Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/icu4c/common/dictbe.cpp
9904 views
1
// © 2016 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
/**
4
*******************************************************************************
5
* Copyright (C) 2006-2016, International Business Machines Corporation
6
* and others. All Rights Reserved.
7
*******************************************************************************
8
*/
9
10
#include <utility>
11
12
#include "unicode/utypes.h"
13
14
#if !UCONFIG_NO_BREAK_ITERATION
15
16
#include "brkeng.h"
17
#include "dictbe.h"
18
#include "unicode/uniset.h"
19
#include "unicode/chariter.h"
20
#include "unicode/resbund.h"
21
#include "unicode/ubrk.h"
22
#include "unicode/usetiter.h"
23
#include "ubrkimpl.h"
24
#include "utracimp.h"
25
#include "uvectr32.h"
26
#include "uvector.h"
27
#include "uassert.h"
28
#include "unicode/normlzr.h"
29
#include "cmemory.h"
30
#include "dictionarydata.h"
31
32
U_NAMESPACE_BEGIN
33
34
/*
35
******************************************************************
36
*/
37
38
DictionaryBreakEngine::DictionaryBreakEngine() {
39
}
40
41
DictionaryBreakEngine::~DictionaryBreakEngine() {
42
}
43
44
UBool
45
DictionaryBreakEngine::handles(UChar32 c, const char*) const {
46
return fSet.contains(c);
47
}
48
49
int32_t
50
DictionaryBreakEngine::findBreaks( UText *text,
51
int32_t startPos,
52
int32_t endPos,
53
UVector32 &foundBreaks,
54
UBool isPhraseBreaking,
55
UErrorCode& status) const {
56
if (U_FAILURE(status)) return 0;
57
int32_t result = 0;
58
59
// Find the span of characters included in the set.
60
// The span to break begins at the current position in the text, and
61
// extends towards the start or end of the text, depending on 'reverse'.
62
63
utext_setNativeIndex(text, startPos);
64
int32_t start = static_cast<int32_t>(utext_getNativeIndex(text));
65
int32_t current;
66
int32_t rangeStart;
67
int32_t rangeEnd;
68
UChar32 c = utext_current32(text);
69
while ((current = static_cast<int32_t>(utext_getNativeIndex(text))) < endPos && fSet.contains(c)) {
70
utext_next32(text); // TODO: recast loop for postincrement
71
c = utext_current32(text);
72
}
73
rangeStart = start;
74
rangeEnd = current;
75
result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks, isPhraseBreaking, status);
76
utext_setNativeIndex(text, current);
77
78
return result;
79
}
80
81
void
82
DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) {
83
fSet = set;
84
// Compact for caching
85
fSet.compact();
86
}
87
88
/*
89
******************************************************************
90
* PossibleWord
91
*/
92
93
// Helper class for improving readability of the Thai/Lao/Khmer word break
94
// algorithm. The implementation is completely inline.
95
96
// List size, limited by the maximum number of words in the dictionary
97
// that form a nested sequence.
98
static const int32_t POSSIBLE_WORD_LIST_MAX = 20;
99
100
class PossibleWord {
101
private:
102
// list of word candidate lengths, in increasing length order
103
// TODO: bytes would be sufficient for word lengths.
104
int32_t count; // Count of candidates
105
int32_t prefix; // The longest match with a dictionary word
106
int32_t offset; // Offset in the text of these candidates
107
int32_t mark; // The preferred candidate's offset
108
int32_t current; // The candidate we're currently looking at
109
int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units.
110
int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points.
111
112
public:
113
PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {}
114
~PossibleWord() {}
115
116
// Fill the list of candidates if needed, select the longest, and return the number found
117
int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd );
118
119
// Select the currently marked candidate, point after it in the text, and invalidate self
120
int32_t acceptMarked( UText *text );
121
122
// Back up from the current candidate to the next shorter one; return true if that exists
123
// and point the text after it
124
UBool backUp( UText *text );
125
126
// Return the longest prefix this candidate location shares with a dictionary word
127
// Return value is in code points.
128
int32_t longestPrefix() { return prefix; }
129
130
// Mark the current candidate as the one we like
131
void markCurrent() { mark = current; }
132
133
// Get length in code points of the marked word.
134
int32_t markedCPLength() { return cpLengths[mark]; }
135
};
136
137
138
int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) {
139
// TODO: If getIndex is too slow, use offset < 0 and add discardAll()
140
int32_t start = static_cast<int32_t>(utext_getNativeIndex(text));
141
if (start != offset) {
142
offset = start;
143
count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, nullptr, &prefix);
144
// Dictionary leaves text after longest prefix, not longest word. Back up.
145
if (count <= 0) {
146
utext_setNativeIndex(text, start);
147
}
148
}
149
if (count > 0) {
150
utext_setNativeIndex(text, start+cuLengths[count-1]);
151
}
152
current = count-1;
153
mark = current;
154
return count;
155
}
156
157
int32_t
158
PossibleWord::acceptMarked( UText *text ) {
159
utext_setNativeIndex(text, offset + cuLengths[mark]);
160
return cuLengths[mark];
161
}
162
163
164
UBool
165
PossibleWord::backUp( UText *text ) {
166
if (current > 0) {
167
utext_setNativeIndex(text, offset + cuLengths[--current]);
168
return true;
169
}
170
return false;
171
}
172
173
/*
174
******************************************************************
175
* ThaiBreakEngine
176
*/
177
178
// How many words in a row are "good enough"?
179
static const int32_t THAI_LOOKAHEAD = 3;
180
181
// Will not combine a non-word with a preceding dictionary word longer than this
182
static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3;
183
184
// Will not combine a non-word that shares at least this much prefix with a
185
// dictionary word, with a preceding word
186
static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3;
187
188
// Elision character
189
static const int32_t THAI_PAIYANNOI = 0x0E2F;
190
191
// Repeat character
192
static const int32_t THAI_MAIYAMOK = 0x0E46;
193
194
// Minimum word size
195
static const int32_t THAI_MIN_WORD = 2;
196
197
// Minimum number of characters for two words
198
static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2;
199
200
ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
201
: DictionaryBreakEngine(),
202
fDictionary(adoptDictionary)
203
{
204
UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
205
UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Thai");
206
UnicodeSet thaiWordSet(UnicodeString(u"[[:Thai:]&[:LineBreak=SA:]]"), status);
207
if (U_SUCCESS(status)) {
208
setCharacters(thaiWordSet);
209
}
210
fMarkSet.applyPattern(UnicodeString(u"[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status);
211
fMarkSet.add(0x0020);
212
fEndWordSet = thaiWordSet;
213
fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
214
fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
215
fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
216
fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
217
fSuffixSet.add(THAI_PAIYANNOI);
218
fSuffixSet.add(THAI_MAIYAMOK);
219
220
// Compact for caching.
221
fMarkSet.compact();
222
fEndWordSet.compact();
223
fBeginWordSet.compact();
224
fSuffixSet.compact();
225
UTRACE_EXIT_STATUS(status);
226
}
227
228
ThaiBreakEngine::~ThaiBreakEngine() {
229
delete fDictionary;
230
}
231
232
int32_t
233
ThaiBreakEngine::divideUpDictionaryRange( UText *text,
234
int32_t rangeStart,
235
int32_t rangeEnd,
236
UVector32 &foundBreaks,
237
UBool /* isPhraseBreaking */,
238
UErrorCode& status) const {
239
if (U_FAILURE(status)) return 0;
240
utext_setNativeIndex(text, rangeStart);
241
utext_moveIndex32(text, THAI_MIN_WORD_SPAN);
242
if (utext_getNativeIndex(text) >= rangeEnd) {
243
return 0; // Not enough characters for two words
244
}
245
utext_setNativeIndex(text, rangeStart);
246
247
248
uint32_t wordsFound = 0;
249
int32_t cpWordLength = 0; // Word Length in Code Points.
250
int32_t cuWordLength = 0; // Word length in code units (UText native indexing)
251
int32_t current;
252
PossibleWord words[THAI_LOOKAHEAD];
253
254
utext_setNativeIndex(text, rangeStart);
255
256
while (U_SUCCESS(status) && (current = static_cast<int32_t>(utext_getNativeIndex(text))) < rangeEnd) {
257
cpWordLength = 0;
258
cuWordLength = 0;
259
260
// Look for candidate words at the current position
261
int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
262
263
// If we found exactly one, use that
264
if (candidates == 1) {
265
cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
266
cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
267
wordsFound += 1;
268
}
269
// If there was more than one, see which one can take us forward the most words
270
else if (candidates > 1) {
271
// If we're already at the end of the range, we're done
272
if (static_cast<int32_t>(utext_getNativeIndex(text)) >= rangeEnd) {
273
goto foundBest;
274
}
275
do {
276
if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
277
// Followed by another dictionary word; mark first word as a good candidate
278
words[wordsFound%THAI_LOOKAHEAD].markCurrent();
279
280
// If we're already at the end of the range, we're done
281
if (static_cast<int32_t>(utext_getNativeIndex(text)) >= rangeEnd) {
282
goto foundBest;
283
}
284
285
// See if any of the possible second words is followed by a third word
286
do {
287
// If we find a third word, stop right away
288
if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
289
words[wordsFound % THAI_LOOKAHEAD].markCurrent();
290
goto foundBest;
291
}
292
}
293
while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text));
294
}
295
}
296
while (words[wordsFound % THAI_LOOKAHEAD].backUp(text));
297
foundBest:
298
// Set UText position to after the accepted word.
299
cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
300
cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
301
wordsFound += 1;
302
}
303
304
// We come here after having either found a word or not. We look ahead to the
305
// next word. If it's not a dictionary word, we will combine it with the word we
306
// just found (if there is one), but only if the preceding word does not exceed
307
// the threshold.
308
// The text iterator should now be positioned at the end of the word we found.
309
310
UChar32 uc = 0;
311
if (static_cast<int32_t>(utext_getNativeIndex(text)) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) {
312
// if it is a dictionary word, do nothing. If it isn't, then if there is
313
// no preceding word, or the non-word shares less than the minimum threshold
314
// of characters with a dictionary word, then scan to resynchronize
315
if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
316
&& (cuWordLength == 0
317
|| words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) {
318
// Look for a plausible word boundary
319
int32_t remaining = rangeEnd - (current+cuWordLength);
320
UChar32 pc;
321
int32_t chars = 0;
322
for (;;) {
323
int32_t pcIndex = static_cast<int32_t>(utext_getNativeIndex(text));
324
pc = utext_next32(text);
325
int32_t pcSize = static_cast<int32_t>(utext_getNativeIndex(text)) - pcIndex;
326
chars += pcSize;
327
remaining -= pcSize;
328
if (remaining <= 0) {
329
break;
330
}
331
uc = utext_current32(text);
332
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
333
// Maybe. See if it's in the dictionary.
334
// NOTE: In the original Apple code, checked that the next
335
// two characters after uc were not 0x0E4C THANTHAKHAT before
336
// checking the dictionary. That is just a performance filter,
337
// but it's not clear it's faster than checking the trie.
338
int32_t num_candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
339
utext_setNativeIndex(text, current + cuWordLength + chars);
340
if (num_candidates > 0) {
341
break;
342
}
343
}
344
}
345
346
// Bump the word count if there wasn't already one
347
if (cuWordLength <= 0) {
348
wordsFound += 1;
349
}
350
351
// Update the length with the passed-over characters
352
cuWordLength += chars;
353
}
354
else {
355
// Back up to where we were for next iteration
356
utext_setNativeIndex(text, current+cuWordLength);
357
}
358
}
359
360
// Never stop before a combining mark.
361
int32_t currPos;
362
while ((currPos = static_cast<int32_t>(utext_getNativeIndex(text))) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
363
utext_next32(text);
364
cuWordLength += static_cast<int32_t>(utext_getNativeIndex(text)) - currPos;
365
}
366
367
// Look ahead for possible suffixes if a dictionary word does not follow.
368
// We do this in code rather than using a rule so that the heuristic
369
// resynch continues to function. For example, one of the suffix characters
370
// could be a typo in the middle of a word.
371
if (static_cast<int32_t>(utext_getNativeIndex(text)) < rangeEnd && cuWordLength > 0) {
372
if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
373
&& fSuffixSet.contains(uc = utext_current32(text))) {
374
if (uc == THAI_PAIYANNOI) {
375
if (!fSuffixSet.contains(utext_previous32(text))) {
376
// Skip over previous end and PAIYANNOI
377
utext_next32(text);
378
int32_t paiyannoiIndex = static_cast<int32_t>(utext_getNativeIndex(text));
379
utext_next32(text);
380
cuWordLength += static_cast<int32_t>(utext_getNativeIndex(text)) - paiyannoiIndex; // Add PAIYANNOI to word
381
uc = utext_current32(text); // Fetch next character
382
}
383
else {
384
// Restore prior position
385
utext_next32(text);
386
}
387
}
388
if (uc == THAI_MAIYAMOK) {
389
if (utext_previous32(text) != THAI_MAIYAMOK) {
390
// Skip over previous end and MAIYAMOK
391
utext_next32(text);
392
int32_t maiyamokIndex = static_cast<int32_t>(utext_getNativeIndex(text));
393
utext_next32(text);
394
cuWordLength += static_cast<int32_t>(utext_getNativeIndex(text)) - maiyamokIndex; // Add MAIYAMOK to word
395
}
396
else {
397
// Restore prior position
398
utext_next32(text);
399
}
400
}
401
}
402
else {
403
utext_setNativeIndex(text, current+cuWordLength);
404
}
405
}
406
407
// Did we find a word on this iteration? If so, push it on the break stack
408
if (cuWordLength > 0) {
409
foundBreaks.push((current+cuWordLength), status);
410
}
411
}
412
413
// Don't return a break for the end of the dictionary range if there is one there.
414
if (foundBreaks.peeki() >= rangeEnd) {
415
(void) foundBreaks.popi();
416
wordsFound -= 1;
417
}
418
419
return wordsFound;
420
}
421
422
/*
423
******************************************************************
424
* LaoBreakEngine
425
*/
426
427
// How many words in a row are "good enough"?
428
static const int32_t LAO_LOOKAHEAD = 3;
429
430
// Will not combine a non-word with a preceding dictionary word longer than this
431
static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3;
432
433
// Will not combine a non-word that shares at least this much prefix with a
434
// dictionary word, with a preceding word
435
static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3;
436
437
// Minimum word size
438
static const int32_t LAO_MIN_WORD = 2;
439
440
// Minimum number of characters for two words
441
static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2;
442
443
LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
444
: DictionaryBreakEngine(),
445
fDictionary(adoptDictionary)
446
{
447
UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
448
UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Laoo");
449
UnicodeSet laoWordSet(UnicodeString(u"[[:Laoo:]&[:LineBreak=SA:]]"), status);
450
if (U_SUCCESS(status)) {
451
setCharacters(laoWordSet);
452
}
453
fMarkSet.applyPattern(UnicodeString(u"[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status);
454
fMarkSet.add(0x0020);
455
fEndWordSet = laoWordSet;
456
fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels
457
fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters)
458
fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent)
459
fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels
460
461
// Compact for caching.
462
fMarkSet.compact();
463
fEndWordSet.compact();
464
fBeginWordSet.compact();
465
UTRACE_EXIT_STATUS(status);
466
}
467
468
LaoBreakEngine::~LaoBreakEngine() {
469
delete fDictionary;
470
}
471
472
int32_t
473
LaoBreakEngine::divideUpDictionaryRange( UText *text,
474
int32_t rangeStart,
475
int32_t rangeEnd,
476
UVector32 &foundBreaks,
477
UBool /* isPhraseBreaking */,
478
UErrorCode& status) const {
479
if (U_FAILURE(status)) return 0;
480
if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) {
481
return 0; // Not enough characters for two words
482
}
483
484
uint32_t wordsFound = 0;
485
int32_t cpWordLength = 0;
486
int32_t cuWordLength = 0;
487
int32_t current;
488
PossibleWord words[LAO_LOOKAHEAD];
489
490
utext_setNativeIndex(text, rangeStart);
491
492
while (U_SUCCESS(status) && (current = static_cast<int32_t>(utext_getNativeIndex(text))) < rangeEnd) {
493
cuWordLength = 0;
494
cpWordLength = 0;
495
496
// Look for candidate words at the current position
497
int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
498
499
// If we found exactly one, use that
500
if (candidates == 1) {
501
cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
502
cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
503
wordsFound += 1;
504
}
505
// If there was more than one, see which one can take us forward the most words
506
else if (candidates > 1) {
507
// If we're already at the end of the range, we're done
508
if (utext_getNativeIndex(text) >= rangeEnd) {
509
goto foundBest;
510
}
511
do {
512
if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
513
// Followed by another dictionary word; mark first word as a good candidate
514
words[wordsFound%LAO_LOOKAHEAD].markCurrent();
515
516
// If we're already at the end of the range, we're done
517
if (static_cast<int32_t>(utext_getNativeIndex(text)) >= rangeEnd) {
518
goto foundBest;
519
}
520
521
// See if any of the possible second words is followed by a third word
522
do {
523
// If we find a third word, stop right away
524
if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
525
words[wordsFound % LAO_LOOKAHEAD].markCurrent();
526
goto foundBest;
527
}
528
}
529
while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text));
530
}
531
}
532
while (words[wordsFound % LAO_LOOKAHEAD].backUp(text));
533
foundBest:
534
cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
535
cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
536
wordsFound += 1;
537
}
538
539
// We come here after having either found a word or not. We look ahead to the
540
// next word. If it's not a dictionary word, we will combine it with the word we
541
// just found (if there is one), but only if the preceding word does not exceed
542
// the threshold.
543
// The text iterator should now be positioned at the end of the word we found.
544
if (static_cast<int32_t>(utext_getNativeIndex(text)) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) {
545
// if it is a dictionary word, do nothing. If it isn't, then if there is
546
// no preceding word, or the non-word shares less than the minimum threshold
547
// of characters with a dictionary word, then scan to resynchronize
548
if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
549
&& (cuWordLength == 0
550
|| words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) {
551
// Look for a plausible word boundary
552
int32_t remaining = rangeEnd - (current + cuWordLength);
553
UChar32 pc;
554
UChar32 uc;
555
int32_t chars = 0;
556
for (;;) {
557
int32_t pcIndex = static_cast<int32_t>(utext_getNativeIndex(text));
558
pc = utext_next32(text);
559
int32_t pcSize = static_cast<int32_t>(utext_getNativeIndex(text)) - pcIndex;
560
chars += pcSize;
561
remaining -= pcSize;
562
if (remaining <= 0) {
563
break;
564
}
565
uc = utext_current32(text);
566
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
567
// Maybe. See if it's in the dictionary.
568
// TODO: this looks iffy; compare with old code.
569
int32_t num_candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
570
utext_setNativeIndex(text, current + cuWordLength + chars);
571
if (num_candidates > 0) {
572
break;
573
}
574
}
575
}
576
577
// Bump the word count if there wasn't already one
578
if (cuWordLength <= 0) {
579
wordsFound += 1;
580
}
581
582
// Update the length with the passed-over characters
583
cuWordLength += chars;
584
}
585
else {
586
// Back up to where we were for next iteration
587
utext_setNativeIndex(text, current + cuWordLength);
588
}
589
}
590
591
// Never stop before a combining mark.
592
int32_t currPos;
593
while ((currPos = static_cast<int32_t>(utext_getNativeIndex(text))) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
594
utext_next32(text);
595
cuWordLength += static_cast<int32_t>(utext_getNativeIndex(text)) - currPos;
596
}
597
598
// Look ahead for possible suffixes if a dictionary word does not follow.
599
// We do this in code rather than using a rule so that the heuristic
600
// resynch continues to function. For example, one of the suffix characters
601
// could be a typo in the middle of a word.
602
// NOT CURRENTLY APPLICABLE TO LAO
603
604
// Did we find a word on this iteration? If so, push it on the break stack
605
if (cuWordLength > 0) {
606
foundBreaks.push((current+cuWordLength), status);
607
}
608
}
609
610
// Don't return a break for the end of the dictionary range if there is one there.
611
if (foundBreaks.peeki() >= rangeEnd) {
612
(void) foundBreaks.popi();
613
wordsFound -= 1;
614
}
615
616
return wordsFound;
617
}
618
619
/*
620
******************************************************************
621
* BurmeseBreakEngine
622
*/
623
624
// How many words in a row are "good enough"?
625
static const int32_t BURMESE_LOOKAHEAD = 3;
626
627
// Will not combine a non-word with a preceding dictionary word longer than this
628
static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3;
629
630
// Will not combine a non-word that shares at least this much prefix with a
631
// dictionary word, with a preceding word
632
static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3;
633
634
// Minimum word size
635
static const int32_t BURMESE_MIN_WORD = 2;
636
637
// Minimum number of characters for two words
638
static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2;
639
640
BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
641
: DictionaryBreakEngine(),
642
fDictionary(adoptDictionary)
643
{
644
UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
645
UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Mymr");
646
fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels
647
fEndWordSet.applyPattern(UnicodeString(u"[[:Mymr:]&[:LineBreak=SA:]]"), status);
648
fMarkSet.applyPattern(UnicodeString(u"[[:Mymr:]&[:LineBreak=SA:]&[:M:]]"), status);
649
fMarkSet.add(0x0020);
650
if (U_SUCCESS(status)) {
651
setCharacters(fEndWordSet);
652
}
653
654
// Compact for caching.
655
fMarkSet.compact();
656
fEndWordSet.compact();
657
fBeginWordSet.compact();
658
UTRACE_EXIT_STATUS(status);
659
}
660
661
BurmeseBreakEngine::~BurmeseBreakEngine() {
662
delete fDictionary;
663
}
664
665
int32_t
666
BurmeseBreakEngine::divideUpDictionaryRange( UText *text,
667
int32_t rangeStart,
668
int32_t rangeEnd,
669
UVector32 &foundBreaks,
670
UBool /* isPhraseBreaking */,
671
UErrorCode& status ) const {
672
if (U_FAILURE(status)) return 0;
673
if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) {
674
return 0; // Not enough characters for two words
675
}
676
677
uint32_t wordsFound = 0;
678
int32_t cpWordLength = 0;
679
int32_t cuWordLength = 0;
680
int32_t current;
681
PossibleWord words[BURMESE_LOOKAHEAD];
682
683
utext_setNativeIndex(text, rangeStart);
684
685
while (U_SUCCESS(status) && (current = static_cast<int32_t>(utext_getNativeIndex(text))) < rangeEnd) {
686
cuWordLength = 0;
687
cpWordLength = 0;
688
689
// Look for candidate words at the current position
690
int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
691
692
// If we found exactly one, use that
693
if (candidates == 1) {
694
cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
695
cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
696
wordsFound += 1;
697
}
698
// If there was more than one, see which one can take us forward the most words
699
else if (candidates > 1) {
700
// If we're already at the end of the range, we're done
701
if (utext_getNativeIndex(text) >= rangeEnd) {
702
goto foundBest;
703
}
704
do {
705
if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
706
// Followed by another dictionary word; mark first word as a good candidate
707
words[wordsFound%BURMESE_LOOKAHEAD].markCurrent();
708
709
// If we're already at the end of the range, we're done
710
if (static_cast<int32_t>(utext_getNativeIndex(text)) >= rangeEnd) {
711
goto foundBest;
712
}
713
714
// See if any of the possible second words is followed by a third word
715
do {
716
// If we find a third word, stop right away
717
if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
718
words[wordsFound % BURMESE_LOOKAHEAD].markCurrent();
719
goto foundBest;
720
}
721
}
722
while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text));
723
}
724
}
725
while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text));
726
foundBest:
727
cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
728
cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
729
wordsFound += 1;
730
}
731
732
// We come here after having either found a word or not. We look ahead to the
733
// next word. If it's not a dictionary word, we will combine it with the word we
734
// just found (if there is one), but only if the preceding word does not exceed
735
// the threshold.
736
// The text iterator should now be positioned at the end of the word we found.
737
if (static_cast<int32_t>(utext_getNativeIndex(text)) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) {
738
// if it is a dictionary word, do nothing. If it isn't, then if there is
739
// no preceding word, or the non-word shares less than the minimum threshold
740
// of characters with a dictionary word, then scan to resynchronize
741
if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
742
&& (cuWordLength == 0
743
|| words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) {
744
// Look for a plausible word boundary
745
int32_t remaining = rangeEnd - (current + cuWordLength);
746
UChar32 pc;
747
UChar32 uc;
748
int32_t chars = 0;
749
for (;;) {
750
int32_t pcIndex = static_cast<int32_t>(utext_getNativeIndex(text));
751
pc = utext_next32(text);
752
int32_t pcSize = static_cast<int32_t>(utext_getNativeIndex(text)) - pcIndex;
753
chars += pcSize;
754
remaining -= pcSize;
755
if (remaining <= 0) {
756
break;
757
}
758
uc = utext_current32(text);
759
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
760
// Maybe. See if it's in the dictionary.
761
// TODO: this looks iffy; compare with old code.
762
int32_t num_candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
763
utext_setNativeIndex(text, current + cuWordLength + chars);
764
if (num_candidates > 0) {
765
break;
766
}
767
}
768
}
769
770
// Bump the word count if there wasn't already one
771
if (cuWordLength <= 0) {
772
wordsFound += 1;
773
}
774
775
// Update the length with the passed-over characters
776
cuWordLength += chars;
777
}
778
else {
779
// Back up to where we were for next iteration
780
utext_setNativeIndex(text, current + cuWordLength);
781
}
782
}
783
784
// Never stop before a combining mark.
785
int32_t currPos;
786
while ((currPos = static_cast<int32_t>(utext_getNativeIndex(text))) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
787
utext_next32(text);
788
cuWordLength += static_cast<int32_t>(utext_getNativeIndex(text)) - currPos;
789
}
790
791
// Look ahead for possible suffixes if a dictionary word does not follow.
792
// We do this in code rather than using a rule so that the heuristic
793
// resynch continues to function. For example, one of the suffix characters
794
// could be a typo in the middle of a word.
795
// NOT CURRENTLY APPLICABLE TO BURMESE
796
797
// Did we find a word on this iteration? If so, push it on the break stack
798
if (cuWordLength > 0) {
799
foundBreaks.push((current+cuWordLength), status);
800
}
801
}
802
803
// Don't return a break for the end of the dictionary range if there is one there.
804
if (foundBreaks.peeki() >= rangeEnd) {
805
(void) foundBreaks.popi();
806
wordsFound -= 1;
807
}
808
809
return wordsFound;
810
}
811
812
/*
813
******************************************************************
814
* KhmerBreakEngine
815
*/
816
817
// How many words in a row are "good enough"?
818
static const int32_t KHMER_LOOKAHEAD = 3;
819
820
// Will not combine a non-word with a preceding dictionary word longer than this
821
static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3;
822
823
// Will not combine a non-word that shares at least this much prefix with a
824
// dictionary word, with a preceding word
825
static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3;
826
827
// Minimum word size
828
static const int32_t KHMER_MIN_WORD = 2;
829
830
// Minimum number of characters for two words
831
static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2;
832
833
KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
834
: DictionaryBreakEngine(),
835
fDictionary(adoptDictionary)
836
{
837
UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
838
UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Khmr");
839
UnicodeSet khmerWordSet(UnicodeString(u"[[:Khmr:]&[:LineBreak=SA:]]"), status);
840
if (U_SUCCESS(status)) {
841
setCharacters(khmerWordSet);
842
}
843
fMarkSet.applyPattern(UnicodeString(u"[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status);
844
fMarkSet.add(0x0020);
845
fEndWordSet = khmerWordSet;
846
fBeginWordSet.add(0x1780, 0x17B3);
847
//fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels
848
//fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word
849
//fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word
850
fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters
851
//fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels
852
// fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
853
// fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
854
// fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
855
// fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
856
// fSuffixSet.add(THAI_PAIYANNOI);
857
// fSuffixSet.add(THAI_MAIYAMOK);
858
859
// Compact for caching.
860
fMarkSet.compact();
861
fEndWordSet.compact();
862
fBeginWordSet.compact();
863
// fSuffixSet.compact();
864
UTRACE_EXIT_STATUS(status);
865
}
866
867
KhmerBreakEngine::~KhmerBreakEngine() {
868
delete fDictionary;
869
}
870
871
int32_t
872
KhmerBreakEngine::divideUpDictionaryRange( UText *text,
873
int32_t rangeStart,
874
int32_t rangeEnd,
875
UVector32 &foundBreaks,
876
UBool /* isPhraseBreaking */,
877
UErrorCode& status ) const {
878
if (U_FAILURE(status)) return 0;
879
if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) {
880
return 0; // Not enough characters for two words
881
}
882
883
uint32_t wordsFound = 0;
884
int32_t cpWordLength = 0;
885
int32_t cuWordLength = 0;
886
int32_t current;
887
PossibleWord words[KHMER_LOOKAHEAD];
888
889
utext_setNativeIndex(text, rangeStart);
890
891
while (U_SUCCESS(status) && (current = static_cast<int32_t>(utext_getNativeIndex(text))) < rangeEnd) {
892
cuWordLength = 0;
893
cpWordLength = 0;
894
895
// Look for candidate words at the current position
896
int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
897
898
// If we found exactly one, use that
899
if (candidates == 1) {
900
cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
901
cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
902
wordsFound += 1;
903
}
904
905
// If there was more than one, see which one can take us forward the most words
906
else if (candidates > 1) {
907
// If we're already at the end of the range, we're done
908
if (static_cast<int32_t>(utext_getNativeIndex(text)) >= rangeEnd) {
909
goto foundBest;
910
}
911
do {
912
if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
913
// Followed by another dictionary word; mark first word as a good candidate
914
words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
915
916
// If we're already at the end of the range, we're done
917
if (static_cast<int32_t>(utext_getNativeIndex(text)) >= rangeEnd) {
918
goto foundBest;
919
}
920
921
// See if any of the possible second words is followed by a third word
922
do {
923
// If we find a third word, stop right away
924
if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
925
words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
926
goto foundBest;
927
}
928
}
929
while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text));
930
}
931
}
932
while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text));
933
foundBest:
934
cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
935
cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
936
wordsFound += 1;
937
}
938
939
// We come here after having either found a word or not. We look ahead to the
940
// next word. If it's not a dictionary word, we will combine it with the word we
941
// just found (if there is one), but only if the preceding word does not exceed
942
// the threshold.
943
// The text iterator should now be positioned at the end of the word we found.
944
if (static_cast<int32_t>(utext_getNativeIndex(text)) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) {
945
// if it is a dictionary word, do nothing. If it isn't, then if there is
946
// no preceding word, or the non-word shares less than the minimum threshold
947
// of characters with a dictionary word, then scan to resynchronize
948
if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
949
&& (cuWordLength == 0
950
|| words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) {
951
// Look for a plausible word boundary
952
int32_t remaining = rangeEnd - (current+cuWordLength);
953
UChar32 pc;
954
UChar32 uc;
955
int32_t chars = 0;
956
for (;;) {
957
int32_t pcIndex = static_cast<int32_t>(utext_getNativeIndex(text));
958
pc = utext_next32(text);
959
int32_t pcSize = static_cast<int32_t>(utext_getNativeIndex(text)) - pcIndex;
960
chars += pcSize;
961
remaining -= pcSize;
962
if (remaining <= 0) {
963
break;
964
}
965
uc = utext_current32(text);
966
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
967
// Maybe. See if it's in the dictionary.
968
int32_t num_candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
969
utext_setNativeIndex(text, current+cuWordLength+chars);
970
if (num_candidates > 0) {
971
break;
972
}
973
}
974
}
975
976
// Bump the word count if there wasn't already one
977
if (cuWordLength <= 0) {
978
wordsFound += 1;
979
}
980
981
// Update the length with the passed-over characters
982
cuWordLength += chars;
983
}
984
else {
985
// Back up to where we were for next iteration
986
utext_setNativeIndex(text, current+cuWordLength);
987
}
988
}
989
990
// Never stop before a combining mark.
991
int32_t currPos;
992
while ((currPos = static_cast<int32_t>(utext_getNativeIndex(text))) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
993
utext_next32(text);
994
cuWordLength += static_cast<int32_t>(utext_getNativeIndex(text)) - currPos;
995
}
996
997
// Look ahead for possible suffixes if a dictionary word does not follow.
998
// We do this in code rather than using a rule so that the heuristic
999
// resynch continues to function. For example, one of the suffix characters
1000
// could be a typo in the middle of a word.
1001
// if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) {
1002
// if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
1003
// && fSuffixSet.contains(uc = utext_current32(text))) {
1004
// if (uc == KHMER_PAIYANNOI) {
1005
// if (!fSuffixSet.contains(utext_previous32(text))) {
1006
// // Skip over previous end and PAIYANNOI
1007
// utext_next32(text);
1008
// utext_next32(text);
1009
// wordLength += 1; // Add PAIYANNOI to word
1010
// uc = utext_current32(text); // Fetch next character
1011
// }
1012
// else {
1013
// // Restore prior position
1014
// utext_next32(text);
1015
// }
1016
// }
1017
// if (uc == KHMER_MAIYAMOK) {
1018
// if (utext_previous32(text) != KHMER_MAIYAMOK) {
1019
// // Skip over previous end and MAIYAMOK
1020
// utext_next32(text);
1021
// utext_next32(text);
1022
// wordLength += 1; // Add MAIYAMOK to word
1023
// }
1024
// else {
1025
// // Restore prior position
1026
// utext_next32(text);
1027
// }
1028
// }
1029
// }
1030
// else {
1031
// utext_setNativeIndex(text, current+wordLength);
1032
// }
1033
// }
1034
1035
// Did we find a word on this iteration? If so, push it on the break stack
1036
if (cuWordLength > 0) {
1037
foundBreaks.push((current+cuWordLength), status);
1038
}
1039
}
1040
1041
// Don't return a break for the end of the dictionary range if there is one there.
1042
if (foundBreaks.peeki() >= rangeEnd) {
1043
(void) foundBreaks.popi();
1044
wordsFound -= 1;
1045
}
1046
1047
return wordsFound;
1048
}
1049
1050
#if !UCONFIG_NO_NORMALIZATION
1051
/*
1052
******************************************************************
1053
* CjkBreakEngine
1054
*/
1055
static const uint32_t kuint32max = 0xFFFFFFFF;
1056
CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status)
1057
: DictionaryBreakEngine(), fDictionary(adoptDictionary), isCj(false) {
1058
UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
1059
UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Hani");
1060
fMlBreakEngine = nullptr;
1061
nfkcNorm2 = Normalizer2::getNFKCInstance(status);
1062
// Korean dictionary only includes Hangul syllables
1063
fHangulWordSet.applyPattern(UnicodeString(u"[\\uac00-\\ud7a3]"), status);
1064
fHangulWordSet.compact();
1065
// Digits, open puncutation and Alphabetic characters.
1066
fDigitOrOpenPunctuationOrAlphabetSet.applyPattern(
1067
UnicodeString(u"[[:Nd:][:Pi:][:Ps:][:Alphabetic:]]"), status);
1068
fDigitOrOpenPunctuationOrAlphabetSet.compact();
1069
fClosePunctuationSet.applyPattern(UnicodeString(u"[[:Pc:][:Pd:][:Pe:][:Pf:][:Po:]]"), status);
1070
fClosePunctuationSet.compact();
1071
1072
// handle Korean and Japanese/Chinese using different dictionaries
1073
if (type == kKorean) {
1074
if (U_SUCCESS(status)) {
1075
setCharacters(fHangulWordSet);
1076
}
1077
} else { // Chinese and Japanese
1078
UnicodeSet cjSet(UnicodeString(u"[[:Han:][:Hiragana:][:Katakana:]\\u30fc\\uff70\\uff9e\\uff9f]"), status);
1079
isCj = true;
1080
if (U_SUCCESS(status)) {
1081
setCharacters(cjSet);
1082
#if UCONFIG_USE_ML_PHRASE_BREAKING
1083
fMlBreakEngine = new MlBreakEngine(fDigitOrOpenPunctuationOrAlphabetSet,
1084
fClosePunctuationSet, status);
1085
if (fMlBreakEngine == nullptr) {
1086
status = U_MEMORY_ALLOCATION_ERROR;
1087
}
1088
#else
1089
initJapanesePhraseParameter(status);
1090
#endif
1091
}
1092
}
1093
UTRACE_EXIT_STATUS(status);
1094
}
1095
1096
CjkBreakEngine::~CjkBreakEngine(){
1097
delete fDictionary;
1098
delete fMlBreakEngine;
1099
}
1100
1101
// The katakanaCost values below are based on the length frequencies of all
1102
// katakana phrases in the dictionary
1103
static const int32_t kMaxKatakanaLength = 8;
1104
static const int32_t kMaxKatakanaGroupLength = 20;
1105
static const uint32_t maxSnlp = 255;
1106
1107
static inline uint32_t getKatakanaCost(int32_t wordLength){
1108
//TODO: fill array with actual values from dictionary!
1109
static const uint32_t katakanaCost[kMaxKatakanaLength + 1]
1110
= {8192, 984, 408, 240, 204, 252, 300, 372, 480};
1111
return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength];
1112
}
1113
1114
static inline bool isKatakana(UChar32 value) {
1115
return (value >= 0x30A1 && value <= 0x30FE && value != 0x30FB) ||
1116
(value >= 0xFF66 && value <= 0xFF9f);
1117
}
1118
1119
// Function for accessing internal utext flags.
1120
// Replicates an internal UText function.
1121
1122
static inline int32_t utext_i32_flag(int32_t bitIndex) {
1123
return static_cast<int32_t>(1) << bitIndex;
1124
}
1125
1126
/*
1127
* @param text A UText representing the text
1128
* @param rangeStart The start of the range of dictionary characters
1129
* @param rangeEnd The end of the range of dictionary characters
1130
* @param foundBreaks vector<int32> to receive the break positions
1131
* @return The number of breaks found
1132
*/
1133
int32_t
1134
CjkBreakEngine::divideUpDictionaryRange( UText *inText,
1135
int32_t rangeStart,
1136
int32_t rangeEnd,
1137
UVector32 &foundBreaks,
1138
UBool isPhraseBreaking,
1139
UErrorCode& status) const {
1140
if (U_FAILURE(status)) return 0;
1141
if (rangeStart >= rangeEnd) {
1142
return 0;
1143
}
1144
1145
// UnicodeString version of input UText, NFKC normalized if necessary.
1146
UnicodeString inString;
1147
1148
// inputMap[inStringIndex] = corresponding native index from UText inText.
1149
// If nullptr then mapping is 1:1
1150
LocalPointer<UVector32> inputMap;
1151
1152
// if UText has the input string as one contiguous UTF-16 chunk
1153
if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) &&
1154
inText->chunkNativeStart <= rangeStart &&
1155
inText->chunkNativeLimit >= rangeEnd &&
1156
inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) {
1157
1158
// Input UText is in one contiguous UTF-16 chunk.
1159
// Use Read-only aliasing UnicodeString.
1160
inString.setTo(false,
1161
inText->chunkContents + rangeStart - inText->chunkNativeStart,
1162
rangeEnd - rangeStart);
1163
} else {
1164
// Copy the text from the original inText (UText) to inString (UnicodeString).
1165
// Create a map from UnicodeString indices -> UText offsets.
1166
utext_setNativeIndex(inText, rangeStart);
1167
int32_t limit = rangeEnd;
1168
U_ASSERT(limit <= utext_nativeLength(inText));
1169
if (limit > utext_nativeLength(inText)) {
1170
limit = static_cast<int32_t>(utext_nativeLength(inText));
1171
}
1172
inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
1173
if (U_FAILURE(status)) {
1174
return 0;
1175
}
1176
while (utext_getNativeIndex(inText) < limit) {
1177
int32_t nativePosition = static_cast<int32_t>(utext_getNativeIndex(inText));
1178
UChar32 c = utext_next32(inText);
1179
U_ASSERT(c != U_SENTINEL);
1180
inString.append(c);
1181
while (inputMap->size() < inString.length()) {
1182
inputMap->addElement(nativePosition, status);
1183
}
1184
}
1185
inputMap->addElement(limit, status);
1186
}
1187
1188
1189
if (!nfkcNorm2->isNormalized(inString, status)) {
1190
UnicodeString normalizedInput;
1191
// normalizedMap[normalizedInput position] == original UText position.
1192
LocalPointer<UVector32> normalizedMap(new UVector32(status), status);
1193
if (U_FAILURE(status)) {
1194
return 0;
1195
}
1196
1197
UnicodeString fragment;
1198
UnicodeString normalizedFragment;
1199
for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk
1200
fragment.remove();
1201
int32_t fragmentStartI = srcI;
1202
UChar32 c = inString.char32At(srcI);
1203
for (;;) {
1204
fragment.append(c);
1205
srcI = inString.moveIndex32(srcI, 1);
1206
if (srcI == inString.length()) {
1207
break;
1208
}
1209
c = inString.char32At(srcI);
1210
if (nfkcNorm2->hasBoundaryBefore(c)) {
1211
break;
1212
}
1213
}
1214
nfkcNorm2->normalize(fragment, normalizedFragment, status);
1215
normalizedInput.append(normalizedFragment);
1216
1217
// Map every position in the normalized chunk to the start of the chunk
1218
// in the original input.
1219
int32_t fragmentOriginalStart = inputMap.isValid() ?
1220
inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart;
1221
while (normalizedMap->size() < normalizedInput.length()) {
1222
normalizedMap->addElement(fragmentOriginalStart, status);
1223
if (U_FAILURE(status)) {
1224
break;
1225
}
1226
}
1227
}
1228
U_ASSERT(normalizedMap->size() == normalizedInput.length());
1229
int32_t nativeEnd = inputMap.isValid() ?
1230
inputMap->elementAti(inString.length()) : inString.length()+rangeStart;
1231
normalizedMap->addElement(nativeEnd, status);
1232
1233
inputMap = std::move(normalizedMap);
1234
inString = std::move(normalizedInput);
1235
}
1236
1237
int32_t numCodePts = inString.countChar32();
1238
if (numCodePts != inString.length()) {
1239
// There are supplementary characters in the input.
1240
// The dictionary will produce boundary positions in terms of code point indexes,
1241
// not in terms of code unit string indexes.
1242
// Use the inputMap mechanism to take care of this in addition to indexing differences
1243
// from normalization and/or UTF-8 input.
1244
UBool hadExistingMap = inputMap.isValid();
1245
if (!hadExistingMap) {
1246
inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
1247
if (U_FAILURE(status)) {
1248
return 0;
1249
}
1250
}
1251
int32_t cpIdx = 0;
1252
for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) {
1253
U_ASSERT(cuIdx >= cpIdx);
1254
if (hadExistingMap) {
1255
inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx);
1256
} else {
1257
inputMap->addElement(cuIdx+rangeStart, status);
1258
}
1259
cpIdx++;
1260
if (cuIdx == inString.length()) {
1261
break;
1262
}
1263
}
1264
}
1265
1266
#if UCONFIG_USE_ML_PHRASE_BREAKING
1267
// PhraseBreaking is supported in ja and ko; MlBreakEngine only supports ja.
1268
if (isPhraseBreaking && isCj) {
1269
return fMlBreakEngine->divideUpRange(inText, rangeStart, rangeEnd, foundBreaks, inString,
1270
inputMap, status);
1271
}
1272
#endif
1273
1274
// bestSnlp[i] is the snlp of the best segmentation of the first i
1275
// code points in the range to be matched.
1276
UVector32 bestSnlp(numCodePts + 1, status);
1277
bestSnlp.addElement(0, status);
1278
for(int32_t i = 1; i <= numCodePts; i++) {
1279
bestSnlp.addElement(kuint32max, status);
1280
}
1281
1282
1283
// prev[i] is the index of the last CJK code point in the previous word in
1284
// the best segmentation of the first i characters.
1285
UVector32 prev(numCodePts + 1, status);
1286
for(int32_t i = 0; i <= numCodePts; i++){
1287
prev.addElement(-1, status);
1288
}
1289
1290
const int32_t maxWordSize = 20;
1291
UVector32 values(numCodePts, status);
1292
values.setSize(numCodePts);
1293
UVector32 lengths(numCodePts, status);
1294
lengths.setSize(numCodePts);
1295
1296
UText fu = UTEXT_INITIALIZER;
1297
utext_openUnicodeString(&fu, &inString, &status);
1298
1299
// Dynamic programming to find the best segmentation.
1300
1301
// In outer loop, i is the code point index,
1302
// ix is the corresponding string (code unit) index.
1303
// They differ when the string contains supplementary characters.
1304
int32_t ix = 0;
1305
bool is_prev_katakana = false;
1306
for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) {
1307
if (static_cast<uint32_t>(bestSnlp.elementAti(i)) == kuint32max) {
1308
continue;
1309
}
1310
1311
int32_t count;
1312
utext_setNativeIndex(&fu, ix);
1313
count = fDictionary->matches(&fu, maxWordSize, numCodePts,
1314
nullptr, lengths.getBuffer(), values.getBuffer(), nullptr);
1315
// Note: lengths is filled with code point lengths
1316
// The nullptr parameter is the ignored code unit lengths.
1317
1318
// if there are no single character matches found in the dictionary
1319
// starting with this character, treat character as a 1-character word
1320
// with the highest value possible, i.e. the least likely to occur.
1321
// Exclude Korean characters from this treatment, as they should be left
1322
// together by default.
1323
if ((count == 0 || lengths.elementAti(0) != 1) &&
1324
!fHangulWordSet.contains(inString.char32At(ix))) {
1325
values.setElementAt(maxSnlp, count); // 255
1326
lengths.setElementAt(1, count++);
1327
}
1328
1329
for (int32_t j = 0; j < count; j++) {
1330
uint32_t newSnlp = static_cast<uint32_t>(bestSnlp.elementAti(i)) + static_cast<uint32_t>(values.elementAti(j));
1331
int32_t ln_j_i = lengths.elementAti(j) + i;
1332
if (newSnlp < static_cast<uint32_t>(bestSnlp.elementAti(ln_j_i))) {
1333
bestSnlp.setElementAt(newSnlp, ln_j_i);
1334
prev.setElementAt(i, ln_j_i);
1335
}
1336
}
1337
1338
// In Japanese,
1339
// Katakana word in single character is pretty rare. So we apply
1340
// the following heuristic to Katakana: any continuous run of Katakana
1341
// characters is considered a candidate word with a default cost
1342
// specified in the katakanaCost table according to its length.
1343
1344
bool is_katakana = isKatakana(inString.char32At(ix));
1345
int32_t katakanaRunLength = 1;
1346
if (!is_prev_katakana && is_katakana) {
1347
int32_t j = inString.moveIndex32(ix, 1);
1348
// Find the end of the continuous run of Katakana characters
1349
while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength &&
1350
isKatakana(inString.char32At(j))) {
1351
j = inString.moveIndex32(j, 1);
1352
katakanaRunLength++;
1353
}
1354
if (katakanaRunLength < kMaxKatakanaGroupLength) {
1355
uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength);
1356
if (newSnlp < static_cast<uint32_t>(bestSnlp.elementAti(i + katakanaRunLength))) {
1357
bestSnlp.setElementAt(newSnlp, i+katakanaRunLength);
1358
prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i;
1359
}
1360
}
1361
}
1362
is_prev_katakana = is_katakana;
1363
}
1364
utext_close(&fu);
1365
1366
// Start pushing the optimal offset index into t_boundary (t for tentative).
1367
// prev[numCodePts] is guaranteed to be meaningful.
1368
// We'll first push in the reverse order, i.e.,
1369
// t_boundary[0] = numCodePts, and afterwards do a swap.
1370
UVector32 t_boundary(numCodePts+1, status);
1371
1372
int32_t numBreaks = 0;
1373
// No segmentation found, set boundary to end of range
1374
if (static_cast<uint32_t>(bestSnlp.elementAti(numCodePts)) == kuint32max) {
1375
t_boundary.addElement(numCodePts, status);
1376
numBreaks++;
1377
} else if (isPhraseBreaking) {
1378
t_boundary.addElement(numCodePts, status);
1379
if(U_SUCCESS(status)) {
1380
numBreaks++;
1381
int32_t prevIdx = numCodePts;
1382
1383
int32_t codeUnitIdx = -1;
1384
int32_t prevCodeUnitIdx = -1;
1385
int32_t length = -1;
1386
for (int32_t i = prev.elementAti(numCodePts); i > 0; i = prev.elementAti(i)) {
1387
codeUnitIdx = inString.moveIndex32(0, i);
1388
prevCodeUnitIdx = inString.moveIndex32(0, prevIdx);
1389
// Calculate the length by using the code unit.
1390
length = prevCodeUnitIdx - codeUnitIdx;
1391
prevIdx = i;
1392
// Keep the breakpoint if the pattern is not in the fSkipSet and continuous Katakana
1393
// characters don't occur.
1394
if (!fSkipSet.containsKey(inString.tempSubString(codeUnitIdx, length))
1395
&& (!isKatakana(inString.char32At(inString.moveIndex32(codeUnitIdx, -1)))
1396
|| !isKatakana(inString.char32At(codeUnitIdx)))) {
1397
t_boundary.addElement(i, status);
1398
numBreaks++;
1399
}
1400
}
1401
}
1402
} else {
1403
for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) {
1404
t_boundary.addElement(i, status);
1405
numBreaks++;
1406
}
1407
U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0);
1408
}
1409
1410
// Add a break for the start of the dictionary range if there is not one
1411
// there already.
1412
if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) {
1413
t_boundary.addElement(0, status);
1414
numBreaks++;
1415
}
1416
1417
// Now that we're done, convert positions in t_boundary[] (indices in
1418
// the normalized input string) back to indices in the original input UText
1419
// while reversing t_boundary and pushing values to foundBreaks.
1420
int32_t prevCPPos = -1;
1421
int32_t prevUTextPos = -1;
1422
int32_t correctedNumBreaks = 0;
1423
for (int32_t i = numBreaks - 1; i >= 0; i--) {
1424
int32_t cpPos = t_boundary.elementAti(i);
1425
U_ASSERT(cpPos > prevCPPos);
1426
int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart;
1427
U_ASSERT(utextPos >= prevUTextPos);
1428
if (utextPos > prevUTextPos) {
1429
// Boundaries are added to foundBreaks output in ascending order.
1430
U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos);
1431
// In phrase breaking, there has to be a breakpoint between Cj character and close
1432
// punctuation.
1433
// E.g.[携帯電話]正しい選択 -> [携帯▁電話]▁正しい▁選択 -> breakpoint between ] and 正
1434
if (utextPos != rangeStart
1435
|| (isPhraseBreaking && utextPos > 0
1436
&& fClosePunctuationSet.contains(utext_char32At(inText, utextPos - 1)))) {
1437
foundBreaks.push(utextPos, status);
1438
correctedNumBreaks++;
1439
}
1440
} else {
1441
// Normalization expanded the input text, the dictionary found a boundary
1442
// within the expansion, giving two boundaries with the same index in the
1443
// original text. Ignore the second. See ticket #12918.
1444
--numBreaks;
1445
}
1446
prevCPPos = cpPos;
1447
prevUTextPos = utextPos;
1448
}
1449
(void)prevCPPos; // suppress compiler warnings about unused variable
1450
1451
UChar32 nextChar = utext_char32At(inText, rangeEnd);
1452
if (!foundBreaks.isEmpty() && foundBreaks.peeki() == rangeEnd) {
1453
// In phrase breaking, there has to be a breakpoint between Cj character and
1454
// the number/open punctuation.
1455
// E.g. る文字「そうだ、京都」->る▁文字▁「そうだ、▁京都」-> breakpoint between 字 and「
1456
// E.g. 乗車率90%程度だろうか -> 乗車▁率▁90%▁程度だろうか -> breakpoint between 率 and 9
1457
// E.g. しかもロゴがUnicode! -> しかも▁ロゴが▁Unicode!-> breakpoint between が and U
1458
if (isPhraseBreaking) {
1459
if (!fDigitOrOpenPunctuationOrAlphabetSet.contains(nextChar)) {
1460
foundBreaks.popi();
1461
correctedNumBreaks--;
1462
}
1463
} else {
1464
foundBreaks.popi();
1465
correctedNumBreaks--;
1466
}
1467
}
1468
1469
// inString goes out of scope
1470
// inputMap goes out of scope
1471
return correctedNumBreaks;
1472
}
1473
1474
void CjkBreakEngine::initJapanesePhraseParameter(UErrorCode& error) {
1475
loadJapaneseExtensions(error);
1476
loadHiragana(error);
1477
}
1478
1479
void CjkBreakEngine::loadJapaneseExtensions(UErrorCode& error) {
1480
const char* tag = "extensions";
1481
ResourceBundle ja(U_ICUDATA_BRKITR, "ja", error);
1482
if (U_SUCCESS(error)) {
1483
ResourceBundle bundle = ja.get(tag, error);
1484
while (U_SUCCESS(error) && bundle.hasNext()) {
1485
fSkipSet.puti(bundle.getNextString(error), 1, error);
1486
}
1487
}
1488
}
1489
1490
void CjkBreakEngine::loadHiragana(UErrorCode& error) {
1491
UnicodeSet hiraganaWordSet(UnicodeString(u"[:Hiragana:]"), error);
1492
hiraganaWordSet.compact();
1493
UnicodeSetIterator iterator(hiraganaWordSet);
1494
while (iterator.next()) {
1495
fSkipSet.puti(UnicodeString(iterator.getCodepoint()), 1, error);
1496
}
1497
}
1498
#endif
1499
1500
U_NAMESPACE_END
1501
1502
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */
1503
1504
1505