Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/jolt_physics/Jolt/Core/HashTable.h
9906 views
1
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
2
// SPDX-FileCopyrightText: 2024 Jorrit Rouwe
3
// SPDX-License-Identifier: MIT
4
5
#pragma once
6
7
#include <Jolt/Math/BVec16.h>
8
9
JPH_NAMESPACE_BEGIN
10
11
/// Helper class for implementing an UnorderedSet or UnorderedMap
12
/// Based on CppCon 2017: Matt Kulukundis "Designing a Fast, Efficient, Cache-friendly Hash Table, Step by Step"
13
/// See: https://www.youtube.com/watch?v=ncHmEUmJZf4
14
template <class Key, class KeyValue, class HashTableDetail, class Hash, class KeyEqual>
15
class HashTable
16
{
17
public:
18
/// Properties
19
using value_type = KeyValue;
20
using size_type = uint32;
21
using difference_type = ptrdiff_t;
22
23
private:
24
/// Base class for iterators
25
template <class Table, class Iterator>
26
class IteratorBase
27
{
28
public:
29
/// Properties
30
using difference_type = typename Table::difference_type;
31
using value_type = typename Table::value_type;
32
using iterator_category = std::forward_iterator_tag;
33
34
/// Copy constructor
35
IteratorBase(const IteratorBase &inRHS) = default;
36
37
/// Assignment operator
38
IteratorBase & operator = (const IteratorBase &inRHS) = default;
39
40
/// Iterator at start of table
41
explicit IteratorBase(Table *inTable) :
42
mTable(inTable),
43
mIndex(0)
44
{
45
while (mIndex < mTable->mMaxSize && (mTable->mControl[mIndex] & cBucketUsed) == 0)
46
++mIndex;
47
}
48
49
/// Iterator at specific index
50
IteratorBase(Table *inTable, size_type inIndex) :
51
mTable(inTable),
52
mIndex(inIndex)
53
{
54
}
55
56
/// Prefix increment
57
Iterator & operator ++ ()
58
{
59
JPH_ASSERT(IsValid());
60
61
do
62
{
63
++mIndex;
64
}
65
while (mIndex < mTable->mMaxSize && (mTable->mControl[mIndex] & cBucketUsed) == 0);
66
67
return static_cast<Iterator &>(*this);
68
}
69
70
/// Postfix increment
71
Iterator operator ++ (int)
72
{
73
Iterator result(mTable, mIndex);
74
++(*this);
75
return result;
76
}
77
78
/// Access to key value pair
79
const KeyValue & operator * () const
80
{
81
JPH_ASSERT(IsValid());
82
return mTable->mData[mIndex];
83
}
84
85
/// Access to key value pair
86
const KeyValue * operator -> () const
87
{
88
JPH_ASSERT(IsValid());
89
return mTable->mData + mIndex;
90
}
91
92
/// Equality operator
93
bool operator == (const Iterator &inRHS) const
94
{
95
return mIndex == inRHS.mIndex && mTable == inRHS.mTable;
96
}
97
98
/// Inequality operator
99
bool operator != (const Iterator &inRHS) const
100
{
101
return !(*this == inRHS);
102
}
103
104
/// Check that the iterator is valid
105
bool IsValid() const
106
{
107
return mIndex < mTable->mMaxSize
108
&& (mTable->mControl[mIndex] & cBucketUsed) != 0;
109
}
110
111
Table * mTable;
112
size_type mIndex;
113
};
114
115
/// Get the maximum number of elements that we can support given a number of buckets
116
static constexpr size_type sGetMaxLoad(size_type inBucketCount)
117
{
118
return uint32((cMaxLoadFactorNumerator * inBucketCount) / cMaxLoadFactorDenominator);
119
}
120
121
/// Update the control value for a bucket
122
JPH_INLINE void SetControlValue(size_type inIndex, uint8 inValue)
123
{
124
JPH_ASSERT(inIndex < mMaxSize);
125
mControl[inIndex] = inValue;
126
127
// Mirror the first 15 bytes to the 15 bytes beyond mMaxSize
128
// Note that this is equivalent to:
129
// if (inIndex < 15)
130
// mControl[inIndex + mMaxSize] = inValue
131
// else
132
// mControl[inIndex] = inValue
133
// Which performs a needless write if inIndex >= 15 but at least it is branch-less
134
mControl[((inIndex - 15) & (mMaxSize - 1)) + 15] = inValue;
135
}
136
137
/// Get the index and control value for a particular key
138
JPH_INLINE void GetIndexAndControlValue(const Key &inKey, size_type &outIndex, uint8 &outControl) const
139
{
140
// Calculate hash
141
uint64 hash_value = Hash { } (inKey);
142
143
// Split hash into index and control value
144
outIndex = size_type(hash_value >> 7) & (mMaxSize - 1);
145
outControl = cBucketUsed | uint8(hash_value);
146
}
147
148
/// Allocate space for the hash table
149
void AllocateTable(size_type inMaxSize)
150
{
151
JPH_ASSERT(mData == nullptr);
152
153
mMaxSize = inMaxSize;
154
mLoadLeft = sGetMaxLoad(inMaxSize);
155
size_t required_size = size_t(mMaxSize) * (sizeof(KeyValue) + 1) + 15; // Add 15 bytes to mirror the first 15 bytes of the control values
156
if constexpr (cNeedsAlignedAllocate)
157
mData = reinterpret_cast<KeyValue *>(AlignedAllocate(required_size, alignof(KeyValue)));
158
else
159
mData = reinterpret_cast<KeyValue *>(Allocate(required_size));
160
mControl = reinterpret_cast<uint8 *>(mData + mMaxSize);
161
}
162
163
/// Copy the contents of another hash table
164
void CopyTable(const HashTable &inRHS)
165
{
166
if (inRHS.empty())
167
return;
168
169
AllocateTable(inRHS.mMaxSize);
170
171
// Copy control bytes
172
memcpy(mControl, inRHS.mControl, mMaxSize + 15);
173
174
// Copy elements
175
uint index = 0;
176
for (const uint8 *control = mControl, *control_end = mControl + mMaxSize; control != control_end; ++control, ++index)
177
if (*control & cBucketUsed)
178
new (mData + index) KeyValue(inRHS.mData[index]);
179
mSize = inRHS.mSize;
180
}
181
182
/// Grow the table to a new size
183
void GrowTable(size_type inNewMaxSize)
184
{
185
// Move the old table to a temporary structure
186
size_type old_max_size = mMaxSize;
187
KeyValue *old_data = mData;
188
const uint8 *old_control = mControl;
189
mData = nullptr;
190
mControl = nullptr;
191
mSize = 0;
192
mMaxSize = 0;
193
mLoadLeft = 0;
194
195
// Allocate new table
196
AllocateTable(inNewMaxSize);
197
198
// Reset all control bytes
199
memset(mControl, cBucketEmpty, mMaxSize + 15);
200
201
if (old_data != nullptr)
202
{
203
// Copy all elements from the old table
204
for (size_type i = 0; i < old_max_size; ++i)
205
if (old_control[i] & cBucketUsed)
206
{
207
size_type index;
208
KeyValue *element = old_data + i;
209
JPH_IF_ENABLE_ASSERTS(bool inserted =) InsertKey</* InsertAfterGrow= */ true>(HashTableDetail::sGetKey(*element), index);
210
JPH_ASSERT(inserted);
211
new (mData + index) KeyValue(std::move(*element));
212
element->~KeyValue();
213
}
214
215
// Free memory
216
if constexpr (cNeedsAlignedAllocate)
217
AlignedFree(old_data);
218
else
219
Free(old_data);
220
}
221
}
222
223
protected:
224
/// Get an element by index
225
KeyValue & GetElement(size_type inIndex) const
226
{
227
return mData[inIndex];
228
}
229
230
/// Insert a key into the map, returns true if the element was inserted, false if it already existed.
231
/// outIndex is the index at which the element should be constructed / where it is located.
232
template <bool InsertAfterGrow = false>
233
bool InsertKey(const Key &inKey, size_type &outIndex)
234
{
235
// Ensure we have enough space
236
if (mLoadLeft == 0)
237
{
238
// Should not be growing if we're already growing!
239
if constexpr (InsertAfterGrow)
240
JPH_ASSERT(false);
241
242
// Decide if we need to clean up all tombstones or if we need to grow the map
243
size_type num_deleted = sGetMaxLoad(mMaxSize) - mSize;
244
if (num_deleted * cMaxDeletedElementsDenominator > mMaxSize * cMaxDeletedElementsNumerator)
245
rehash(0);
246
else
247
{
248
// Grow by a power of 2
249
size_type new_max_size = max<size_type>(mMaxSize << 1, 16);
250
if (new_max_size < mMaxSize)
251
{
252
JPH_ASSERT(false, "Overflow in hash table size, can't grow!");
253
return false;
254
}
255
GrowTable(new_max_size);
256
}
257
}
258
259
// Split hash into index and control value
260
size_type index;
261
uint8 control;
262
GetIndexAndControlValue(inKey, index, control);
263
264
// Keeps track of the index of the first deleted bucket we found
265
constexpr size_type cNoDeleted = ~size_type(0);
266
size_type first_deleted_index = cNoDeleted;
267
268
// Linear probing
269
KeyEqual equal;
270
size_type bucket_mask = mMaxSize - 1;
271
BVec16 control16 = BVec16::sReplicate(control);
272
BVec16 bucket_empty = BVec16::sZero();
273
BVec16 bucket_deleted = BVec16::sReplicate(cBucketDeleted);
274
for (;;)
275
{
276
// Read 16 control values (note that we added 15 bytes at the end of the control values that mirror the first 15 bytes)
277
BVec16 control_bytes = BVec16::sLoadByte16(mControl + index);
278
279
// Check if we must find the element before we can insert
280
if constexpr (!InsertAfterGrow)
281
{
282
// Check for the control value we're looking for
283
// Note that when deleting we can create empty buckets instead of deleted buckets.
284
// This means we must unconditionally check all buckets in this batch for equality
285
// (also beyond the first empty bucket).
286
uint32 control_equal = uint32(BVec16::sEquals(control_bytes, control16).GetTrues());
287
288
// Index within the 16 buckets
289
size_type local_index = index;
290
291
// Loop while there's still buckets to process
292
while (control_equal != 0)
293
{
294
// Get the first equal bucket
295
uint first_equal = CountTrailingZeros(control_equal);
296
297
// Skip to the bucket
298
local_index += first_equal;
299
300
// Make sure that our index is not beyond the end of the table
301
local_index &= bucket_mask;
302
303
// We found a bucket with same control value
304
if (equal(HashTableDetail::sGetKey(mData[local_index]), inKey))
305
{
306
// Element already exists
307
outIndex = local_index;
308
return false;
309
}
310
311
// Skip past this bucket
312
control_equal >>= first_equal + 1;
313
local_index++;
314
}
315
316
// Check if we're still scanning for deleted buckets
317
if (first_deleted_index == cNoDeleted)
318
{
319
// Check if any buckets have been deleted, if so store the first one
320
uint32 control_deleted = uint32(BVec16::sEquals(control_bytes, bucket_deleted).GetTrues());
321
if (control_deleted != 0)
322
first_deleted_index = index + CountTrailingZeros(control_deleted);
323
}
324
}
325
326
// Check for empty buckets
327
uint32 control_empty = uint32(BVec16::sEquals(control_bytes, bucket_empty).GetTrues());
328
if (control_empty != 0)
329
{
330
// If we found a deleted bucket, use it.
331
// It doesn't matter if it is before or after the first empty bucket we found
332
// since we will always be scanning in batches of 16 buckets.
333
if (first_deleted_index == cNoDeleted || InsertAfterGrow)
334
{
335
index += CountTrailingZeros(control_empty);
336
--mLoadLeft; // Using an empty bucket decreases the load left
337
}
338
else
339
{
340
index = first_deleted_index;
341
}
342
343
// Make sure that our index is not beyond the end of the table
344
index &= bucket_mask;
345
346
// Update control byte
347
SetControlValue(index, control);
348
++mSize;
349
350
// Return index to newly allocated bucket
351
outIndex = index;
352
return true;
353
}
354
355
// Move to next batch of 16 buckets
356
index = (index + 16) & bucket_mask;
357
}
358
}
359
360
public:
361
/// Non-const iterator
362
class iterator : public IteratorBase<HashTable, iterator>
363
{
364
using Base = IteratorBase<HashTable, iterator>;
365
366
public:
367
/// Properties
368
using reference = typename Base::value_type &;
369
using pointer = typename Base::value_type *;
370
371
/// Constructors
372
explicit iterator(HashTable *inTable) : Base(inTable) { }
373
iterator(HashTable *inTable, size_type inIndex) : Base(inTable, inIndex) { }
374
iterator(const iterator &inIterator) : Base(inIterator) { }
375
376
/// Assignment
377
iterator & operator = (const iterator &inRHS) { Base::operator = (inRHS); return *this; }
378
379
using Base::operator *;
380
381
/// Non-const access to key value pair
382
KeyValue & operator * ()
383
{
384
JPH_ASSERT(this->IsValid());
385
return this->mTable->mData[this->mIndex];
386
}
387
388
using Base::operator ->;
389
390
/// Non-const access to key value pair
391
KeyValue * operator -> ()
392
{
393
JPH_ASSERT(this->IsValid());
394
return this->mTable->mData + this->mIndex;
395
}
396
};
397
398
/// Const iterator
399
class const_iterator : public IteratorBase<const HashTable, const_iterator>
400
{
401
using Base = IteratorBase<const HashTable, const_iterator>;
402
403
public:
404
/// Properties
405
using reference = const typename Base::value_type &;
406
using pointer = const typename Base::value_type *;
407
408
/// Constructors
409
explicit const_iterator(const HashTable *inTable) : Base(inTable) { }
410
const_iterator(const HashTable *inTable, size_type inIndex) : Base(inTable, inIndex) { }
411
const_iterator(const const_iterator &inRHS) : Base(inRHS) { }
412
const_iterator(const iterator &inIterator) : Base(inIterator.mTable, inIterator.mIndex) { }
413
414
/// Assignment
415
const_iterator & operator = (const iterator &inRHS) { this->mTable = inRHS.mTable; this->mIndex = inRHS.mIndex; return *this; }
416
const_iterator & operator = (const const_iterator &inRHS) { Base::operator = (inRHS); return *this; }
417
};
418
419
/// Default constructor
420
HashTable() = default;
421
422
/// Copy constructor
423
HashTable(const HashTable &inRHS)
424
{
425
CopyTable(inRHS);
426
}
427
428
/// Move constructor
429
HashTable(HashTable &&ioRHS) noexcept :
430
mData(ioRHS.mData),
431
mControl(ioRHS.mControl),
432
mSize(ioRHS.mSize),
433
mMaxSize(ioRHS.mMaxSize),
434
mLoadLeft(ioRHS.mLoadLeft)
435
{
436
ioRHS.mData = nullptr;
437
ioRHS.mControl = nullptr;
438
ioRHS.mSize = 0;
439
ioRHS.mMaxSize = 0;
440
ioRHS.mLoadLeft = 0;
441
}
442
443
/// Assignment operator
444
HashTable & operator = (const HashTable &inRHS)
445
{
446
if (this != &inRHS)
447
{
448
clear();
449
450
CopyTable(inRHS);
451
}
452
453
return *this;
454
}
455
456
/// Move assignment operator
457
HashTable & operator = (HashTable &&ioRHS) noexcept
458
{
459
if (this != &ioRHS)
460
{
461
clear();
462
463
mData = ioRHS.mData;
464
mControl = ioRHS.mControl;
465
mSize = ioRHS.mSize;
466
mMaxSize = ioRHS.mMaxSize;
467
mLoadLeft = ioRHS.mLoadLeft;
468
469
ioRHS.mData = nullptr;
470
ioRHS.mControl = nullptr;
471
ioRHS.mSize = 0;
472
ioRHS.mMaxSize = 0;
473
ioRHS.mLoadLeft = 0;
474
}
475
476
return *this;
477
}
478
479
/// Destructor
480
~HashTable()
481
{
482
clear();
483
}
484
485
/// Reserve memory for a certain number of elements
486
void reserve(size_type inMaxSize)
487
{
488
// Calculate max size based on load factor
489
size_type max_size = GetNextPowerOf2(max<uint32>((cMaxLoadFactorDenominator * inMaxSize) / cMaxLoadFactorNumerator, 16));
490
if (max_size <= mMaxSize)
491
return;
492
493
GrowTable(max_size);
494
}
495
496
/// Destroy the entire hash table
497
void clear()
498
{
499
// Delete all elements
500
if constexpr (!std::is_trivially_destructible<KeyValue>())
501
if (!empty())
502
for (size_type i = 0; i < mMaxSize; ++i)
503
if (mControl[i] & cBucketUsed)
504
mData[i].~KeyValue();
505
506
if (mData != nullptr)
507
{
508
// Free memory
509
if constexpr (cNeedsAlignedAllocate)
510
AlignedFree(mData);
511
else
512
Free(mData);
513
514
// Reset members
515
mData = nullptr;
516
mControl = nullptr;
517
mSize = 0;
518
mMaxSize = 0;
519
mLoadLeft = 0;
520
}
521
}
522
523
/// Destroy the entire hash table but keeps the memory allocated
524
void ClearAndKeepMemory()
525
{
526
// Destruct elements
527
if constexpr (!std::is_trivially_destructible<KeyValue>())
528
if (!empty())
529
for (size_type i = 0; i < mMaxSize; ++i)
530
if (mControl[i] & cBucketUsed)
531
mData[i].~KeyValue();
532
mSize = 0;
533
534
// If there are elements that are not marked cBucketEmpty, we reset them
535
size_type max_load = sGetMaxLoad(mMaxSize);
536
if (mLoadLeft != max_load)
537
{
538
// Reset all control bytes
539
memset(mControl, cBucketEmpty, mMaxSize + 15);
540
mLoadLeft = max_load;
541
}
542
}
543
544
/// Iterator to first element
545
iterator begin()
546
{
547
return iterator(this);
548
}
549
550
/// Iterator to one beyond last element
551
iterator end()
552
{
553
return iterator(this, mMaxSize);
554
}
555
556
/// Iterator to first element
557
const_iterator begin() const
558
{
559
return const_iterator(this);
560
}
561
562
/// Iterator to one beyond last element
563
const_iterator end() const
564
{
565
return const_iterator(this, mMaxSize);
566
}
567
568
/// Iterator to first element
569
const_iterator cbegin() const
570
{
571
return const_iterator(this);
572
}
573
574
/// Iterator to one beyond last element
575
const_iterator cend() const
576
{
577
return const_iterator(this, mMaxSize);
578
}
579
580
/// Number of buckets in the table
581
size_type bucket_count() const
582
{
583
return mMaxSize;
584
}
585
586
/// Max number of buckets that the table can have
587
constexpr size_type max_bucket_count() const
588
{
589
return size_type(1) << (sizeof(size_type) * 8 - 1);
590
}
591
592
/// Check if there are no elements in the table
593
bool empty() const
594
{
595
return mSize == 0;
596
}
597
598
/// Number of elements in the table
599
size_type size() const
600
{
601
return mSize;
602
}
603
604
/// Max number of elements that the table can hold
605
constexpr size_type max_size() const
606
{
607
return size_type((uint64(max_bucket_count()) * cMaxLoadFactorNumerator) / cMaxLoadFactorDenominator);
608
}
609
610
/// Get the max load factor for this table (max number of elements / number of buckets)
611
constexpr float max_load_factor() const
612
{
613
return float(cMaxLoadFactorNumerator) / float(cMaxLoadFactorDenominator);
614
}
615
616
/// Insert a new element, returns iterator and if the element was inserted
617
std::pair<iterator, bool> insert(const value_type &inValue)
618
{
619
size_type index;
620
bool inserted = InsertKey(HashTableDetail::sGetKey(inValue), index);
621
if (inserted)
622
new (mData + index) KeyValue(inValue);
623
return std::make_pair(iterator(this, index), inserted);
624
}
625
626
/// Find an element, returns iterator to element or end() if not found
627
const_iterator find(const Key &inKey) const
628
{
629
// Check if we have any data
630
if (empty())
631
return cend();
632
633
// Split hash into index and control value
634
size_type index;
635
uint8 control;
636
GetIndexAndControlValue(inKey, index, control);
637
638
// Linear probing
639
KeyEqual equal;
640
size_type bucket_mask = mMaxSize - 1;
641
BVec16 control16 = BVec16::sReplicate(control);
642
BVec16 bucket_empty = BVec16::sZero();
643
for (;;)
644
{
645
// Read 16 control values
646
// (note that we added 15 bytes at the end of the control values that mirror the first 15 bytes)
647
BVec16 control_bytes = BVec16::sLoadByte16(mControl + index);
648
649
// Check for the control value we're looking for
650
// Note that when deleting we can create empty buckets instead of deleted buckets.
651
// This means we must unconditionally check all buckets in this batch for equality
652
// (also beyond the first empty bucket).
653
uint32 control_equal = uint32(BVec16::sEquals(control_bytes, control16).GetTrues());
654
655
// Index within the 16 buckets
656
size_type local_index = index;
657
658
// Loop while there's still buckets to process
659
while (control_equal != 0)
660
{
661
// Get the first equal bucket
662
uint first_equal = CountTrailingZeros(control_equal);
663
664
// Skip to the bucket
665
local_index += first_equal;
666
667
// Make sure that our index is not beyond the end of the table
668
local_index &= bucket_mask;
669
670
// We found a bucket with same control value
671
if (equal(HashTableDetail::sGetKey(mData[local_index]), inKey))
672
{
673
// Element found
674
return const_iterator(this, local_index);
675
}
676
677
// Skip past this bucket
678
control_equal >>= first_equal + 1;
679
local_index++;
680
}
681
682
// Check for empty buckets
683
uint32 control_empty = uint32(BVec16::sEquals(control_bytes, bucket_empty).GetTrues());
684
if (control_empty != 0)
685
{
686
// An empty bucket was found, we didn't find the element
687
return cend();
688
}
689
690
// Move to next batch of 16 buckets
691
index = (index + 16) & bucket_mask;
692
}
693
}
694
695
/// @brief Erase an element by iterator
696
void erase(const const_iterator &inIterator)
697
{
698
JPH_ASSERT(inIterator.IsValid());
699
700
// Read 16 control values before and after the current index
701
// (note that we added 15 bytes at the end of the control values that mirror the first 15 bytes)
702
BVec16 control_bytes_before = BVec16::sLoadByte16(mControl + ((inIterator.mIndex - 16) & (mMaxSize - 1)));
703
BVec16 control_bytes_after = BVec16::sLoadByte16(mControl + inIterator.mIndex);
704
BVec16 bucket_empty = BVec16::sZero();
705
uint32 control_empty_before = uint32(BVec16::sEquals(control_bytes_before, bucket_empty).GetTrues());
706
uint32 control_empty_after = uint32(BVec16::sEquals(control_bytes_after, bucket_empty).GetTrues());
707
708
// If (this index including) there exist 16 consecutive non-empty slots (represented by a bit being 0) then
709
// a probe looking for some element needs to continue probing so we cannot mark the bucket as empty
710
// but must mark it as deleted instead.
711
// Note that we use: CountLeadingZeros(uint16) = CountLeadingZeros(uint32) - 16.
712
uint8 control_value = CountLeadingZeros(control_empty_before) - 16 + CountTrailingZeros(control_empty_after) < 16? cBucketEmpty : cBucketDeleted;
713
714
// Mark the bucket as empty/deleted
715
SetControlValue(inIterator.mIndex, control_value);
716
717
// Destruct the element
718
mData[inIterator.mIndex].~KeyValue();
719
720
// If we marked the bucket as empty we can increase the load left
721
if (control_value == cBucketEmpty)
722
++mLoadLeft;
723
724
// Decrease size
725
--mSize;
726
}
727
728
/// @brief Erase an element by key
729
size_type erase(const Key &inKey)
730
{
731
const_iterator it = find(inKey);
732
if (it == cend())
733
return 0;
734
735
erase(it);
736
return 1;
737
}
738
739
/// Swap the contents of two hash tables
740
void swap(HashTable &ioRHS) noexcept
741
{
742
std::swap(mData, ioRHS.mData);
743
std::swap(mControl, ioRHS.mControl);
744
std::swap(mSize, ioRHS.mSize);
745
std::swap(mMaxSize, ioRHS.mMaxSize);
746
std::swap(mLoadLeft, ioRHS.mLoadLeft);
747
}
748
749
/// In place re-hashing of all elements in the table. Removes all cBucketDeleted elements
750
/// The std version takes a bucket count, but we just re-hash to the same size.
751
void rehash(size_type)
752
{
753
// Update the control value for all buckets
754
for (size_type i = 0; i < mMaxSize; ++i)
755
{
756
uint8 &control = mControl[i];
757
switch (control)
758
{
759
case cBucketDeleted:
760
// Deleted buckets become empty
761
control = cBucketEmpty;
762
break;
763
case cBucketEmpty:
764
// Remains empty
765
break;
766
default:
767
// Mark all occupied as deleted, to indicate it needs to move to the correct place
768
control = cBucketDeleted;
769
break;
770
}
771
}
772
773
// Replicate control values to the last 15 entries
774
for (size_type i = 0; i < 15; ++i)
775
mControl[mMaxSize + i] = mControl[i];
776
777
// Loop over all elements that have been 'deleted' and move them to their new spot
778
BVec16 bucket_used = BVec16::sReplicate(cBucketUsed);
779
size_type bucket_mask = mMaxSize - 1;
780
uint32 probe_mask = bucket_mask & ~uint32(0b1111); // Mask out lower 4 bits because we test 16 buckets at a time
781
for (size_type src = 0; src < mMaxSize; ++src)
782
if (mControl[src] == cBucketDeleted)
783
for (;;)
784
{
785
// Split hash into index and control value
786
size_type src_index;
787
uint8 src_control;
788
GetIndexAndControlValue(HashTableDetail::sGetKey(mData[src]), src_index, src_control);
789
790
// Linear probing
791
size_type dst = src_index;
792
for (;;)
793
{
794
// Check if any buckets are free
795
BVec16 control_bytes = BVec16::sLoadByte16(mControl + dst);
796
uint32 control_free = uint32(BVec16::sAnd(control_bytes, bucket_used).GetTrues()) ^ 0xffff;
797
if (control_free != 0)
798
{
799
// Select this bucket as destination
800
dst += CountTrailingZeros(control_free);
801
dst &= bucket_mask;
802
break;
803
}
804
805
// Move to next batch of 16 buckets
806
dst = (dst + 16) & bucket_mask;
807
}
808
809
// Check if we stay in the same probe group
810
if (((dst - src_index) & probe_mask) == ((src - src_index) & probe_mask))
811
{
812
// We stay in the same group, we can stay where we are
813
SetControlValue(src, src_control);
814
break;
815
}
816
else if (mControl[dst] == cBucketEmpty)
817
{
818
// There's an empty bucket, move us there
819
SetControlValue(dst, src_control);
820
SetControlValue(src, cBucketEmpty);
821
new (mData + dst) KeyValue(std::move(mData[src]));
822
mData[src].~KeyValue();
823
break;
824
}
825
else
826
{
827
// There's an element in the bucket we want to move to, swap them
828
JPH_ASSERT(mControl[dst] == cBucketDeleted);
829
SetControlValue(dst, src_control);
830
std::swap(mData[src], mData[dst]);
831
// Iterate again with the same source bucket
832
}
833
}
834
835
// Reinitialize load left
836
mLoadLeft = sGetMaxLoad(mMaxSize) - mSize;
837
}
838
839
private:
840
/// If this allocator needs to fall back to aligned allocations because the type requires it
841
static constexpr bool cNeedsAlignedAllocate = alignof(KeyValue) > (JPH_CPU_ADDRESS_BITS == 32? 8 : 16);
842
843
/// Max load factor is cMaxLoadFactorNumerator / cMaxLoadFactorDenominator
844
static constexpr uint64 cMaxLoadFactorNumerator = 7;
845
static constexpr uint64 cMaxLoadFactorDenominator = 8;
846
847
/// If we can recover this fraction of deleted elements, we'll reshuffle the buckets in place rather than growing the table
848
static constexpr uint64 cMaxDeletedElementsNumerator = 1;
849
static constexpr uint64 cMaxDeletedElementsDenominator = 8;
850
851
/// Values that the control bytes can have
852
static constexpr uint8 cBucketEmpty = 0;
853
static constexpr uint8 cBucketDeleted = 0x7f;
854
static constexpr uint8 cBucketUsed = 0x80; // Lowest 7 bits are lowest 7 bits of the hash value
855
856
/// The buckets, an array of size mMaxSize
857
KeyValue * mData = nullptr;
858
859
/// Control bytes, an array of size mMaxSize + 15
860
uint8 * mControl = nullptr;
861
862
/// Number of elements in the table
863
size_type mSize = 0;
864
865
/// Max number of elements that can be stored in the table
866
size_type mMaxSize = 0;
867
868
/// Number of elements we can add to the table before we need to grow
869
size_type mLoadLeft = 0;
870
};
871
872
JPH_NAMESPACE_END
873
874