Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/glslang/SPIRV/hex_float.h
21520 views
1
// Copyright (c) 2015-2016 The Khronos Group Inc.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
// http://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_
16
#define LIBSPIRV_UTIL_HEX_FLOAT_H_
17
18
#include <cassert>
19
#include <cctype>
20
#include <cmath>
21
#include <cstdint>
22
#include <iomanip>
23
#include <limits>
24
#include <sstream>
25
26
#include "bitutils.h"
27
28
namespace spvutils {
29
30
class Float16 {
31
public:
32
Float16(uint16_t v) : val(v) {}
33
Float16() {}
34
static bool isNan(const Float16& val) {
35
return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0);
36
}
37
// Returns true if the given value is any kind of infinity.
38
static bool isInfinity(const Float16& val) {
39
return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0);
40
}
41
Float16(const Float16& other) { val = other.val; }
42
uint16_t get_value() const { return val; }
43
44
// Returns the maximum normal value.
45
static Float16 max() { return Float16(0x7bff); }
46
// Returns the lowest normal value.
47
static Float16 lowest() { return Float16(0xfbff); }
48
49
private:
50
uint16_t val;
51
};
52
53
class FloatE5M2 {
54
public:
55
FloatE5M2(uint8_t v) : val(v) {}
56
FloatE5M2() {}
57
static bool isNan(const FloatE5M2& val) {
58
return ((val.val & 0x7C) == 0x7C) && ((val.val & 0x3) != 0);
59
}
60
// Returns true if the given value is any kind of infinity.
61
static bool isInfinity(const FloatE5M2& val) {
62
return ((val.val & 0x7C) == 0x7C) && ((val.val & 0x3) == 0);
63
}
64
FloatE5M2(const FloatE5M2& other) { val = other.val; }
65
uint8_t get_value() const { return val; }
66
67
// Returns the maximum normal value.
68
static FloatE5M2 max() { return FloatE5M2(0x7B); }
69
// Returns the lowest normal value.
70
static FloatE5M2 lowest() { return FloatE5M2(0xFB); }
71
72
private:
73
uint8_t val;
74
};
75
76
class FloatE4M3 {
77
public:
78
FloatE4M3(uint8_t v) : val(v) {}
79
FloatE4M3() {}
80
static bool isNan(const FloatE4M3& val) {
81
return (val.val & 0x7F) == 0x7F;
82
}
83
// Returns true if the given value is any kind of infinity.
84
static bool isInfinity(const FloatE4M3&) {
85
return false;
86
}
87
FloatE4M3(const FloatE4M3& other) { val = other.val; }
88
uint8_t get_value() const { return val; }
89
90
// Returns the maximum normal value.
91
static FloatE4M3 max() { return FloatE4M3(0x7E); }
92
// Returns the lowest normal value.
93
static FloatE4M3 lowest() { return FloatE4M3(0xFE); }
94
95
private:
96
uint8_t val;
97
};
98
99
// To specialize this type, you must override uint_type to define
100
// an unsigned integer that can fit your floating point type.
101
// You must also add a isNan function that returns true if
102
// a value is Nan.
103
template <typename T>
104
struct FloatProxyTraits {
105
typedef void uint_type;
106
};
107
108
template <>
109
struct FloatProxyTraits<float> {
110
typedef uint32_t uint_type;
111
static bool isNan(float f) { return std::isnan(f); }
112
// Returns true if the given value is any kind of infinity.
113
static bool isInfinity(float f) { return std::isinf(f); }
114
// Returns the maximum normal value.
115
static float max() { return std::numeric_limits<float>::max(); }
116
// Returns the lowest normal value.
117
static float lowest() { return std::numeric_limits<float>::lowest(); }
118
};
119
120
template <>
121
struct FloatProxyTraits<double> {
122
typedef uint64_t uint_type;
123
static bool isNan(double f) { return std::isnan(f); }
124
// Returns true if the given value is any kind of infinity.
125
static bool isInfinity(double f) { return std::isinf(f); }
126
// Returns the maximum normal value.
127
static double max() { return std::numeric_limits<double>::max(); }
128
// Returns the lowest normal value.
129
static double lowest() { return std::numeric_limits<double>::lowest(); }
130
};
131
132
template <>
133
struct FloatProxyTraits<Float16> {
134
typedef uint16_t uint_type;
135
static bool isNan(Float16 f) { return Float16::isNan(f); }
136
// Returns true if the given value is any kind of infinity.
137
static bool isInfinity(Float16 f) { return Float16::isInfinity(f); }
138
// Returns the maximum normal value.
139
static Float16 max() { return Float16::max(); }
140
// Returns the lowest normal value.
141
static Float16 lowest() { return Float16::lowest(); }
142
};
143
144
template <>
145
struct FloatProxyTraits<FloatE5M2> {
146
typedef uint8_t uint_type;
147
static bool isNan(FloatE5M2 f) { return FloatE5M2::isNan(f); }
148
// Returns true if the given value is any kind of infinity.
149
static bool isInfinity(FloatE5M2 f) { return FloatE5M2::isInfinity(f); }
150
// Returns the maximum normal value.
151
static FloatE5M2 max() { return FloatE5M2::max(); }
152
// Returns the lowest normal value.
153
static FloatE5M2 lowest() { return FloatE5M2::lowest(); }
154
};
155
156
template <>
157
struct FloatProxyTraits<FloatE4M3> {
158
typedef uint8_t uint_type;
159
static bool isNan(FloatE4M3 f) { return FloatE4M3::isNan(f); }
160
// Returns true if the given value is any kind of infinity.
161
static bool isInfinity(FloatE4M3 f) { return FloatE4M3::isInfinity(f); }
162
// Returns the maximum normal value.
163
static FloatE4M3 max() { return FloatE4M3::max(); }
164
// Returns the lowest normal value.
165
static FloatE4M3 lowest() { return FloatE4M3::lowest(); }
166
};
167
168
// Since copying a floating point number (especially if it is NaN)
169
// does not guarantee that bits are preserved, this class lets us
170
// store the type and use it as a float when necessary.
171
template <typename T>
172
class FloatProxy {
173
public:
174
typedef typename FloatProxyTraits<T>::uint_type uint_type;
175
176
// Since this is to act similar to the normal floats,
177
// do not initialize the data by default.
178
FloatProxy() {}
179
180
// Intentionally non-explicit. This is a proxy type so
181
// implicit conversions allow us to use it more transparently.
182
FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); }
183
184
// Intentionally non-explicit. This is a proxy type so
185
// implicit conversions allow us to use it more transparently.
186
FloatProxy(uint_type val) { data_ = val; }
187
188
// This is helpful to have and is guaranteed not to stomp bits.
189
FloatProxy<T> operator-() const {
190
return static_cast<uint_type>(data_ ^
191
(uint_type(0x1) << (sizeof(T) * 8 - 1)));
192
}
193
194
// Returns the data as a floating point value.
195
T getAsFloat() const { return BitwiseCast<T>(data_); }
196
197
// Returns the raw data.
198
uint_type data() const { return data_; }
199
200
// Returns true if the value represents any type of NaN.
201
bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); }
202
// Returns true if the value represents any type of infinity.
203
bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); }
204
205
// Returns the maximum normal value.
206
static FloatProxy<T> max() {
207
return FloatProxy<T>(FloatProxyTraits<T>::max());
208
}
209
// Returns the lowest normal value.
210
static FloatProxy<T> lowest() {
211
return FloatProxy<T>(FloatProxyTraits<T>::lowest());
212
}
213
214
private:
215
uint_type data_;
216
};
217
218
template <typename T>
219
bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) {
220
return first.data() == second.data();
221
}
222
223
// Reads a FloatProxy value as a normal float from a stream.
224
template <typename T>
225
std::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
226
T float_val;
227
is >> float_val;
228
value = FloatProxy<T>(float_val);
229
return is;
230
}
231
232
// This is an example traits. It is not meant to be used in practice, but will
233
// be the default for any non-specialized type.
234
template <typename T>
235
struct HexFloatTraits {
236
// Integer type that can store this hex-float.
237
typedef void uint_type;
238
// Signed integer type that can store this hex-float.
239
typedef void int_type;
240
// The numerical type that this HexFloat represents.
241
typedef void underlying_type;
242
// The type needed to construct the underlying type.
243
typedef void native_type;
244
// The number of bits that are actually relevant in the uint_type.
245
// This allows us to deal with, for example, 24-bit values in a 32-bit
246
// integer.
247
static const uint32_t num_used_bits = 0;
248
// Number of bits that represent the exponent.
249
static const uint32_t num_exponent_bits = 0;
250
// Number of bits that represent the fractional part.
251
static const uint32_t num_fraction_bits = 0;
252
// The bias of the exponent. (How much we need to subtract from the stored
253
// value to get the correct value.)
254
static const uint32_t exponent_bias = 0;
255
static bool supportsInfinity() { return true; }
256
};
257
258
// Traits for IEEE float.
259
// 1 sign bit, 8 exponent bits, 23 fractional bits.
260
template <>
261
struct HexFloatTraits<FloatProxy<float>> {
262
typedef uint32_t uint_type;
263
typedef int32_t int_type;
264
typedef FloatProxy<float> underlying_type;
265
typedef float native_type;
266
static const uint_type num_used_bits = 32;
267
static const uint_type num_exponent_bits = 8;
268
static const uint_type num_fraction_bits = 23;
269
static const uint_type exponent_bias = 127;
270
static bool supportsInfinity() { return true; }
271
};
272
273
// Traits for IEEE double.
274
// 1 sign bit, 11 exponent bits, 52 fractional bits.
275
template <>
276
struct HexFloatTraits<FloatProxy<double>> {
277
typedef uint64_t uint_type;
278
typedef int64_t int_type;
279
typedef FloatProxy<double> underlying_type;
280
typedef double native_type;
281
static const uint_type num_used_bits = 64;
282
static const uint_type num_exponent_bits = 11;
283
static const uint_type num_fraction_bits = 52;
284
static const uint_type exponent_bias = 1023;
285
static bool supportsInfinity() { return true; }
286
};
287
288
// Traits for IEEE half.
289
// 1 sign bit, 5 exponent bits, 10 fractional bits.
290
template <>
291
struct HexFloatTraits<FloatProxy<Float16>> {
292
typedef uint16_t uint_type;
293
typedef int16_t int_type;
294
typedef uint16_t underlying_type;
295
typedef uint16_t native_type;
296
static const uint_type num_used_bits = 16;
297
static const uint_type num_exponent_bits = 5;
298
static const uint_type num_fraction_bits = 10;
299
static const uint_type exponent_bias = 15;
300
static bool supportsInfinity() { return true; }
301
};
302
303
template <>
304
struct HexFloatTraits<FloatProxy<FloatE5M2>> {
305
typedef uint8_t uint_type;
306
typedef int8_t int_type;
307
typedef uint8_t underlying_type;
308
typedef uint8_t native_type;
309
static const uint_type num_used_bits = 8;
310
static const uint_type num_exponent_bits = 5;
311
static const uint_type num_fraction_bits = 2;
312
static const uint_type exponent_bias = 15;
313
static bool supportsInfinity() { return true; }
314
};
315
316
template <>
317
struct HexFloatTraits<FloatProxy<FloatE4M3>> {
318
typedef uint8_t uint_type;
319
typedef int8_t int_type;
320
typedef uint8_t underlying_type;
321
typedef uint8_t native_type;
322
static const uint_type num_used_bits = 8;
323
static const uint_type num_exponent_bits = 4;
324
static const uint_type num_fraction_bits = 3;
325
static const uint_type exponent_bias = 7;
326
static bool supportsInfinity() { return false; }
327
};
328
329
enum round_direction {
330
kRoundToZero,
331
kRoundToNearestEven,
332
kRoundToPositiveInfinity,
333
kRoundToNegativeInfinity
334
};
335
336
// Template class that houses a floating pointer number.
337
// It exposes a number of constants based on the provided traits to
338
// assist in interpreting the bits of the value.
339
template <typename T, typename Traits = HexFloatTraits<T>>
340
class HexFloat {
341
public:
342
typedef typename Traits::uint_type uint_type;
343
typedef typename Traits::int_type int_type;
344
typedef typename Traits::underlying_type underlying_type;
345
typedef typename Traits::native_type native_type;
346
using Traits_T = Traits;
347
348
explicit HexFloat(T f) : value_(f) {}
349
350
T value() const { return value_; }
351
void set_value(T f) { value_ = f; }
352
353
// These are all written like this because it is convenient to have
354
// compile-time constants for all of these values.
355
356
// Pass-through values to save typing.
357
static const uint32_t num_used_bits = Traits::num_used_bits;
358
static const uint32_t exponent_bias = Traits::exponent_bias;
359
static const uint32_t num_exponent_bits = Traits::num_exponent_bits;
360
static const uint32_t num_fraction_bits = Traits::num_fraction_bits;
361
362
// Number of bits to shift left to set the highest relevant bit.
363
static const uint32_t top_bit_left_shift = num_used_bits - 1;
364
// How many nibbles (hex characters) the fractional part takes up.
365
static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4;
366
// If the fractional part does not fit evenly into a hex character (4-bits)
367
// then we have to left-shift to get rid of leading 0s. This is the amount
368
// we have to shift (might be 0).
369
static const uint32_t num_overflow_bits =
370
fraction_nibbles * 4 - num_fraction_bits;
371
372
// The representation of the fraction, not the actual bits. This
373
// includes the leading bit that is usually implicit.
374
static const uint_type fraction_represent_mask =
375
spvutils::SetBits<uint_type, 0,
376
num_fraction_bits + num_overflow_bits>::get;
377
378
// The topmost bit in the nibble-aligned fraction.
379
static const uint_type fraction_top_bit =
380
uint_type(1) << (num_fraction_bits + num_overflow_bits - 1);
381
382
// The least significant bit in the exponent, which is also the bit
383
// immediately to the left of the significand.
384
static const uint_type first_exponent_bit = uint_type(1)
385
<< (num_fraction_bits);
386
387
// The mask for the encoded fraction. It does not include the
388
// implicit bit.
389
static const uint_type fraction_encode_mask =
390
spvutils::SetBits<uint_type, 0, num_fraction_bits>::get;
391
392
// The bit that is used as a sign.
393
static const uint_type sign_mask = uint_type(1) << top_bit_left_shift;
394
395
// The bits that represent the exponent.
396
static const uint_type exponent_mask =
397
spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get;
398
399
// How far left the exponent is shifted.
400
static const uint32_t exponent_left_shift = num_fraction_bits;
401
402
// How far from the right edge the fraction is shifted.
403
static const uint32_t fraction_right_shift =
404
static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits;
405
406
// The maximum representable unbiased exponent.
407
static const int_type max_exponent =
408
(exponent_mask >> num_fraction_bits) - exponent_bias;
409
// The minimum representable exponent for normalized numbers.
410
static const int_type min_exponent = -static_cast<int_type>(exponent_bias);
411
412
// Returns the bits associated with the value.
413
uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); }
414
415
// Returns the bits associated with the value, without the leading sign bit.
416
uint_type getUnsignedBits() const {
417
return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) &
418
~sign_mask);
419
}
420
421
// Returns the bits associated with the exponent, shifted to start at the
422
// lsb of the type.
423
const uint_type getExponentBits() const {
424
return static_cast<uint_type>((getBits() & exponent_mask) >>
425
num_fraction_bits);
426
}
427
428
// Returns the exponent in unbiased form. This is the exponent in the
429
// human-friendly form.
430
const int_type getUnbiasedExponent() const {
431
return static_cast<int_type>(getExponentBits() - exponent_bias);
432
}
433
434
// Returns just the significand bits from the value.
435
const uint_type getSignificandBits() const {
436
return getBits() & fraction_encode_mask;
437
}
438
439
// If the number was normalized, returns the unbiased exponent.
440
// If the number was denormal, normalize the exponent first.
441
const int_type getUnbiasedNormalizedExponent() const {
442
if ((getBits() & ~sign_mask) == 0) { // special case if everything is 0
443
return 0;
444
}
445
int_type exp = getUnbiasedExponent();
446
if (exp == min_exponent) { // We are in denorm land.
447
uint_type significand_bits = getSignificandBits();
448
while ((significand_bits & (first_exponent_bit >> 1)) == 0) {
449
significand_bits = static_cast<uint_type>(significand_bits << 1);
450
exp = static_cast<int_type>(exp - 1);
451
}
452
significand_bits &= fraction_encode_mask;
453
}
454
return exp;
455
}
456
457
// Returns the signficand after it has been normalized.
458
const uint_type getNormalizedSignificand() const {
459
int_type unbiased_exponent = getUnbiasedNormalizedExponent();
460
uint_type significand = getSignificandBits();
461
for (int_type i = unbiased_exponent; i <= min_exponent; ++i) {
462
significand = static_cast<uint_type>(significand << 1);
463
}
464
significand &= fraction_encode_mask;
465
return significand;
466
}
467
468
// Returns true if this number represents a negative value.
469
bool isNegative() const { return (getBits() & sign_mask) != 0; }
470
471
// Sets this HexFloat from the individual components.
472
// Note this assumes EVERY significand is normalized, and has an implicit
473
// leading one. This means that the only way that this method will set 0,
474
// is if you set a number so denormalized that it underflows.
475
// Do not use this method with raw bits extracted from a subnormal number,
476
// since subnormals do not have an implicit leading 1 in the significand.
477
// The significand is also expected to be in the
478
// lowest-most num_fraction_bits of the uint_type.
479
// The exponent is expected to be unbiased, meaning an exponent of
480
// 0 actually means 0.
481
// If underflow_round_up is set, then on underflow, if a number is non-0
482
// and would underflow, we round up to the smallest denorm.
483
void setFromSignUnbiasedExponentAndNormalizedSignificand(
484
bool negative, int_type exponent, uint_type significand,
485
bool round_denorm_up) {
486
bool significand_is_zero = significand == 0;
487
488
if (exponent <= min_exponent) {
489
// If this was denormalized, then we have to shift the bit on, meaning
490
// the significand is not zero.
491
significand_is_zero = false;
492
significand |= first_exponent_bit;
493
significand = static_cast<uint_type>(significand >> 1);
494
}
495
496
while (exponent < min_exponent) {
497
significand = static_cast<uint_type>(significand >> 1);
498
++exponent;
499
}
500
501
if (exponent == min_exponent) {
502
if (significand == 0 && !significand_is_zero && round_denorm_up) {
503
significand = static_cast<uint_type>(0x1);
504
}
505
}
506
507
uint_type new_value = 0;
508
if (negative) {
509
new_value = static_cast<uint_type>(new_value | sign_mask);
510
}
511
exponent = static_cast<int_type>(exponent + exponent_bias);
512
assert(exponent >= 0);
513
514
// put it all together
515
exponent = static_cast<uint_type>((exponent << exponent_left_shift) &
516
exponent_mask);
517
significand = static_cast<uint_type>(significand & fraction_encode_mask);
518
new_value = static_cast<uint_type>(new_value | (exponent | significand));
519
value_ = BitwiseCast<T>(new_value);
520
}
521
522
// Increments the significand of this number by the given amount.
523
// If this would spill the significand into the implicit bit,
524
// carry is set to true and the significand is shifted to fit into
525
// the correct location, otherwise carry is set to false.
526
// All significands and to_increment are assumed to be within the bounds
527
// for a valid significand.
528
static uint_type incrementSignificand(uint_type significand,
529
uint_type to_increment, bool* carry) {
530
significand = static_cast<uint_type>(significand + to_increment);
531
*carry = false;
532
if (significand & first_exponent_bit) {
533
*carry = true;
534
// The implicit 1-bit will have carried, so we should zero-out the
535
// top bit and shift back.
536
significand = static_cast<uint_type>(significand & ~first_exponent_bit);
537
significand = static_cast<uint_type>(significand >> 1);
538
}
539
return significand;
540
}
541
542
// These exist because MSVC throws warnings on negative right-shifts
543
// even if they are not going to be executed. Eg:
544
// constant_number < 0? 0: constant_number
545
// These convert the negative left-shifts into right shifts.
546
547
template <typename int_type>
548
uint_type negatable_left_shift(int_type N, uint_type val)
549
{
550
if(N >= 0)
551
return val << N;
552
553
return val >> -N;
554
}
555
556
template <typename int_type>
557
uint_type negatable_right_shift(int_type N, uint_type val)
558
{
559
if(N >= 0)
560
return val >> N;
561
562
return val << -N;
563
}
564
565
// Returns the significand, rounded to fit in a significand in
566
// other_T. This is shifted so that the most significant
567
// bit of the rounded number lines up with the most significant bit
568
// of the returned significand.
569
template <typename other_T>
570
typename other_T::uint_type getRoundedNormalizedSignificand(
571
round_direction dir, bool* carry_bit) {
572
typedef typename other_T::uint_type other_uint_type;
573
static const int_type num_throwaway_bits =
574
static_cast<int_type>(num_fraction_bits) -
575
static_cast<int_type>(other_T::num_fraction_bits);
576
577
static const uint_type last_significant_bit =
578
(num_throwaway_bits < 0)
579
? 0
580
: negatable_left_shift(num_throwaway_bits, 1u);
581
static const uint_type first_rounded_bit =
582
(num_throwaway_bits < 1)
583
? 0
584
: negatable_left_shift(num_throwaway_bits - 1, 1u);
585
586
static const uint_type throwaway_mask_bits =
587
num_throwaway_bits > 0 ? num_throwaway_bits : 0;
588
static const uint_type throwaway_mask =
589
spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get;
590
591
*carry_bit = false;
592
other_uint_type out_val = 0;
593
uint_type significand = getNormalizedSignificand();
594
// If we are up-casting, then we just have to shift to the right location.
595
if (num_throwaway_bits <= 0) {
596
out_val = static_cast<other_uint_type>(significand);
597
uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits);
598
out_val = static_cast<other_uint_type>(out_val << shift_amount);
599
return out_val;
600
}
601
602
// If every non-representable bit is 0, then we don't have any casting to
603
// do.
604
if ((significand & throwaway_mask) == 0) {
605
return static_cast<other_uint_type>(
606
negatable_right_shift(num_throwaway_bits, significand));
607
}
608
609
bool round_away_from_zero = false;
610
// We actually have to narrow the significand here, so we have to follow the
611
// rounding rules.
612
switch (dir) {
613
case kRoundToZero:
614
break;
615
case kRoundToPositiveInfinity:
616
round_away_from_zero = !isNegative();
617
break;
618
case kRoundToNegativeInfinity:
619
round_away_from_zero = isNegative();
620
break;
621
case kRoundToNearestEven:
622
// Have to round down, round bit is 0
623
if ((first_rounded_bit & significand) == 0) {
624
break;
625
}
626
if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) {
627
// If any subsequent bit of the rounded portion is non-0 then we round
628
// up.
629
round_away_from_zero = true;
630
break;
631
}
632
// We are exactly half-way between 2 numbers, pick even.
633
if ((significand & last_significant_bit) != 0) {
634
// 1 for our last bit, round up.
635
round_away_from_zero = true;
636
break;
637
}
638
break;
639
}
640
641
if (round_away_from_zero) {
642
return static_cast<other_uint_type>(
643
negatable_right_shift(num_throwaway_bits, incrementSignificand(
644
significand, last_significant_bit, carry_bit)));
645
} else {
646
return static_cast<other_uint_type>(
647
negatable_right_shift(num_throwaway_bits, significand));
648
}
649
}
650
651
// Casts this value to another HexFloat. If the cast is widening,
652
// then round_dir is ignored. If the cast is narrowing, then
653
// the result is rounded in the direction specified.
654
// This number will retain Nan and Inf values.
655
// It will also saturate to Inf if the number overflows, and
656
// underflow to (0 or min depending on rounding) if the number underflows.
657
template <typename other_T>
658
void castTo(other_T& other, round_direction round_dir) {
659
other = other_T(static_cast<typename other_T::native_type>(0));
660
bool negate = isNegative();
661
if (getUnsignedBits() == 0) {
662
if (negate) {
663
other.set_value(-other.value());
664
}
665
return;
666
}
667
uint_type significand = getSignificandBits();
668
bool carried = false;
669
typename other_T::uint_type rounded_significand =
670
getRoundedNormalizedSignificand<other_T>(round_dir, &carried);
671
672
int_type exponent = getUnbiasedExponent();
673
if (exponent == min_exponent) {
674
// If we are denormal, normalize the exponent, so that we can encode
675
// easily.
676
exponent = static_cast<int_type>(exponent + 1);
677
for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0;
678
check_bit = static_cast<uint_type>(check_bit >> 1)) {
679
exponent = static_cast<int_type>(exponent - 1);
680
if (check_bit & significand) break;
681
}
682
}
683
684
bool is_nan =
685
(getBits() & exponent_mask) == exponent_mask && significand != 0;
686
bool is_inf =
687
!is_nan &&
688
(((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) && other_T::Traits_T::supportsInfinity()) ||
689
((exponent + carried) > static_cast<int_type>(other_T::exponent_bias + 1) && !other_T::Traits_T::supportsInfinity()) ||
690
(significand == 0 && (getBits() & exponent_mask) == exponent_mask));
691
692
// If we are Nan or Inf we should pass that through.
693
if (is_inf) {
694
if (other_T::Traits_T::supportsInfinity()) {
695
// encode as +/-inf
696
other.set_value(BitwiseCast<typename other_T::underlying_type>(
697
static_cast<typename other_T::uint_type>(
698
(negate ? other_T::sign_mask : 0) | other_T::exponent_mask)));
699
} else {
700
// encode as +/-nan
701
other.set_value(BitwiseCast<typename other_T::underlying_type>(
702
static_cast<typename other_T::uint_type>(negate ? ~0 : ~other_T::sign_mask)));
703
}
704
return;
705
}
706
if (is_nan) {
707
typename other_T::uint_type shifted_significand;
708
shifted_significand = static_cast<typename other_T::uint_type>(
709
negatable_left_shift(
710
static_cast<int_type>(other_T::num_fraction_bits) -
711
static_cast<int_type>(num_fraction_bits), significand));
712
713
// We are some sort of Nan. We try to keep the bit-pattern of the Nan
714
// as close as possible. If we had to shift off bits so we are 0, then we
715
// just set the last bit.
716
other.set_value(BitwiseCast<typename other_T::underlying_type>(
717
static_cast<typename other_T::uint_type>(
718
(negate ? other_T::sign_mask : 0) | other_T::exponent_mask |
719
(shifted_significand == 0 ? 0x1 : shifted_significand))));
720
return;
721
}
722
723
bool round_underflow_up =
724
isNegative() ? round_dir == kRoundToNegativeInfinity
725
: round_dir == kRoundToPositiveInfinity;
726
typedef typename other_T::int_type other_int_type;
727
// setFromSignUnbiasedExponentAndNormalizedSignificand will
728
// zero out any underflowing value (but retain the sign).
729
other.setFromSignUnbiasedExponentAndNormalizedSignificand(
730
negate, static_cast<other_int_type>(exponent), rounded_significand,
731
round_underflow_up);
732
return;
733
}
734
735
private:
736
T value_;
737
738
static_assert(num_used_bits ==
739
Traits::num_exponent_bits + Traits::num_fraction_bits + 1,
740
"The number of bits do not fit");
741
static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match");
742
};
743
744
// Returns 4 bits represented by the hex character.
745
inline uint8_t get_nibble_from_character(int character) {
746
const char* dec = "0123456789";
747
const char* lower = "abcdef";
748
const char* upper = "ABCDEF";
749
const char* p = nullptr;
750
if ((p = strchr(dec, character))) {
751
return static_cast<uint8_t>(p - dec);
752
} else if ((p = strchr(lower, character))) {
753
return static_cast<uint8_t>(p - lower + 0xa);
754
} else if ((p = strchr(upper, character))) {
755
return static_cast<uint8_t>(p - upper + 0xa);
756
}
757
758
assert(false && "This was called with a non-hex character");
759
return 0;
760
}
761
762
// Outputs the given HexFloat to the stream.
763
template <typename T, typename Traits>
764
std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
765
typedef HexFloat<T, Traits> HF;
766
typedef typename HF::uint_type uint_type;
767
typedef typename HF::int_type int_type;
768
769
static_assert(HF::num_used_bits != 0,
770
"num_used_bits must be non-zero for a valid float");
771
static_assert(HF::num_exponent_bits != 0,
772
"num_exponent_bits must be non-zero for a valid float");
773
static_assert(HF::num_fraction_bits != 0,
774
"num_fractin_bits must be non-zero for a valid float");
775
776
const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value());
777
const char* const sign = (bits & HF::sign_mask) ? "-" : "";
778
const uint_type exponent = static_cast<uint_type>(
779
(bits & HF::exponent_mask) >> HF::num_fraction_bits);
780
781
uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask)
782
<< HF::num_overflow_bits);
783
784
const bool is_zero = exponent == 0 && fraction == 0;
785
const bool is_denorm = exponent == 0 && !is_zero;
786
787
// exponent contains the biased exponent we have to convert it back into
788
// the normal range.
789
int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias);
790
// If the number is all zeros, then we actually have to NOT shift the
791
// exponent.
792
int_exponent = is_zero ? 0 : int_exponent;
793
794
// If we are denorm, then start shifting, and decreasing the exponent until
795
// our leading bit is 1.
796
797
if (is_denorm) {
798
while ((fraction & HF::fraction_top_bit) == 0) {
799
fraction = static_cast<uint_type>(fraction << 1);
800
int_exponent = static_cast<int_type>(int_exponent - 1);
801
}
802
// Since this is denormalized, we have to consume the leading 1 since it
803
// will end up being implicit.
804
fraction = static_cast<uint_type>(fraction << 1); // eat the leading 1
805
fraction &= HF::fraction_represent_mask;
806
}
807
808
uint_type fraction_nibbles = HF::fraction_nibbles;
809
// We do not have to display any trailing 0s, since this represents the
810
// fractional part.
811
while (fraction_nibbles > 0 && (fraction & 0xF) == 0) {
812
// Shift off any trailing values;
813
fraction = static_cast<uint_type>(fraction >> 4);
814
--fraction_nibbles;
815
}
816
817
const auto saved_flags = os.flags();
818
const auto saved_fill = os.fill();
819
820
os << sign << "0x" << (is_zero ? '0' : '1');
821
if (fraction_nibbles) {
822
// Make sure to keep the leading 0s in place, since this is the fractional
823
// part.
824
os << "." << std::setw(static_cast<int>(fraction_nibbles))
825
<< std::setfill('0') << std::hex << fraction;
826
}
827
os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent;
828
829
os.flags(saved_flags);
830
os.fill(saved_fill);
831
832
return os;
833
}
834
835
// Returns true if negate_value is true and the next character on the
836
// input stream is a plus or minus sign. In that case we also set the fail bit
837
// on the stream and set the value to the zero value for its type.
838
template <typename T, typename Traits>
839
inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value,
840
HexFloat<T, Traits>& value) {
841
if (negate_value) {
842
auto next_char = is.peek();
843
if (next_char == '-' || next_char == '+') {
844
// Fail the parse. Emulate standard behaviour by setting the value to
845
// the zero value, and set the fail bit on the stream.
846
value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
847
is.setstate(std::ios_base::failbit);
848
return true;
849
}
850
}
851
return false;
852
}
853
854
// Parses a floating point number from the given stream and stores it into the
855
// value parameter.
856
// If negate_value is true then the number may not have a leading minus or
857
// plus, and if it successfully parses, then the number is negated before
858
// being stored into the value parameter.
859
// If the value cannot be correctly parsed or overflows the target floating
860
// point type, then set the fail bit on the stream.
861
// TODO(dneto): Promise C++11 standard behavior in how the value is set in
862
// the error case, but only after all target platforms implement it correctly.
863
// In particular, the Microsoft C++ runtime appears to be out of spec.
864
template <typename T, typename Traits>
865
inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
866
HexFloat<T, Traits>& value) {
867
if (RejectParseDueToLeadingSign(is, negate_value, value)) {
868
return is;
869
}
870
T val;
871
is >> val;
872
if (negate_value) {
873
val = -val;
874
}
875
value.set_value(val);
876
// In the failure case, map -0.0 to 0.0.
877
if (is.fail() && value.getUnsignedBits() == 0u) {
878
value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
879
}
880
if (val.isInfinity()) {
881
// Fail the parse. Emulate standard behaviour by setting the value to
882
// the closest normal value, and set the fail bit on the stream.
883
value.set_value((value.isNegative() || negate_value) ? T::lowest()
884
: T::max());
885
is.setstate(std::ios_base::failbit);
886
}
887
return is;
888
}
889
890
// Specialization of ParseNormalFloat for FloatProxy<Float16> values.
891
// This will parse the float as it were a 32-bit floating point number,
892
// and then round it down to fit into a Float16 value.
893
// The number is rounded towards zero.
894
// If negate_value is true then the number may not have a leading minus or
895
// plus, and if it successfully parses, then the number is negated before
896
// being stored into the value parameter.
897
// If the value cannot be correctly parsed or overflows the target floating
898
// point type, then set the fail bit on the stream.
899
// TODO(dneto): Promise C++11 standard behavior in how the value is set in
900
// the error case, but only after all target platforms implement it correctly.
901
// In particular, the Microsoft C++ runtime appears to be out of spec.
902
template <>
903
inline std::istream&
904
ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>(
905
std::istream& is, bool negate_value,
906
HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) {
907
// First parse as a 32-bit float.
908
HexFloat<FloatProxy<float>> float_val(0.0f);
909
ParseNormalFloat(is, negate_value, float_val);
910
911
// Then convert to 16-bit float, saturating at infinities, and
912
// rounding toward zero.
913
float_val.castTo(value, kRoundToZero);
914
915
// Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
916
// fail bit and set the lowest or highest value.
917
if (Float16::isInfinity(value.value().getAsFloat())) {
918
value.set_value(value.isNegative() ? Float16::lowest() : Float16::max());
919
is.setstate(std::ios_base::failbit);
920
}
921
return is;
922
}
923
924
// Reads a HexFloat from the given stream.
925
// If the float is not encoded as a hex-float then it will be parsed
926
// as a regular float.
927
// This may fail if your stream does not support at least one unget.
928
// Nan values can be encoded with "0x1.<not zero>p+exponent_bias".
929
// This would normally overflow a float and round to
930
// infinity but this special pattern is the exact representation for a NaN,
931
// and therefore is actually encoded as the correct NaN. To encode inf,
932
// either 0x0p+exponent_bias can be specified or any exponent greater than
933
// exponent_bias.
934
// Examples using IEEE 32-bit float encoding.
935
// 0x1.0p+128 (+inf)
936
// -0x1.0p-128 (-inf)
937
//
938
// 0x1.1p+128 (+Nan)
939
// -0x1.1p+128 (-Nan)
940
//
941
// 0x1p+129 (+inf)
942
// -0x1p+129 (-inf)
943
template <typename T, typename Traits>
944
std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
945
using HF = HexFloat<T, Traits>;
946
using uint_type = typename HF::uint_type;
947
using int_type = typename HF::int_type;
948
949
value.set_value(static_cast<typename HF::native_type>(0.f));
950
951
if (is.flags() & std::ios::skipws) {
952
// If the user wants to skip whitespace , then we should obey that.
953
while (std::isspace(is.peek())) {
954
is.get();
955
}
956
}
957
958
auto next_char = is.peek();
959
bool negate_value = false;
960
961
if (next_char != '-' && next_char != '0') {
962
return ParseNormalFloat(is, negate_value, value);
963
}
964
965
if (next_char == '-') {
966
negate_value = true;
967
is.get();
968
next_char = is.peek();
969
}
970
971
if (next_char == '0') {
972
is.get(); // We may have to unget this.
973
auto maybe_hex_start = is.peek();
974
if (maybe_hex_start != 'x' && maybe_hex_start != 'X') {
975
is.unget();
976
return ParseNormalFloat(is, negate_value, value);
977
} else {
978
is.get(); // Throw away the 'x';
979
}
980
} else {
981
return ParseNormalFloat(is, negate_value, value);
982
}
983
984
// This "looks" like a hex-float so treat it as one.
985
bool seen_p = false;
986
bool seen_dot = false;
987
uint_type fraction_index = 0;
988
989
uint_type fraction = 0;
990
int_type exponent = HF::exponent_bias;
991
992
// Strip off leading zeros so we don't have to special-case them later.
993
while ((next_char = is.peek()) == '0') {
994
is.get();
995
}
996
997
bool is_denorm =
998
true; // Assume denorm "representation" until we hear otherwise.
999
// NB: This does not mean the value is actually denorm,
1000
// it just means that it was written 0.
1001
bool bits_written = false; // Stays false until we write a bit.
1002
while (!seen_p && !seen_dot) {
1003
// Handle characters that are left of the fractional part.
1004
if (next_char == '.') {
1005
seen_dot = true;
1006
} else if (next_char == 'p') {
1007
seen_p = true;
1008
} else if (::isxdigit(next_char)) {
1009
// We know this is not denormalized since we have stripped all leading
1010
// zeroes and we are not a ".".
1011
is_denorm = false;
1012
int number = get_nibble_from_character(next_char);
1013
for (int i = 0; i < 4; ++i, number <<= 1) {
1014
uint_type write_bit = (number & 0x8) ? 0x1 : 0x0;
1015
if (bits_written) {
1016
// If we are here the bits represented belong in the fractional
1017
// part of the float, and we have to adjust the exponent accordingly.
1018
fraction = static_cast<uint_type>(
1019
fraction |
1020
static_cast<uint_type>(
1021
write_bit << (HF::top_bit_left_shift - fraction_index++)));
1022
exponent = static_cast<int_type>(exponent + 1);
1023
}
1024
bits_written |= write_bit != 0;
1025
}
1026
} else {
1027
// We have not found our exponent yet, so we have to fail.
1028
is.setstate(std::ios::failbit);
1029
return is;
1030
}
1031
is.get();
1032
next_char = is.peek();
1033
}
1034
bits_written = false;
1035
while (seen_dot && !seen_p) {
1036
// Handle only fractional parts now.
1037
if (next_char == 'p') {
1038
seen_p = true;
1039
} else if (::isxdigit(next_char)) {
1040
int number = get_nibble_from_character(next_char);
1041
for (int i = 0; i < 4; ++i, number <<= 1) {
1042
uint_type write_bit = (number & 0x8) ? 0x01 : 0x00;
1043
bits_written |= write_bit != 0;
1044
if (is_denorm && !bits_written) {
1045
// Handle modifying the exponent here this way we can handle
1046
// an arbitrary number of hex values without overflowing our
1047
// integer.
1048
exponent = static_cast<int_type>(exponent - 1);
1049
} else {
1050
fraction = static_cast<uint_type>(
1051
fraction |
1052
static_cast<uint_type>(
1053
write_bit << (HF::top_bit_left_shift - fraction_index++)));
1054
}
1055
}
1056
} else {
1057
// We still have not found our 'p' exponent yet, so this is not a valid
1058
// hex-float.
1059
is.setstate(std::ios::failbit);
1060
return is;
1061
}
1062
is.get();
1063
next_char = is.peek();
1064
}
1065
1066
bool seen_sign = false;
1067
int8_t exponent_sign = 1;
1068
int_type written_exponent = 0;
1069
while (true) {
1070
if ((next_char == '-' || next_char == '+')) {
1071
if (seen_sign) {
1072
is.setstate(std::ios::failbit);
1073
return is;
1074
}
1075
seen_sign = true;
1076
exponent_sign = (next_char == '-') ? -1 : 1;
1077
} else if (::isdigit(next_char)) {
1078
// Hex-floats express their exponent as decimal.
1079
written_exponent = static_cast<int_type>(written_exponent * 10);
1080
written_exponent =
1081
static_cast<int_type>(written_exponent + (next_char - '0'));
1082
} else {
1083
break;
1084
}
1085
is.get();
1086
next_char = is.peek();
1087
}
1088
1089
written_exponent = static_cast<int_type>(written_exponent * exponent_sign);
1090
exponent = static_cast<int_type>(exponent + written_exponent);
1091
1092
bool is_zero = is_denorm && (fraction == 0);
1093
if (is_denorm && !is_zero) {
1094
fraction = static_cast<uint_type>(fraction << 1);
1095
exponent = static_cast<int_type>(exponent - 1);
1096
} else if (is_zero) {
1097
exponent = 0;
1098
}
1099
1100
if (exponent <= 0 && !is_zero) {
1101
fraction = static_cast<uint_type>(fraction >> 1);
1102
fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift;
1103
}
1104
1105
fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask;
1106
1107
const int_type max_exponent =
1108
SetBits<uint_type, 0, HF::num_exponent_bits>::get;
1109
1110
// Handle actual denorm numbers
1111
while (exponent < 0 && !is_zero) {
1112
fraction = static_cast<uint_type>(fraction >> 1);
1113
exponent = static_cast<int_type>(exponent + 1);
1114
1115
fraction &= HF::fraction_encode_mask;
1116
if (fraction == 0) {
1117
// We have underflowed our fraction. We should clamp to zero.
1118
is_zero = true;
1119
exponent = 0;
1120
}
1121
}
1122
1123
// We have overflowed so we should be inf/-inf.
1124
if (exponent > max_exponent) {
1125
exponent = max_exponent;
1126
fraction = 0;
1127
}
1128
1129
uint_type output_bits = static_cast<uint_type>(
1130
static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift);
1131
output_bits |= fraction;
1132
1133
uint_type shifted_exponent = static_cast<uint_type>(
1134
static_cast<uint_type>(exponent << HF::exponent_left_shift) &
1135
HF::exponent_mask);
1136
output_bits |= shifted_exponent;
1137
1138
T output_float = spvutils::BitwiseCast<T>(output_bits);
1139
value.set_value(output_float);
1140
1141
return is;
1142
}
1143
1144
// Writes a FloatProxy value to a stream.
1145
// Zero and normal numbers are printed in the usual notation, but with
1146
// enough digits to fully reproduce the value. Other values (subnormal,
1147
// NaN, and infinity) are printed as a hex float.
1148
template <typename T>
1149
std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) {
1150
auto float_val = value.getAsFloat();
1151
switch (std::fpclassify(float_val)) {
1152
case FP_ZERO:
1153
case FP_NORMAL: {
1154
auto saved_precision = os.precision();
1155
os.precision(std::numeric_limits<T>::digits10);
1156
os << float_val;
1157
os.precision(saved_precision);
1158
} break;
1159
default:
1160
os << HexFloat<FloatProxy<T>>(value);
1161
break;
1162
}
1163
return os;
1164
}
1165
1166
template <>
1167
inline std::ostream& operator<<<Float16>(std::ostream& os,
1168
const FloatProxy<Float16>& value) {
1169
os << HexFloat<FloatProxy<Float16>>(value);
1170
return os;
1171
}
1172
}
1173
1174
#endif // LIBSPIRV_UTIL_HEX_FLOAT_H_
1175
1176