Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/grisu2/grisu2.h
9896 views
1
#pragma once
2
3
#include <cstring>
4
#include <cstdint>
5
#include <array>
6
#include <cmath>
7
8
namespace grisu2 {
9
/*!
10
implements the Grisu2 algorithm for binary to decimal floating-point
11
conversion.
12
Adapted from JSON for Modern C++
13
14
This implementation is a slightly modified version of the reference
15
implementation which may be obtained from
16
http://florian.loitsch.com/publications (bench.tar.gz).
17
The code is distributed under the MIT license, Copyright (c) 2009 Florian
18
Loitsch. For a detailed description of the algorithm see: [1] Loitsch, "Printing
19
Floating-Point Numbers Quickly and Accurately with Integers", Proceedings of the
20
ACM SIGPLAN 2010 Conference on Programming Language Design and Implementation,
21
PLDI 2010 [2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and
22
Accurately", Proceedings of the ACM SIGPLAN 1996 Conference on Programming
23
Language Design and Implementation, PLDI 1996
24
*/
25
26
template <typename Target, typename Source>
27
Target reinterpret_bits(const Source source) {
28
static_assert(sizeof(Target) == sizeof(Source), "size mismatch");
29
30
Target target;
31
std::memcpy(&target, &source, sizeof(Source));
32
return target;
33
}
34
35
struct diyfp // f * 2^e
36
{
37
static constexpr int kPrecision = 64; // = q
38
39
std::uint64_t f = 0;
40
int e = 0;
41
42
constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {}
43
44
/*!
45
@brief returns x - y
46
@pre x.e == y.e and x.f >= y.f
47
*/
48
static diyfp sub(const diyfp &x, const diyfp &y) noexcept {
49
50
return {x.f - y.f, x.e};
51
}
52
53
/*!
54
@brief returns x * y
55
@note The result is rounded. (Only the upper q bits are returned.)
56
*/
57
static diyfp mul(const diyfp &x, const diyfp &y) noexcept {
58
static_assert(kPrecision == 64, "internal error");
59
60
// Computes:
61
// f = round((x.f * y.f) / 2^q)
62
// e = x.e + y.e + q
63
64
// Emulate the 64-bit * 64-bit multiplication:
65
//
66
// p = u * v
67
// = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi)
68
// = (u_lo v_lo ) + 2^32 ((u_lo v_hi ) + (u_hi v_lo )) +
69
// 2^64 (u_hi v_hi ) = (p0 ) + 2^32 ((p1 ) + (p2 ))
70
// + 2^64 (p3 ) = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo +
71
// 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3 ) =
72
// (p0_lo ) + 2^32 (p0_hi + p1_lo + p2_lo ) + 2^64 (p1_hi +
73
// p2_hi + p3) = (p0_lo ) + 2^32 (Q ) + 2^64 (H ) = (p0_lo ) +
74
// 2^32 (Q_lo + 2^32 Q_hi ) + 2^64 (H )
75
//
76
// (Since Q might be larger than 2^32 - 1)
77
//
78
// = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H)
79
//
80
// (Q_hi + H does not overflow a 64-bit int)
81
//
82
// = p_lo + 2^64 p_hi
83
84
const std::uint64_t u_lo = x.f & 0xFFFFFFFFu;
85
const std::uint64_t u_hi = x.f >> 32u;
86
const std::uint64_t v_lo = y.f & 0xFFFFFFFFu;
87
const std::uint64_t v_hi = y.f >> 32u;
88
89
const std::uint64_t p0 = u_lo * v_lo;
90
const std::uint64_t p1 = u_lo * v_hi;
91
const std::uint64_t p2 = u_hi * v_lo;
92
const std::uint64_t p3 = u_hi * v_hi;
93
94
const std::uint64_t p0_hi = p0 >> 32u;
95
const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu;
96
const std::uint64_t p1_hi = p1 >> 32u;
97
const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu;
98
const std::uint64_t p2_hi = p2 >> 32u;
99
100
std::uint64_t Q = p0_hi + p1_lo + p2_lo;
101
102
// The full product might now be computed as
103
//
104
// p_hi = p3 + p2_hi + p1_hi + (Q >> 32)
105
// p_lo = p0_lo + (Q << 32)
106
//
107
// But in this particular case here, the full p_lo is not required.
108
// Effectively we only need to add the highest bit in p_lo to p_hi (and
109
// Q_hi + 1 does not overflow).
110
111
Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up
112
113
const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u);
114
115
return {h, x.e + y.e + 64};
116
}
117
118
/*!
119
@brief normalize x such that the significand is >= 2^(q-1)
120
@pre x.f != 0
121
*/
122
static diyfp normalize(diyfp x) noexcept {
123
124
while ((x.f >> 63u) == 0) {
125
x.f <<= 1u;
126
x.e--;
127
}
128
129
return x;
130
}
131
132
/*!
133
@brief normalize x such that the result has the exponent E
134
@pre e >= x.e and the upper e - x.e bits of x.f must be zero.
135
*/
136
static diyfp normalize_to(const diyfp &x,
137
const int target_exponent) noexcept {
138
const int delta = x.e - target_exponent;
139
140
return {x.f << delta, target_exponent};
141
}
142
};
143
144
struct boundaries {
145
diyfp w;
146
diyfp minus;
147
diyfp plus;
148
};
149
150
/*!
151
Compute the (normalized) diyfp representing the input number 'value' and its
152
boundaries.
153
@pre value must be finite and positive
154
*/
155
template <typename FloatType> boundaries compute_boundaries(FloatType value) {
156
157
// Convert the IEEE representation into a diyfp.
158
//
159
// If v is denormal:
160
// value = 0.F * 2^(1 - bias) = ( F) * 2^(1 - bias - (p-1))
161
// If v is normalized:
162
// value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1))
163
164
static_assert(std::numeric_limits<FloatType>::is_iec559,
165
"internal error: dtoa_short requires an IEEE-754 "
166
"floating-point implementation");
167
168
constexpr int kPrecision =
169
std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit)
170
constexpr int kBias =
171
std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1);
172
constexpr int kMinExp = 1 - kBias;
173
constexpr std::uint64_t kHiddenBit = std::uint64_t{1}
174
<< (kPrecision - 1); // = 2^(p-1)
175
176
using bits_type = typename std::conditional<kPrecision == 24, std::uint32_t,
177
std::uint64_t>::type;
178
179
const std::uint64_t bits = reinterpret_bits<bits_type>(value);
180
const std::uint64_t E = bits >> (kPrecision - 1);
181
const std::uint64_t F = bits & (kHiddenBit - 1);
182
183
const bool is_denormal = E == 0;
184
const diyfp v = is_denormal
185
? diyfp(F, kMinExp)
186
: diyfp(F + kHiddenBit, static_cast<int>(E) - kBias);
187
188
// Compute the boundaries m- and m+ of the floating-point value
189
// v = f * 2^e.
190
//
191
// Determine v- and v+, the floating-point predecessor and successor if v,
192
// respectively.
193
//
194
// v- = v - 2^e if f != 2^(p-1) or e == e_min (A)
195
// = v - 2^(e-1) if f == 2^(p-1) and e > e_min (B)
196
//
197
// v+ = v + 2^e
198
//
199
// Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_
200
// between m- and m+ round to v, regardless of how the input rounding
201
// algorithm breaks ties.
202
//
203
// ---+-------------+-------------+-------------+-------------+--- (A)
204
// v- m- v m+ v+
205
//
206
// -----------------+------+------+-------------+-------------+--- (B)
207
// v- m- v m+ v+
208
209
const bool lower_boundary_is_closer = F == 0 && E > 1;
210
const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1);
211
const diyfp m_minus = lower_boundary_is_closer
212
? diyfp(4 * v.f - 1, v.e - 2) // (B)
213
: diyfp(2 * v.f - 1, v.e - 1); // (A)
214
215
// Determine the normalized w+ = m+.
216
const diyfp w_plus = diyfp::normalize(m_plus);
217
218
// Determine w- = m- such that e_(w-) = e_(w+).
219
const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e);
220
221
return {diyfp::normalize(v), w_minus, w_plus};
222
}
223
224
// Given normalized diyfp w, Grisu needs to find a (normalized) cached
225
// power-of-ten c, such that the exponent of the product c * w = f * 2^e lies
226
// within a certain range [alpha, gamma] (Definition 3.2 from [1])
227
//
228
// alpha <= e = e_c + e_w + q <= gamma
229
//
230
// or
231
//
232
// f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q
233
// <= f_c * f_w * 2^gamma
234
//
235
// Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies
236
//
237
// 2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma
238
//
239
// or
240
//
241
// 2^(q - 2 + alpha) <= c * w < 2^(q + gamma)
242
//
243
// The choice of (alpha,gamma) determines the size of the table and the form of
244
// the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well
245
// in practice:
246
//
247
// The idea is to cut the number c * w = f * 2^e into two parts, which can be
248
// processed independently: An integral part p1, and a fractional part p2:
249
//
250
// f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e
251
// = (f div 2^-e) + (f mod 2^-e) * 2^e
252
// = p1 + p2 * 2^e
253
//
254
// The conversion of p1 into decimal form requires a series of divisions and
255
// modulos by (a power of) 10. These operations are faster for 32-bit than for
256
// 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be
257
// achieved by choosing
258
//
259
// -e >= 32 or e <= -32 := gamma
260
//
261
// In order to convert the fractional part
262
//
263
// p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ...
264
//
265
// into decimal form, the fraction is repeatedly multiplied by 10 and the digits
266
// d[-i] are extracted in order:
267
//
268
// (10 * p2) div 2^-e = d[-1]
269
// (10 * p2) mod 2^-e = d[-2] / 10^1 + ...
270
//
271
// The multiplication by 10 must not overflow. It is sufficient to choose
272
//
273
// 10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64.
274
//
275
// Since p2 = f mod 2^-e < 2^-e,
276
//
277
// -e <= 60 or e >= -60 := alpha
278
279
constexpr int kAlpha = -60;
280
constexpr int kGamma = -32;
281
282
struct cached_power // c = f * 2^e ~= 10^k
283
{
284
std::uint64_t f;
285
int e;
286
int k;
287
};
288
289
/*!
290
For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached
291
power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c
292
satisfies (Definition 3.2 from [1])
293
alpha <= e_c + e + q <= gamma.
294
*/
295
inline cached_power get_cached_power_for_binary_exponent(int e) {
296
// Now
297
//
298
// alpha <= e_c + e + q <= gamma (1)
299
// ==> f_c * 2^alpha <= c * 2^e * 2^q
300
//
301
// and since the c's are normalized, 2^(q-1) <= f_c,
302
//
303
// ==> 2^(q - 1 + alpha) <= c * 2^(e + q)
304
// ==> 2^(alpha - e - 1) <= c
305
//
306
// If c were an exact power of ten, i.e. c = 10^k, one may determine k as
307
//
308
// k = ceil( log_10( 2^(alpha - e - 1) ) )
309
// = ceil( (alpha - e - 1) * log_10(2) )
310
//
311
// From the paper:
312
// "In theory the result of the procedure could be wrong since c is rounded,
313
// and the computation itself is approximated [...]. In practice, however,
314
// this simple function is sufficient."
315
//
316
// For IEEE double precision floating-point numbers converted into
317
// normalized diyfp's w = f * 2^e, with q = 64,
318
//
319
// e >= -1022 (min IEEE exponent)
320
// -52 (p - 1)
321
// -52 (p - 1, possibly normalize denormal IEEE numbers)
322
// -11 (normalize the diyfp)
323
// = -1137
324
//
325
// and
326
//
327
// e <= +1023 (max IEEE exponent)
328
// -52 (p - 1)
329
// -11 (normalize the diyfp)
330
// = 960
331
//
332
// This binary exponent range [-1137,960] results in a decimal exponent
333
// range [-307,324]. One does not need to store a cached power for each
334
// k in this range. For each such k it suffices to find a cached power
335
// such that the exponent of the product lies in [alpha,gamma].
336
// This implies that the difference of the decimal exponents of adjacent
337
// table entries must be less than or equal to
338
//
339
// floor( (gamma - alpha) * log_10(2) ) = 8.
340
//
341
// (A smaller distance gamma-alpha would require a larger table.)
342
343
// NB:
344
// Actually this function returns c, such that -60 <= e_c + e + 64 <= -34.
345
346
constexpr int kCachedPowersMinDecExp = -300;
347
constexpr int kCachedPowersDecStep = 8;
348
349
static constexpr std::array<cached_power, 79> kCachedPowers = {{
350
{0xAB70FE17C79AC6CA, -1060, -300}, {0xFF77B1FCBEBCDC4F, -1034, -292},
351
{0xBE5691EF416BD60C, -1007, -284}, {0x8DD01FAD907FFC3C, -980, -276},
352
{0xD3515C2831559A83, -954, -268}, {0x9D71AC8FADA6C9B5, -927, -260},
353
{0xEA9C227723EE8BCB, -901, -252}, {0xAECC49914078536D, -874, -244},
354
{0x823C12795DB6CE57, -847, -236}, {0xC21094364DFB5637, -821, -228},
355
{0x9096EA6F3848984F, -794, -220}, {0xD77485CB25823AC7, -768, -212},
356
{0xA086CFCD97BF97F4, -741, -204}, {0xEF340A98172AACE5, -715, -196},
357
{0xB23867FB2A35B28E, -688, -188}, {0x84C8D4DFD2C63F3B, -661, -180},
358
{0xC5DD44271AD3CDBA, -635, -172}, {0x936B9FCEBB25C996, -608, -164},
359
{0xDBAC6C247D62A584, -582, -156}, {0xA3AB66580D5FDAF6, -555, -148},
360
{0xF3E2F893DEC3F126, -529, -140}, {0xB5B5ADA8AAFF80B8, -502, -132},
361
{0x87625F056C7C4A8B, -475, -124}, {0xC9BCFF6034C13053, -449, -116},
362
{0x964E858C91BA2655, -422, -108}, {0xDFF9772470297EBD, -396, -100},
363
{0xA6DFBD9FB8E5B88F, -369, -92}, {0xF8A95FCF88747D94, -343, -84},
364
{0xB94470938FA89BCF, -316, -76}, {0x8A08F0F8BF0F156B, -289, -68},
365
{0xCDB02555653131B6, -263, -60}, {0x993FE2C6D07B7FAC, -236, -52},
366
{0xE45C10C42A2B3B06, -210, -44}, {0xAA242499697392D3, -183, -36},
367
{0xFD87B5F28300CA0E, -157, -28}, {0xBCE5086492111AEB, -130, -20},
368
{0x8CBCCC096F5088CC, -103, -12}, {0xD1B71758E219652C, -77, -4},
369
{0x9C40000000000000, -50, 4}, {0xE8D4A51000000000, -24, 12},
370
{0xAD78EBC5AC620000, 3, 20}, {0x813F3978F8940984, 30, 28},
371
{0xC097CE7BC90715B3, 56, 36}, {0x8F7E32CE7BEA5C70, 83, 44},
372
{0xD5D238A4ABE98068, 109, 52}, {0x9F4F2726179A2245, 136, 60},
373
{0xED63A231D4C4FB27, 162, 68}, {0xB0DE65388CC8ADA8, 189, 76},
374
{0x83C7088E1AAB65DB, 216, 84}, {0xC45D1DF942711D9A, 242, 92},
375
{0x924D692CA61BE758, 269, 100}, {0xDA01EE641A708DEA, 295, 108},
376
{0xA26DA3999AEF774A, 322, 116}, {0xF209787BB47D6B85, 348, 124},
377
{0xB454E4A179DD1877, 375, 132}, {0x865B86925B9BC5C2, 402, 140},
378
{0xC83553C5C8965D3D, 428, 148}, {0x952AB45CFA97A0B3, 455, 156},
379
{0xDE469FBD99A05FE3, 481, 164}, {0xA59BC234DB398C25, 508, 172},
380
{0xF6C69A72A3989F5C, 534, 180}, {0xB7DCBF5354E9BECE, 561, 188},
381
{0x88FCF317F22241E2, 588, 196}, {0xCC20CE9BD35C78A5, 614, 204},
382
{0x98165AF37B2153DF, 641, 212}, {0xE2A0B5DC971F303A, 667, 220},
383
{0xA8D9D1535CE3B396, 694, 228}, {0xFB9B7CD9A4A7443C, 720, 236},
384
{0xBB764C4CA7A44410, 747, 244}, {0x8BAB8EEFB6409C1A, 774, 252},
385
{0xD01FEF10A657842C, 800, 260}, {0x9B10A4E5E9913129, 827, 268},
386
{0xE7109BFBA19C0C9D, 853, 276}, {0xAC2820D9623BF429, 880, 284},
387
{0x80444B5E7AA7CF85, 907, 292}, {0xBF21E44003ACDD2D, 933, 300},
388
{0x8E679C2F5E44FF8F, 960, 308}, {0xD433179D9C8CB841, 986, 316},
389
{0x9E19DB92B4E31BA9, 1013, 324},
390
}};
391
392
// This computation gives exactly the same results for k as
393
// k = ceil((kAlpha - e - 1) * 0.30102999566398114)
394
// for |e| <= 1500, but doesn't require floating-point operations.
395
// NB: log_10(2) ~= 78913 / 2^18
396
const int f = kAlpha - e - 1;
397
const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0);
398
399
const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) /
400
kCachedPowersDecStep;
401
402
const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)];
403
404
return cached;
405
}
406
407
/*!
408
For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k.
409
For n == 0, returns 1 and sets pow10 := 1.
410
*/
411
inline int find_largest_pow10(const std::uint32_t n, std::uint32_t &pow10) {
412
// LCOV_EXCL_START
413
if (n >= 1000000000) {
414
pow10 = 1000000000;
415
return 10;
416
}
417
// LCOV_EXCL_STOP
418
else if (n >= 100000000) {
419
pow10 = 100000000;
420
return 9;
421
} else if (n >= 10000000) {
422
pow10 = 10000000;
423
return 8;
424
} else if (n >= 1000000) {
425
pow10 = 1000000;
426
return 7;
427
} else if (n >= 100000) {
428
pow10 = 100000;
429
return 6;
430
} else if (n >= 10000) {
431
pow10 = 10000;
432
return 5;
433
} else if (n >= 1000) {
434
pow10 = 1000;
435
return 4;
436
} else if (n >= 100) {
437
pow10 = 100;
438
return 3;
439
} else if (n >= 10) {
440
pow10 = 10;
441
return 2;
442
} else {
443
pow10 = 1;
444
return 1;
445
}
446
}
447
448
inline void grisu2_round(char *buf, int len, std::uint64_t dist,
449
std::uint64_t delta, std::uint64_t rest,
450
std::uint64_t ten_k) {
451
452
// <--------------------------- delta ---->
453
// <---- dist --------->
454
// --------------[------------------+-------------------]--------------
455
// M- w M+
456
//
457
// ten_k
458
// <------>
459
// <---- rest ---->
460
// --------------[------------------+----+--------------]--------------
461
// w V
462
// = buf * 10^k
463
//
464
// ten_k represents a unit-in-the-last-place in the decimal representation
465
// stored in buf.
466
// Decrement buf by ten_k while this takes buf closer to w.
467
468
// The tests are written in this order to avoid overflow in unsigned
469
// integer arithmetic.
470
471
while (rest < dist && delta - rest >= ten_k &&
472
(rest + ten_k < dist || dist - rest > rest + ten_k - dist)) {
473
buf[len - 1]--;
474
rest += ten_k;
475
}
476
}
477
478
/*!
479
Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+.
480
M- and M+ must be normalized and share the same exponent -60 <= e <= -32.
481
*/
482
inline void grisu2_digit_gen(char *buffer, int &length, int &decimal_exponent,
483
diyfp M_minus, diyfp w, diyfp M_plus) {
484
static_assert(kAlpha >= -60, "internal error");
485
static_assert(kGamma <= -32, "internal error");
486
487
// Generates the digits (and the exponent) of a decimal floating-point
488
// number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's
489
// w, M- and M+ share the same exponent e, which satisfies alpha <= e <=
490
// gamma.
491
//
492
// <--------------------------- delta ---->
493
// <---- dist --------->
494
// --------------[------------------+-------------------]--------------
495
// M- w M+
496
//
497
// Grisu2 generates the digits of M+ from left to right and stops as soon as
498
// V is in [M-,M+].
499
500
std::uint64_t delta =
501
diyfp::sub(M_plus, M_minus)
502
.f; // (significand of (M+ - M-), implicit exponent is e)
503
std::uint64_t dist =
504
diyfp::sub(M_plus, w)
505
.f; // (significand of (M+ - w ), implicit exponent is e)
506
507
// Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0):
508
//
509
// M+ = f * 2^e
510
// = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e
511
// = ((p1 ) * 2^-e + (p2 )) * 2^e
512
// = p1 + p2 * 2^e
513
514
const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e);
515
516
auto p1 = static_cast<std::uint32_t>(
517
M_plus.f >>
518
-one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.)
519
std::uint64_t p2 = M_plus.f & (one.f - 1); // p2 = f mod 2^-e
520
521
// 1)
522
//
523
// Generate the digits of the integral part p1 = d[n-1]...d[1]d[0]
524
525
std::uint32_t pow10;
526
const int k = find_largest_pow10(p1, pow10);
527
528
// 10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1)
529
//
530
// p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1))
531
// = (d[k-1] ) * 10^(k-1) + (p1 mod 10^(k-1))
532
//
533
// M+ = p1 + p2 * 2^e
534
// = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1)) + p2 * 2^e
535
// = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e
536
// = d[k-1] * 10^(k-1) + ( rest) * 2^e
537
//
538
// Now generate the digits d[n] of p1 from left to right (n = k-1,...,0)
539
//
540
// p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0]
541
//
542
// but stop as soon as
543
//
544
// rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e
545
546
int n = k;
547
while (n > 0) {
548
// Invariants:
549
// M+ = buffer * 10^n + (p1 + p2 * 2^e) (buffer = 0 for n = k)
550
// pow10 = 10^(n-1) <= p1 < 10^n
551
//
552
const std::uint32_t d = p1 / pow10; // d = p1 div 10^(n-1)
553
const std::uint32_t r = p1 % pow10; // r = p1 mod 10^(n-1)
554
//
555
// M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e
556
// = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e)
557
//
558
buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
559
//
560
// M+ = buffer * 10^(n-1) + (r + p2 * 2^e)
561
//
562
p1 = r;
563
n--;
564
//
565
// M+ = buffer * 10^n + (p1 + p2 * 2^e)
566
// pow10 = 10^n
567
//
568
569
// Now check if enough digits have been generated.
570
// Compute
571
//
572
// p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e
573
//
574
// Note:
575
// Since rest and delta share the same exponent e, it suffices to
576
// compare the significands.
577
const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2;
578
if (rest <= delta) {
579
// V = buffer * 10^n, with M- <= V <= M+.
580
581
decimal_exponent += n;
582
583
// We may now just stop. But instead look if the buffer could be
584
// decremented to bring V closer to w.
585
//
586
// pow10 = 10^n is now 1 ulp in the decimal representation V.
587
// The rounding procedure works with diyfp's with an implicit
588
// exponent of e.
589
//
590
// 10^n = (10^n * 2^-e) * 2^e = ulp * 2^e
591
//
592
const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e;
593
grisu2_round(buffer, length, dist, delta, rest, ten_n);
594
595
return;
596
}
597
598
pow10 /= 10;
599
//
600
// pow10 = 10^(n-1) <= p1 < 10^n
601
// Invariants restored.
602
}
603
604
// 2)
605
//
606
// The digits of the integral part have been generated:
607
//
608
// M+ = d[k-1]...d[1]d[0] + p2 * 2^e
609
// = buffer + p2 * 2^e
610
//
611
// Now generate the digits of the fractional part p2 * 2^e.
612
//
613
// Note:
614
// No decimal point is generated: the exponent is adjusted instead.
615
//
616
// p2 actually represents the fraction
617
//
618
// p2 * 2^e
619
// = p2 / 2^-e
620
// = d[-1] / 10^1 + d[-2] / 10^2 + ...
621
//
622
// Now generate the digits d[-m] of p1 from left to right (m = 1,2,...)
623
//
624
// p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m
625
// + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...)
626
//
627
// using
628
//
629
// 10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e)
630
// = ( d) * 2^-e + ( r)
631
//
632
// or
633
// 10^m * p2 * 2^e = d + r * 2^e
634
//
635
// i.e.
636
//
637
// M+ = buffer + p2 * 2^e
638
// = buffer + 10^-m * (d + r * 2^e)
639
// = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e
640
//
641
// and stop as soon as 10^-m * r * 2^e <= delta * 2^e
642
643
int m = 0;
644
for (;;) {
645
// Invariant:
646
// M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...)
647
// * 2^e
648
// = buffer * 10^-m + 10^-m * (p2 )
649
// * 2^e = buffer * 10^-m + 10^-m * (1/10 * (10 * p2) ) * 2^e =
650
// buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e +
651
// (10*p2 mod 2^-e)) * 2^e
652
//
653
p2 *= 10;
654
const std::uint64_t d = p2 >> -one.e; // d = (10 * p2) div 2^-e
655
const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e
656
//
657
// M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e
658
// = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e))
659
// = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e
660
//
661
buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
662
//
663
// M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e
664
//
665
p2 = r;
666
m++;
667
//
668
// M+ = buffer * 10^-m + 10^-m * p2 * 2^e
669
// Invariant restored.
670
671
// Check if enough digits have been generated.
672
//
673
// 10^-m * p2 * 2^e <= delta * 2^e
674
// p2 * 2^e <= 10^m * delta * 2^e
675
// p2 <= 10^m * delta
676
delta *= 10;
677
dist *= 10;
678
if (p2 <= delta) {
679
break;
680
}
681
}
682
683
// V = buffer * 10^-m, with M- <= V <= M+.
684
685
decimal_exponent -= m;
686
687
// 1 ulp in the decimal representation is now 10^-m.
688
// Since delta and dist are now scaled by 10^m, we need to do the
689
// same with ulp in order to keep the units in sync.
690
//
691
// 10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e
692
//
693
const std::uint64_t ten_m = one.f;
694
grisu2_round(buffer, length, dist, delta, p2, ten_m);
695
696
// By construction this algorithm generates the shortest possible decimal
697
// number (Loitsch, Theorem 6.2) which rounds back to w.
698
// For an input number of precision p, at least
699
//
700
// N = 1 + ceil(p * log_10(2))
701
//
702
// decimal digits are sufficient to identify all binary floating-point
703
// numbers (Matula, "In-and-Out conversions").
704
// This implies that the algorithm does not produce more than N decimal
705
// digits.
706
//
707
// N = 17 for p = 53 (IEEE double precision)
708
// N = 9 for p = 24 (IEEE single precision)
709
}
710
711
/*!
712
v = buf * 10^decimal_exponent
713
len is the length of the buffer (number of decimal digits)
714
The buffer must be large enough, i.e. >= max_digits10.
715
*/
716
inline void grisu2_core(char *buf, int &len, int &decimal_exponent, diyfp m_minus,
717
diyfp v, diyfp m_plus) {
718
719
// --------(-----------------------+-----------------------)-------- (A)
720
// m- v m+
721
//
722
// --------------------(-----------+-----------------------)-------- (B)
723
// m- v m+
724
//
725
// First scale v (and m- and m+) such that the exponent is in the range
726
// [alpha, gamma].
727
728
const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e);
729
730
const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k
731
732
// The exponent of the products is = v.e + c_minus_k.e + q and is in the range
733
// [alpha,gamma]
734
const diyfp w = diyfp::mul(v, c_minus_k);
735
const diyfp w_minus = diyfp::mul(m_minus, c_minus_k);
736
const diyfp w_plus = diyfp::mul(m_plus, c_minus_k);
737
738
// ----(---+---)---------------(---+---)---------------(---+---)----
739
// w- w w+
740
// = c*m- = c*v = c*m+
741
//
742
// diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and
743
// w+ are now off by a small amount.
744
// In fact:
745
//
746
// w - v * 10^k < 1 ulp
747
//
748
// To account for this inaccuracy, add resp. subtract 1 ulp.
749
//
750
// --------+---[---------------(---+---)---------------]---+--------
751
// w- M- w M+ w+
752
//
753
// Now any number in [M-, M+] (bounds included) will round to w when input,
754
// regardless of how the input rounding algorithm breaks ties.
755
//
756
// And digit_gen generates the shortest possible such number in [M-, M+].
757
// Note that this does not mean that Grisu2 always generates the shortest
758
// possible number in the interval (m-, m+).
759
const diyfp M_minus(w_minus.f + 1, w_minus.e);
760
const diyfp M_plus(w_plus.f - 1, w_plus.e);
761
762
decimal_exponent = -cached.k; // = -(-k) = k
763
764
grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus);
765
}
766
767
/*!
768
v = buf * 10^decimal_exponent
769
len is the length of the buffer (number of decimal digits)
770
The buffer must be large enough, i.e. >= max_digits10.
771
*/
772
template <typename FloatType>
773
void grisu2_wrap(char *buf, int &len, int &decimal_exponent, FloatType value) {
774
static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3,
775
"internal error: not enough precision");
776
777
// If the neighbors (and boundaries) of 'value' are always computed for
778
// double-precision numbers, all float's can be recovered using strtod (and
779
// strtof). However, the resulting decimal representations are not exactly
780
// "short".
781
//
782
// The documentation for 'std::to_chars'
783
// (https://en.cppreference.com/w/cpp/utility/to_chars) says "value is
784
// converted to a string as if by std::sprintf in the default ("C") locale"
785
// and since sprintf promotes float's to double's, I think this is exactly
786
// what 'std::to_chars' does. On the other hand, the documentation for
787
// 'std::to_chars' requires that "parsing the representation using the
788
// corresponding std::from_chars function recovers value exactly". That
789
// indicates that single precision floating-point numbers should be recovered
790
// using 'std::strtof'.
791
//
792
// NB: If the neighbors are computed for single-precision numbers, there is a
793
// single float
794
// (7.0385307e-26f) which can't be recovered using strtod. The resulting
795
// double precision value is off by 1 ulp.
796
#if 0
797
const boundaries w = compute_boundaries(static_cast<double>(value));
798
#else
799
const boundaries w = compute_boundaries(value);
800
#endif
801
802
grisu2_core(buf, len, decimal_exponent, w.minus, w.w, w.plus);
803
}
804
805
/*!
806
@brief appends a decimal representation of e to buf
807
@return a pointer to the element following the exponent.
808
@pre -1000 < e < 1000
809
*/
810
inline char *append_exponent(char *buf, int e) {
811
812
if (e < 0) {
813
e = -e;
814
*buf++ = '-';
815
} else {
816
*buf++ = '+';
817
}
818
819
auto k = static_cast<std::uint32_t>(e);
820
if (k < 10) {
821
// Always print at least two digits in the exponent.
822
// This is for compatibility with printf("%g").
823
*buf++ = '0';
824
*buf++ = static_cast<char>('0' + k);
825
} else if (k < 100) {
826
*buf++ = static_cast<char>('0' + k / 10);
827
k %= 10;
828
*buf++ = static_cast<char>('0' + k);
829
} else {
830
*buf++ = static_cast<char>('0' + k / 100);
831
k %= 100;
832
*buf++ = static_cast<char>('0' + k / 10);
833
k %= 10;
834
*buf++ = static_cast<char>('0' + k);
835
}
836
837
return buf;
838
}
839
840
/*!
841
@brief prettify v = buf * 10^decimal_exponent
842
If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point
843
notation. Otherwise it will be printed in exponential notation.
844
@pre min_exp < 0
845
@pre max_exp > 0
846
*/
847
inline char *format_buffer(char *buf, int len, int decimal_exponent,
848
int min_exp, int max_exp) {
849
850
const int k = len;
851
const int n = len + decimal_exponent;
852
853
// v = buf * 10^(n-k)
854
// k is the length of the buffer (number of decimal digits)
855
// n is the position of the decimal point relative to the start of the buffer.
856
857
if (k <= n && n <= max_exp) {
858
// digits[000]
859
// len <= max_exp + 2
860
861
std::memset(buf + k, '0', static_cast<size_t>(n) - static_cast<size_t>(k));
862
return buf + (static_cast<size_t>(n));
863
}
864
865
if (0 < n && n <= max_exp) {
866
// dig.its
867
// len <= max_digits10 + 1
868
std::memmove(buf + (static_cast<size_t>(n) + 1), buf + n,
869
static_cast<size_t>(k) - static_cast<size_t>(n));
870
buf[n] = '.';
871
return buf + (static_cast<size_t>(k) + 1U);
872
}
873
874
if (min_exp < n && n <= 0) {
875
// 0.[000]digits
876
// len <= 2 + (-min_exp - 1) + max_digits10
877
878
std::memmove(buf + (2 + static_cast<size_t>(-n)), buf,
879
static_cast<size_t>(k));
880
buf[0] = '0';
881
buf[1] = '.';
882
std::memset(buf + 2, '0', static_cast<size_t>(-n));
883
return buf + (2U + static_cast<size_t>(-n) + static_cast<size_t>(k));
884
}
885
886
if (k == 1) {
887
// dE+123
888
// len <= 1 + 5
889
890
buf += 1;
891
} else {
892
// d.igitsE+123
893
// len <= max_digits10 + 1 + 5
894
895
std::memmove(buf + 2, buf + 1, static_cast<size_t>(k) - 1);
896
buf[1] = '.';
897
buf += 1 + static_cast<size_t>(k);
898
}
899
900
*buf++ = 'e';
901
return append_exponent(buf, n - 1);
902
}
903
904
/*!
905
The format of the resulting decimal representation is similar to printf's %g
906
format. Returns an iterator pointing past-the-end of the decimal representation.
907
@note The input number must be finite, i.e. NaN's and Inf's are not supported.
908
@note The buffer must be large enough.
909
@note The result is NOT null-terminated.
910
*/
911
template <typename FloatType>
912
char *to_chars(char *first, FloatType value) {
913
bool negative = std::signbit(value);
914
if (negative) {
915
value = -value;
916
*first++ = '-';
917
}
918
if (value == 0) // +-0
919
{
920
*first++ = '0';
921
return first;
922
}
923
// Compute v = buffer * 10^decimal_exponent.
924
// The decimal digits are stored in the buffer, which needs to be interpreted
925
// as an unsigned decimal integer.
926
// len is the length of the buffer, i.e. the number of decimal digits.
927
int len = 0;
928
int decimal_exponent = 0;
929
grisu2_wrap(first, len, decimal_exponent, value);
930
// Format the buffer like printf("%.*g", prec, value)
931
constexpr int kMinExp = -4;
932
constexpr int kMaxExp = std::numeric_limits<double>::digits10;
933
934
return format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp);
935
}
936
} // namespace grisu2
937
938