
57
template <typename T>
58
struct FloatProxyTraits {
59
typedef void uint_type;
60
};
61
62
template <>
63
struct FloatProxyTraits<float> {
64
typedef uint32_t uint_type;
65
static bool isNan(float f) { return std::isnan(f); }
66
// Returns true if the given value is any kind of infinity.
67
static bool isInfinity(float f) { return std::isinf(f); }
68
// Returns the maximum normal value.
69
static float max() { return std::numeric_limits<float>::max(); }
70
// Returns the lowest normal value.
71
static float lowest() { return std::numeric_limits<float>::lowest(); }
72
};
73
74
template <>
75
struct FloatProxyTraits<double> {
76
typedef uint64_t uint_type;
77
static bool isNan(double f) { return std::isnan(f); }
78
// Returns true if the given value is any kind of infinity.
79
static bool isInfinity(double f) { return std::isinf(f); }
80
// Returns the maximum normal value.
81
static double max() { return std::numeric_limits<double>::max(); }
82
// Returns the lowest normal value.
83
static double lowest() { return std::numeric_limits<double>::lowest(); }
84
};
85
86
template <>
87
struct FloatProxyTraits<Float16> {
88
typedef uint16_t uint_type;
89
static bool isNan(Float16 f) { return Float16::isNan(f); }
90
// Returns true if the given value is any kind of infinity.
91
static bool isInfinity(Float16 f) { return Float16::isInfinity(f); }
92
// Returns the maximum normal value.
93
static Float16 max() { return Float16::max(); }
94
// Returns the lowest normal value.
95
static Float16 lowest() { return Float16::lowest(); }
96
};
97
98
// Since copying a floating point number (especially if it is NaN)
99
// does not guarantee that bits are preserved, this class lets us
100
// store the type and use it as a float when necessary.
101
template <typename T>
102
class FloatProxy {
103
public:
104
typedef typename FloatProxyTraits<T>::uint_type uint_type;
105
106
// Since this is to act similar to the normal floats,
107
// do not initialize the data by default.
108
FloatProxy() {}
109
110
// Intentionally non-explicit. This is a proxy type so
111
// implicit conversions allow us to use it more transparently.
112
FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); }
113
114
// Intentionally non-explicit. This is a proxy type so
115
// implicit conversions allow us to use it more transparently.
116
FloatProxy(uint_type val) { data_ = val; }
117
118
// This is helpful to have and is guaranteed not to stomp bits.
119
FloatProxy<T> operator-() const {
120
return static_cast<uint_type>(data_ ^
121
(uint_type(0x1) << (sizeof(T) * 8 - 1)));
122
}
123
124
// Returns the data as a floating point value.
125
T getAsFloat() const { return BitwiseCast<T>(data_); }
126
127
// Returns the raw data.
128
uint_type data() const { return data_; }
129
130
// Returns true if the value represents any type of NaN.
131
bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); }
132
// Returns true if the value represents any type of infinity.
133
bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); }
134
135
// Returns the maximum normal value.
136
static FloatProxy<T> max() {
137
return FloatProxy<T>(FloatProxyTraits<T>::max());
138
}
139
// Returns the lowest normal value.
140
static FloatProxy<T> lowest() {
141
return FloatProxy<T>(FloatProxyTraits<T>::lowest());
142
}
143
144
private:
145
uint_type data_;
146
};
147
148
template <typename T>
149
bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) {
150
return first.data() == second.data();
151
}
152
153
// Reads a FloatProxy value as a normal float from a stream.
154
template <typename T>
155
std::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
156
T float_val;
157
is >> float_val;
158
value = FloatProxy<T>(float_val);
159
return is;
160
}
161
162
// This is an example traits. It is not meant to be used in practice, but will
163
// be the default for any non-specialized type.
164
template <typename T>
165
struct HexFloatTraits {
166
// Integer type that can store this hex-float.
167
typedef void uint_type;
168
// Signed integer type that can store this hex-float.
169
typedef void int_type;
170
// The numerical type that this HexFloat represents.
171
typedef void underlying_type;
172
// The type needed to construct the underlying type.
173
typedef void native_type;
174
// The number of bits that are actually relevant in the uint_type.
175
// This allows us to deal with, for example, 24-bit values in a 32-bit
176
// integer.
177
static const uint32_t num_used_bits = 0;
178
// Number of bits that represent the exponent.
179
static const uint32_t num_exponent_bits = 0;
180
// Number of bits that represent the fractional part.
181
static const uint32_t num_fraction_bits = 0;
182
// The bias of the exponent. (How much we need to subtract from the stored
183
// value to get the correct value.)
184
static const uint32_t exponent_bias = 0;
185
};
186
187
// Traits for IEEE float.
188
// 1 sign bit, 8 exponent bits, 23 fractional bits.
189
template <>
190
struct HexFloatTraits<FloatProxy<float>> {
191
typedef uint32_t uint_type;
192
typedef int32_t int_type;
193
typedef FloatProxy<float> underlying_type;
194
typedef float native_type;
195
static const uint_type num_used_bits = 32;
196
static const uint_type num_exponent_bits = 8;
197
static const uint_type num_fraction_bits = 23;
198
static const uint_type exponent_bias = 127;
199
};
200
201
// Traits for IEEE double.
202
// 1 sign bit, 11 exponent bits, 52 fractional bits.
203
template <>
204
struct HexFloatTraits<FloatProxy<double>> {
205
typedef uint64_t uint_type;
206
typedef int64_t int_type;
207
typedef FloatProxy<double> underlying_type;
208
typedef double native_type;
209
static const uint_type num_used_bits = 64;
210
static const uint_type num_exponent_bits = 11;
211
static const uint_type num_fraction_bits = 52;
212
static const uint_type exponent_bias = 1023;
213
};
214
215
// Traits for IEEE half.
216
// 1 sign bit, 5 exponent bits, 10 fractional bits.
217
template <>
218
struct HexFloatTraits<FloatProxy<Float16>> {
219
typedef uint16_t uint_type;
220
typedef int16_t int_type;
221
typedef uint16_t underlying_type;
222
typedef uint16_t native_type;
223
static const uint_type num_used_bits = 16;
224
static const uint_type num_exponent_bits = 5;
225
static const uint_type num_fraction_bits = 10;
226
static const uint_type exponent_bias = 15;
227
};
228
229
enum round_direction {
230
kRoundToZero,
231
kRoundToNearestEven,
232
kRoundToPositiveInfinity,
233
kRoundToNegativeInfinity
234
};
235
236
// Template class that houses a floating pointer number.
237
// It exposes a number of constants based on the provided traits to
238
// assist in interpreting the bits of the value.
239
template <typename T, typename Traits = HexFloatTraits<T>>
240
class HexFloat {
241
public:
242
typedef typename Traits::uint_type uint_type;
243
typedef typename Traits::int_type int_type;
244
typedef typename Traits::underlying_type underlying_type;
245
typedef typename Traits::native_type native_type;
246
247
explicit HexFloat(T f) : value_(f) {}
248
249
T value() const { return value_; }
250
void set_value(T f) { value_ = f; }
251
252
// These are all written like this because it is convenient to have
253
// compile-time constants for all of these values.
254
255
// Pass-through values to save typing.
256
static const uint32_t num_used_bits = Traits::num_used_bits;
257
static const uint32_t exponent_bias = Traits::exponent_bias;
258
static const uint32_t num_exponent_bits = Traits::num_exponent_bits;
259
static const uint32_t num_fraction_bits = Traits::num_fraction_bits;
260
261
// Number of bits to shift left to set the highest relevant bit.
262
static const uint32_t top_bit_left_shift = num_used_bits - 1;
263
// How many nibbles (hex characters) the fractional part takes up.
264
static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4;
265
// If the fractional part does not fit evenly into a hex character (4-bits)
266
// then we have to left-shift to get rid of leading 0s. This is the amount
267
// we have to shift (might be 0).
268
static const uint32_t num_overflow_bits =
269
fraction_nibbles * 4 - num_fraction_bits;
270
271
// The representation of the fraction, not the actual bits. This
272
// includes the leading bit that is usually implicit.
273
static const uint_type fraction_represent_mask =
274
spvutils::SetBits<uint_type, 0,
275
num_fraction_bits + num_overflow_bits>::get;
276
277
// The topmost bit in the nibble-aligned fraction.
278
static const uint_type fraction_top_bit =
279
uint_type(1) << (num_fraction_bits + num_overflow_bits - 1);
280
281
// The least significant bit in the exponent, which is also the bit
282
// immediately to the left of the significand.
283
static const uint_type first_exponent_bit = uint_type(1)
284
<< (num_fraction_bits);
285
286
// The mask for the encoded fraction. It does not include the
287
// implicit bit.
288
static const uint_type fraction_encode_mask =
289
spvutils::SetBits<uint_type, 0, num_fraction_bits>::get;
290
291
// The bit that is used as a sign.
292
static const uint_type sign_mask = uint_type(1) << top_bit_left_shift;
293
294
// The bits that represent the exponent.
295
static const uint_type exponent_mask =
296
spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get;
297
298
// How far left the exponent is shifted.
299
static const uint32_t exponent_left_shift = num_fraction_bits;
300
301
// How far from the right edge the fraction is shifted.
302
static const uint32_t fraction_right_shift =
303
static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits;
304
305
// The maximum representable unbiased exponent.
306
static const int_type max_exponent =
307
(exponent_mask >> num_fraction_bits) - exponent_bias;
308
// The minimum representable exponent for normalized numbers.
309
static const int_type min_exponent = -static_cast<int_type>(exponent_bias);
310
311
// Returns the bits associated with the value.
312
uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); }
313
314
// Returns the bits associated with the value, without the leading sign bit.
315
uint_type getUnsignedBits() const {
316
return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) &
317
~sign_mask);
318
}
319
320
// Returns the bits associated with the exponent, shifted to start at the
321
// lsb of the type.
322
const uint_type getExponentBits() const {
323
return static_cast<uint_type>((getBits() & exponent_mask) >>
324
num_fraction_bits);
325
}
326
327
// Returns the exponent in unbiased form. This is the exponent in the
328
// human-friendly form.
329
const int_type getUnbiasedExponent() const {
330
return static_cast<int_type>(getExponentBits() - exponent_bias);
331
}
332
333
// Returns just the significand bits from the value.
334
const uint_type getSignificandBits() const {
335
return getBits() & fraction_encode_mask;
336
}
337
338
// If the number was normalized, returns the unbiased exponent.
339
// If the number was denormal, normalize the exponent first.
340
const int_type getUnbiasedNormalizedExponent() const {
341
if ((getBits() & ~sign_mask) == 0) { // special case if everything is 0
342
return 0;
343
}
344
int_type exp = getUnbiasedExponent();
345
if (exp == min_exponent) { // We are in denorm land.
346
uint_type significand_bits = getSignificandBits();
347
while ((significand_bits & (first_exponent_bit >> 1)) == 0) {
348
significand_bits = static_cast<uint_type>(significand_bits << 1);
349
exp = static_cast<int_type>(exp - 1);
350
}
351
significand_bits &= fraction_encode_mask;
352
}
353
return exp;
354
}
355
356
// Returns the signficand after it has been normalized.
357
const uint_type getNormalizedSignificand() const {
358
int_type unbiased_exponent = getUnbiasedNormalizedExponent();
359
uint_type significand = getSignificandBits();
360
for (int_type i = unbiased_exponent; i <= min_exponent; ++i) {
361
significand = static_cast<uint_type>(significand << 1);
362
}
363
significand &= fraction_encode_mask;
364
return significand;
365
}
366
367
// Returns true if this number represents a negative value.
368
bool isNegative() const { return (getBits() & sign_mask) != 0; }
369
370
// Sets this HexFloat from the individual components.
371
// Note this assumes EVERY significand is normalized, and has an implicit
372
// leading one. This means that the only way that this method will set 0,
373
// is if you set a number so denormalized that it underflows.
374
// Do not use this method with raw bits extracted from a subnormal number,
375
// since subnormals do not have an implicit leading 1 in the significand.
376
// The significand is also expected to be in the
377
// lowest-most num_fraction_bits of the uint_type.
378
// The exponent is expected to be unbiased, meaning an exponent of
379
// 0 actually means 0.
380
// If underflow_round_up is set, then on underflow, if a number is non-0
381
// and would underflow, we round up to the smallest denorm.
382
void setFromSignUnbiasedExponentAndNormalizedSignificand(
383
bool negative, int_type exponent, uint_type significand,
384
bool round_denorm_up) {
385
bool significand_is_zero = significand == 0;
386
387
if (exponent <= min_exponent) {
388
// If this was denormalized, then we have to shift the bit on, meaning
389
// the significand is not zero.
390
significand_is_zero = false;
391
significand |= first_exponent_bit;
392
significand = static_cast<uint_type>(significand >> 1);
393
}
394
395
while (exponent < min_exponent) {
396
significand = static_cast<uint_type>(significand >> 1);
397
++exponent;
398
}
399
400
if (exponent == min_exponent) {
401
if (significand == 0 && !significand_is_zero && round_denorm_up) {
402
significand = static_cast<uint_type>(0x1);
403
}
404
}
405
406
uint_type new_value = 0;
407
if (negative) {
408
new_value = static_cast<uint_type>(new_value | sign_mask);
409
}
410
exponent = static_cast<int_type>(exponent + exponent_bias);
411
assert(exponent >= 0);
412
413
// put it all together
414
exponent = static_cast<uint_type>((exponent << exponent_left_shift) &
415
exponent_mask);
416
significand = static_cast<uint_type>(significand & fraction_encode_mask);
417
new_value = static_cast<uint_type>(new_value | (exponent | significand));
418
value_ = BitwiseCast<T>(new_value);
419
}
420
421
// Increments the significand of this number by the given amount.
422
// If this would spill the significand into the implicit bit,
423
// carry is set to true and the significand is shifted to fit into
424
// the correct location, otherwise carry is set to false.
425
// All significands and to_increment are assumed to be within the bounds
426
// for a valid significand.
427
static uint_type incrementSignificand(uint_type significand,
428
uint_type to_increment, bool* carry) {
429
significand = static_cast<uint_type>(significand + to_increment);
430
*carry = false;
431
if (significand & first_exponent_bit) {
432
*carry = true;
433
// The implicit 1-bit will have carried, so we should zero-out the
434
// top bit and shift back.
435
significand = static_cast<uint_type>(significand & ~first_exponent_bit);
436
significand = static_cast<uint_type>(significand >> 1);
437
}
438
return significand;
439
}
440
441
// These exist because MSVC throws warnings on negative right-shifts
442
// even if they are not going to be executed. Eg:
443
// constant_number < 0? 0: constant_number
444
// These convert the negative left-shifts into right shifts.
445
446
template <typename int_type>
447
uint_type negatable_left_shift(int_type N, uint_type val)
448
{
449
if(N >= 0)
450
return val << N;
451
452
return val >> -N;
453
}
454
455
template <typename int_type>
456
uint_type negatable_right_shift(int_type N, uint_type val)
457
{
458
if(N >= 0)
459
return val >> N;
460
461
return val << -N;
462
}
463
464
// Returns the significand, rounded to fit in a significand in
465
// other_T. This is shifted so that the most significant
466
// bit of the rounded number lines up with the most significant bit
467
// of the returned significand.
468
template <typename other_T>
469
typename other_T::uint_type getRoundedNormalizedSignificand(
470
round_direction dir, bool* carry_bit) {
471
typedef typename other_T::uint_type other_uint_type;
472
static const int_type num_throwaway_bits =
473
static_cast<int_type>(num_fraction_bits) -
474
static_cast<int_type>(other_T::num_fraction_bits);
475
476
static const uint_type last_significant_bit =
477
(num_throwaway_bits < 0)
478
? 0
479
: negatable_left_shift(num_throwaway_bits, 1u);
480
static const uint_type first_rounded_bit =
481
(num_throwaway_bits < 1)
482
? 0
483
: negatable_left_shift(num_throwaway_bits - 1, 1u);
484
485
static const uint_type throwaway_mask_bits =
486
num_throwaway_bits > 0 ? num_throwaway_bits : 0;
487
static const uint_type throwaway_mask =
488
spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get;
489
490
*carry_bit = false;
491
other_uint_type out_val = 0;
492
uint_type significand = getNormalizedSignificand();
493
// If we are up-casting, then we just have to shift to the right location.
494
if (num_throwaway_bits <= 0) {
495
out_val = static_cast<other_uint_type>(significand);
496
uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits);
497
out_val = static_cast<other_uint_type>(out_val << shift_amount);
498
return out_val;
499
}
500
501
// If every non-representable bit is 0, then we don't have any casting to
502
// do.
503
if ((significand & throwaway_mask) == 0) {
504
return static_cast<other_uint_type>(
505
negatable_right_shift(num_throwaway_bits, significand));
506
}
507
508
bool round_away_from_zero = false;
509
// We actually have to narrow the significand here, so we have to follow the
510
// rounding rules.
511
switch (dir) {
512
case kRoundToZero:
513
break;
514
case kRoundToPositiveInfinity:
515
round_away_from_zero = !isNegative();
516
break;
517
case kRoundToNegativeInfinity:
518
round_away_from_zero = isNegative();
519
break;
520
case kRoundToNearestEven:
521
// Have to round down, round bit is 0
522
if ((first_rounded_bit & significand) == 0) {
523
break;
524
}
525
if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) {
526
// If any subsequent bit of the rounded portion is non-0 then we round
527
// up.
528
round_away_from_zero = true;
529
break;
530
}
531
// We are exactly half-way between 2 numbers, pick even.
532
if ((significand & last_significant_bit) != 0) {
533
// 1 for our last bit, round up.
534
round_away_from_zero = true;
535
break;
536
}
537
break;
538
}
539
540
if (round_away_from_zero) {
541
return static_cast<other_uint_type>(
542
negatable_right_shift(num_throwaway_bits, incrementSignificand(
543
significand, last_significant_bit, carry_bit)));
544
} else {
545
return static_cast<other_uint_type>(
546
negatable_right_shift(num_throwaway_bits, significand));
547
}
548
}
549
550
// Casts this value to another HexFloat. If the cast is widening,
551
// then round_dir is ignored. If the cast is narrowing, then
552
// the result is rounded in the direction specified.
553
// This number will retain Nan and Inf values.
554
// It will also saturate to Inf if the number overflows, and
555
// underflow to (0 or min depending on rounding) if the number underflows.
556
template <typename other_T>
557
void castTo(other_T& other, round_direction round_dir) {
558
other = other_T(static_cast<typename other_T::native_type>(0));
559
bool negate = isNegative();
560
if (getUnsignedBits() == 0) {
561
if (negate) {
562
other.set_value(-other.value());
563
}
564
return;
565
}
566
uint_type significand = getSignificandBits();
567
bool carried = false;
568
typename other_T::uint_type rounded_significand =
569
getRoundedNormalizedSignificand<other_T>(round_dir, &carried);
570
571
int_type exponent = getUnbiasedExponent();
572
if (exponent == min_exponent) {
573
// If we are denormal, normalize the exponent, so that we can encode
574
// easily.
575
exponent = static_cast<int_type>(exponent + 1);
576
for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0;
577
check_bit = static_cast<uint_type>(check_bit >> 1)) {
578
exponent = static_cast<int_type>(exponent - 1);
579
if (check_bit & significand) break;
580
}
581
}
582
583
bool is_nan =
584
(getBits() & exponent_mask) == exponent_mask && significand != 0;
585
bool is_inf =
586
!is_nan &&
587
((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) ||
588
(significand == 0 && (getBits() & exponent_mask) == exponent_mask));
589
590
// If we are Nan or Inf we should pass that through.
591
if (is_inf) {
592
other.set_value(BitwiseCast<typename other_T::underlying_type>(
593
static_cast<typename other_T::uint_type>(
594
(negate ? other_T::sign_mask : 0) | other_T::exponent_mask)));
595
return;
596
}
597
if (is_nan) {
598
typename other_T::uint_type shifted_significand;
599
shifted_significand = static_cast<typename other_T::uint_type>(
600
negatable_left_shift(
601
static_cast<int_type>(other_T::num_fraction_bits) -
602
static_cast<int_type>(num_fraction_bits), significand));
603
604
// We are some sort of Nan. We try to keep the bit-pattern of the Nan
605
// as close as possible. If we had to shift off bits so we are 0, then we
606
// just set the last bit.
607
other.set_value(BitwiseCast<typename other_T::underlying_type>(
608
static_cast<typename other_T::uint_type>(
609
(negate ? other_T::sign_mask : 0) | other_T::exponent_mask |
610
(shifted_significand == 0 ? 0x1 : shifted_significand))));
611
return;
612
}
613
614
bool round_underflow_up =
615
isNegative() ? round_dir == kRoundToNegativeInfinity
616
: round_dir == kRoundToPositiveInfinity;
617
typedef typename other_T::int_type other_int_type;
618
// setFromSignUnbiasedExponentAndNormalizedSignificand will
619
// zero out any underflowing value (but retain the sign).
620
other.setFromSignUnbiasedExponentAndNormalizedSignificand(
621
negate, static_cast<other_int_type>(exponent), rounded_significand,
622
round_underflow_up);
623
return;
624
}
625
626
private:
627
T value_;
628
629
static_assert(num_used_bits ==
630
Traits::num_exponent_bits + Traits::num_fraction_bits + 1,
631
"The number of bits do not fit");
632
static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match");
633
};
634
635
// Returns 4 bits represented by the hex character.
636
inline uint8_t get_nibble_from_character(int character) {
637
const char* dec = "0123456789";
638
const char* lower = "abcdef";
639
const char* upper = "ABCDEF";
640
const char* p = nullptr;
641
if ((p = strchr(dec, character))) {
642
return static_cast<uint8_t>(p - dec);
643
} else if ((p = strchr(lower, character))) {
644
return static_cast<uint8_t>(p - lower + 0xa);
645
} else if ((p = strchr(upper, character))) {
646
return static_cast<uint8_t>(p - upper + 0xa);
647
}
648
649
assert(false && "This was called with a non-hex character");
650
return 0;
651
}
652
653
// Outputs the given HexFloat to the stream.
654
template <typename T, typename Traits>
655
std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
656
typedef HexFloat<T, Traits> HF;
657
typedef typename HF::uint_type uint_type;
658
typedef typename HF::int_type int_type;
659
660
static_assert(HF::num_used_bits != 0,
661
"num_used_bits must be non-zero for a valid float");
662
static_assert(HF::num_exponent_bits != 0,
663
"num_exponent_bits must be non-zero for a valid float");
664
static_assert(HF::num_fraction_bits != 0,
665
"num_fractin_bits must be non-zero for a valid float");
666
667
const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value());
668
const char* const sign = (bits & HF::sign_mask) ? "-" : "";
669
const uint_type exponent = static_cast<uint_type>(
670
(bits & HF::exponent_mask) >> HF::num_fraction_bits);
671
672
uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask)
673
<< HF::num_overflow_bits);
674
675
const bool is_zero = exponent == 0 && fraction == 0;
676
const bool is_denorm = exponent == 0 && !is_zero;
677
678
// exponent contains the biased exponent we have to convert it back into
679
// the normal range.
680
int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias);
681
// If the number is all zeros, then we actually have to NOT shift the
682
// exponent.
683
int_exponent = is_zero ? 0 : int_exponent;
684
685
// If we are denorm, then start shifting, and decreasing the exponent until
686
// our leading bit is 1.
687
688
if (is_denorm) {
689
while ((fraction & HF::fraction_top_bit) == 0) {
690
fraction = static_cast<uint_type>(fraction << 1);
691
int_exponent = static_cast<int_type>(int_exponent - 1);
692
}
693
// Since this is denormalized, we have to consume the leading 1 since it
694
// will end up being implicit.
695
fraction = static_cast<uint_type>(fraction << 1); // eat the leading 1
696
fraction &= HF::fraction_represent_mask;
697
}
698
699
uint_type fraction_nibbles = HF::fraction_nibbles;
700
// We do not have to display any trailing 0s, since this represents the
701
// fractional part.
702
while (fraction_nibbles > 0 && (fraction & 0xF) == 0) {
703
// Shift off any trailing values;
704
fraction = static_cast<uint_type>(fraction >> 4);
705
--fraction_nibbles;
706
}
707
708
const auto saved_flags = os.flags();
709
const auto saved_fill = os.fill();
710
711
os << sign << "0x" << (is_zero ? '0' : '1');
712
if (fraction_nibbles) {
713
// Make sure to keep the leading 0s in place, since this is the fractional
714
// part.
715
os << "." << std::setw(static_cast<int>(fraction_nibbles))
716
<< std::setfill('0') << std::hex << fraction;
717
}
718
os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent;
719
720
os.flags(saved_flags);
721
os.fill(saved_fill);
722
723
return os;
724
}
725
726
// Returns true if negate_value is true and the next character on the
727
// input stream is a plus or minus sign. In that case we also set the fail bit
728
// on the stream and set the value to the zero value for its type.
729
template <typename T, typename Traits>
730
inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value,
731
HexFloat<T, Traits>& value) {
732
if (negate_value) {
733
auto next_char = is.peek();
734
if (next_char == '-' || next_char == '+') {
735
// Fail the parse. Emulate standard behaviour by setting the value to
736
// the zero value, and set the fail bit on the stream.
737
value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
738
is.setstate(std::ios_base::failbit);
739
return true;
740
}
741
}
742
return false;
743
}
744
745
// Parses a floating point number from the given stream and stores it into the
746
// value parameter.
747
// If negate_value is true then the number may not have a leading minus or
748
// plus, and if it successfully parses, then the number is negated before
749
// being stored into the value parameter.
750
// If the value cannot be correctly parsed or overflows the target floating
751
// point type, then set the fail bit on the stream.
752
// TODO(dneto): Promise C++11 standard behavior in how the value is set in
753
// the error case, but only after all target platforms implement it correctly.
754
// In particular, the Microsoft C++ runtime appears to be out of spec.
755
template <typename T, typename Traits>
756
inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
757
HexFloat<T, Traits>& value) {
758
if (RejectParseDueToLeadingSign(is, negate_value, value)) {
759
return is;
760
}
761
T val;
762
is >> val;
763
if (negate_value) {
764
val = -val;
765
}
766
value.set_value(val);
767
// In the failure case, map -0.0 to 0.0.
768
if (is.fail() && value.getUnsignedBits() == 0u) {
769
value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
770
}
771
if (val.isInfinity()) {
772
// Fail the parse. Emulate standard behaviour by setting the value to
773
// the closest normal value, and set the fail bit on the stream.
774
value.set_value((value.isNegative() || negate_value) ? T::lowest()
775
: T::max());
776
is.setstate(std::ios_base::failbit);
777
}
778
return is;
779
}
780
781
// Specialization of ParseNormalFloat for FloatProxy<Float16> values.
782
// This will parse the float as it were a 32-bit floating point number,
783
// and then round it down to fit into a Float16 value.
784
// The number is rounded towards zero.
785
// If negate_value is true then the number may not have a leading minus or
786
// plus, and if it successfully parses, then the number is negated before
787
// being stored into the value parameter.
788
// If the value cannot be correctly parsed or overflows the target floating
789
// point type, then set the fail bit on the stream.
790
// TODO(dneto): Promise C++11 standard behavior in how the value is set in
791
// the error case, but only after all target platforms implement it correctly.
792
// In particular, the Microsoft C++ runtime appears to be out of spec.
793
template <>
794
inline std::istream&
795
ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>(
796
std::istream& is, bool negate_value,
797
HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) {
798
// First parse as a 32-bit float.
799
HexFloat<FloatProxy<float>> float_val(0.0f);
800
ParseNormalFloat(is, negate_value, float_val);
801
802
// Then convert to 16-bit float, saturating at infinities, and
803
// rounding toward zero.
804
float_val.castTo(value, kRoundToZero);
805
806
// Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
807
// fail bit and set the lowest or highest value.
808
if (Float16::isInfinity(value.value().getAsFloat())) {
809
value.set_value(value.isNegative() ? Float16::lowest() : Float16::max());
810
is.setstate(std::ios_base::failbit);
811
}
812
return is;
813
}
814
815
// Reads a HexFloat from the given stream.
816
// If the float is not encoded as a hex-float then it will be parsed
817
// as a regular float.
818
// This may fail if your stream does not support at least one unget.
819
// Nan values can be encoded with "0x1.<not zero>p+exponent_bias".
820
// This would normally overflow a float and round to
821
// infinity but this special pattern is the exact representation for a NaN,
822
// and therefore is actually encoded as the correct NaN. To encode inf,
823
// either 0x0p+exponent_bias can be specified or any exponent greater than
824
// exponent_bias.
825
// Examples using IEEE 32-bit float encoding.
826
// 0x1.0p+128 (+inf)
827
// -0x1.0p-128 (-inf)
828
//
829
// 0x1.1p+128 (+Nan)
830
// -0x1.1p+128 (-Nan)
831
//
832
// 0x1p+129 (+inf)
833
// -0x1p+129 (-inf)
834
template <typename T, typename Traits>
835
std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
836
using HF = HexFloat<T, Traits>;
837
using uint_type = typename HF::uint_type;
838
using int_type = typename HF::int_type;
839
840
value.set_value(static_cast<typename HF::native_type>(0.f));
841
842
if (is.flags() & std::ios::skipws) {
843
// If the user wants to skip whitespace , then we should obey that.
844
while (std::isspace(is.peek())) {
845
is.get();
846
}
847
}
848
849
auto next_char = is.peek();
850
bool negate_value = false;
851
852
if (next_char != '-' && next_char != '0') {
853
return ParseNormalFloat(is, negate_value, value);
854
}
855
856
if (next_char == '-') {
857
negate_value = true;
858
is.get();
859
next_char = is.peek();
860
}
861
862
if (next_char == '0') {
863
is.get(); // We may have to unget this.
864
auto maybe_hex_start = is.peek();
865
if (maybe_hex_start != 'x' && maybe_hex_start != 'X') {
866
is.unget();
867
return ParseNormalFloat(is, negate_value, value);
868
} else {
869
is.get(); // Throw away the 'x';
870
}
871
} else {
872
return ParseNormalFloat(is, negate_value, value);
873
}
874
875
// This "looks" like a hex-float so treat it as one.
876
bool seen_p = false;
877
bool seen_dot = false;
878
uint_type fraction_index = 0;
879
880
uint_type fraction = 0;
881
int_type exponent = HF::exponent_bias;
882
883
// Strip off leading zeros so we don't have to special-case them later.
884
while ((next_char = is.peek()) == '0') {
885
is.get();
886
}
887
888
bool is_denorm =
889
true; // Assume denorm "representation" until we hear otherwise.
890
// NB: This does not mean the value is actually denorm,
891
// it just means that it was written 0.
892
bool bits_written = false; // Stays false until we write a bit.
893
while (!seen_p && !seen_dot) {
894
// Handle characters that are left of the fractional part.
895
if (next_char == '.') {
896
seen_dot = true;
897
} else if (next_char == 'p') {
898
seen_p = true;
899
} else if (::isxdigit(next_char)) {
900
// We know this is not denormalized since we have stripped all leading
901
// zeroes and we are not a ".".
902
is_denorm = false;
903
int number = get_nibble_from_character(next_char);
904
for (int i = 0; i < 4; ++i, number <<= 1) {
905
uint_type write_bit = (number & 0x8) ? 0x1 : 0x0;
906
if (bits_written) {
907
// If we are here the bits represented belong in the fractional
908
// part of the float, and we have to adjust the exponent accordingly.
909
fraction = static_cast<uint_type>(
910
fraction |
911
static_cast<uint_type>(
912
write_bit << (HF::top_bit_left_shift - fraction_index++)));
913
exponent = static_cast<int_type>(exponent + 1);
914
}
915
bits_written |= write_bit != 0;
916
}
917
} else {
918
// We have not found our exponent yet, so we have to fail.
919
is.setstate(std::ios::failbit);
920
return is;
921
}
922
is.get();
923
next_char = is.peek();
924
}
925
bits_written = false;
926
while (seen_dot && !seen_p) {
927
// Handle only fractional parts now.
928
if (next_char == 'p') {
929
seen_p = true;
930
} else if (::isxdigit(next_char)) {
931
int number = get_nibble_from_character(next_char);
932
for (int i = 0; i < 4; ++i, number <<= 1) {
933
uint_type write_bit = (number & 0x8) ? 0x01 : 0x00;
934
bits_written |= write_bit != 0;
935
if (is_denorm && !bits_written) {
936
// Handle modifying the exponent here this way we can handle
937
// an arbitrary number of hex values without overflowing our
938
// integer.
939
exponent = static_cast<int_type>(exponent - 1);
940
} else {
941
fraction = static_cast<uint_type>(
942
fraction |
943
static_cast<uint_type>(
944
write_bit << (HF::top_bit_left_shift - fraction_index++)));
945
}
946
}
947
} else {
948
// We still have not found our 'p' exponent yet, so this is not a valid
949
// hex-float.
950
is.setstate(std::ios::failbit);
951
return is;
952
}
953
is.get();
954
next_char = is.peek();
955
}
956
957
bool seen_sign = false;
958
int8_t exponent_sign = 1;
959
int_type written_exponent = 0;
960
while (true) {
961
if ((next_char == '-' || next_char == '+')) {
962
if (seen_sign) {
963
is.setstate(std::ios::failbit);
964
return is;
965
}
966
seen_sign = true;
967
exponent_sign = (next_char == '-') ? -1 : 1;
968
} else if (::isdigit(next_char)) {
969
// Hex-floats express their exponent as decimal.
970
written_exponent = static_cast<int_type>(written_exponent * 10);
971
written_exponent =
972
static_cast<int_type>(written_exponent + (next_char - '0'));
973
} else {
974
break;
975
}
976
is.get();
977
next_char = is.peek();
978
}
979
980
written_exponent = static_cast<int_type>(written_exponent * exponent_sign);
981
exponent = static_cast<int_type>(exponent + written_exponent);
982
983
bool is_zero = is_denorm && (fraction == 0);
984
if (is_denorm && !is_zero) {
985
fraction = static_cast<uint_type>(fraction << 1);
986
exponent = static_cast<int_type>(exponent - 1);
987
} else if (is_zero) {
988
exponent = 0;
989
}
990
991
if (exponent <= 0 && !is_zero) {
992
fraction = static_cast<uint_type>(fraction >> 1);
993
fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift;
994
}
995
996
fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask;
997
998
const int_type max_exponent =
999
SetBits<uint_type, 0, HF::num_exponent_bits>::get;
1000
1001
// Handle actual denorm numbers
1002
while (exponent < 0 && !is_zero) {
1003
fraction = static_cast<uint_type>(fraction >> 1);
1004
exponent = static_cast<int_type>(exponent + 1);
1005
1006
fraction &= HF::fraction_encode_mask;
1007
if (fraction == 0) {
1008
// We have underflowed our fraction. We should clamp to zero.
1009
is_zero = true;
1010
exponent = 0;
1011
}
1012
}
1013
1014
// We have overflowed so we should be inf/-inf.
1015
if (exponent > max_exponent) {
1016
exponent = max_exponent;
1017
fraction = 0;
1018
}
1019
1020
uint_type output_bits = static_cast<uint_type>(
1021
static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift);
1022
output_bits |= fraction;
1023
1024
uint_type shifted_exponent = static_cast<uint_type>(
1025
static_cast<uint_type>(exponent << HF::exponent_left_shift) &
1026
HF::exponent_mask);
1027
output_bits |= shifted_exponent;
1028
1029
T output_float = spvutils::BitwiseCast<T>(output_bits);
1030
value.set_value(output_float);
1031
1032
return is;
1033
}
1034
1035
// Writes a FloatProxy value to a stream.
1036
// Zero and normal numbers are printed in the usual notation, but with
1037
// enough digits to fully reproduce the value. Other values (subnormal,
1038
// NaN, and infinity) are printed as a hex float.
1039
template <typename T>
1040
std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) {
1041
auto float_val = value.getAsFloat();
1042
switch (std::fpclassify(float_val)) {
1043
case FP_ZERO:
1044
case FP_NORMAL: {
1045
auto saved_precision = os.precision();
1046
os.precision(std::numeric_limits<T>::digits10);
1047
os << float_val;
1048
os.precision(saved_precision);
1049
} break;
1050
default:
1051
os << HexFloat<FloatProxy<T>>(value);
1052
break;
1053
}
1054
return os;
1055
}
1056
1057
template <>
1058
inline std::ostream& operator<<<Float16>(std::ostream& os,
1059
const FloatProxy<Float16>& value) {
1060
os << HexFloat<FloatProxy<Float16>>(value);
1061
return os;
1062
}
1063
}
1064
1065
#endif // LIBSPIRV_UTIL_HEX_FLOAT_H_
1066
1067