Path: blob/master/thirdparty/jolt_physics/Jolt/Math/Quat.h
9913 views
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)1// SPDX-FileCopyrightText: 2021 Jorrit Rouwe2// SPDX-License-Identifier: MIT34#pragma once56#include <Jolt/Math/Vec3.h>7#include <Jolt/Math/Vec4.h>89JPH_NAMESPACE_BEGIN1011/// Quaternion class, quaternions are 4 dimensional vectors which can describe rotations in 3 dimensional12/// space if their length is 1.13///14/// They are written as:15///16/// \f$q = w + x \: i + y \: j + z \: k\f$17///18/// or in vector notation:19///20/// \f$q = [w, v] = [w, x, y, z]\f$21///22/// Where:23///24/// w = the real part25/// v = the imaginary part, (x, y, z)26///27/// Note that we store the quaternion in a Vec4 as [x, y, z, w] because that makes28/// it easy to extract the rotation axis of the quaternion:29///30/// q = [cos(angle / 2), sin(angle / 2) * rotation_axis]31class [[nodiscard]] alignas(JPH_VECTOR_ALIGNMENT) Quat32{33public:34JPH_OVERRIDE_NEW_DELETE3536///@name Constructors37///@{38inline Quat() = default; ///< Intentionally not initialized for performance reasons39Quat(const Quat &inRHS) = default;40Quat & operator = (const Quat &inRHS) = default;41inline Quat(float inX, float inY, float inZ, float inW) : mValue(inX, inY, inZ, inW) { }42inline explicit Quat(Vec4Arg inV) : mValue(inV) { }43///@}4445///@name Tests46///@{4748/// Check if two quaternions are exactly equal49inline bool operator == (QuatArg inRHS) const { return mValue == inRHS.mValue; }5051/// Check if two quaternions are different52inline bool operator != (QuatArg inRHS) const { return mValue != inRHS.mValue; }5354/// If this quaternion is close to inRHS. Note that q and -q represent the same rotation, this is not checked here.55inline bool IsClose(QuatArg inRHS, float inMaxDistSq = 1.0e-12f) const { return mValue.IsClose(inRHS.mValue, inMaxDistSq); }5657/// If the length of this quaternion is 1 +/- inTolerance58inline bool IsNormalized(float inTolerance = 1.0e-5f) const { return mValue.IsNormalized(inTolerance); }5960/// If any component of this quaternion is a NaN (not a number)61inline bool IsNaN() const { return mValue.IsNaN(); }6263///@}64///@name Get components65///@{6667/// Get X component (imaginary part i)68JPH_INLINE float GetX() const { return mValue.GetX(); }6970/// Get Y component (imaginary part j)71JPH_INLINE float GetY() const { return mValue.GetY(); }7273/// Get Z component (imaginary part k)74JPH_INLINE float GetZ() const { return mValue.GetZ(); }7576/// Get W component (real part)77JPH_INLINE float GetW() const { return mValue.GetW(); }7879/// Get the imaginary part of the quaternion80JPH_INLINE Vec3 GetXYZ() const { return Vec3(mValue); }8182/// Get the quaternion as a Vec483JPH_INLINE Vec4 GetXYZW() const { return mValue; }8485/// Set individual components86JPH_INLINE void SetX(float inX) { mValue.SetX(inX); }87JPH_INLINE void SetY(float inY) { mValue.SetY(inY); }88JPH_INLINE void SetZ(float inZ) { mValue.SetZ(inZ); }89JPH_INLINE void SetW(float inW) { mValue.SetW(inW); }9091/// Set all components92JPH_INLINE void Set(float inX, float inY, float inZ, float inW) { mValue.Set(inX, inY, inZ, inW); }9394///@}95///@name Default quaternions96///@{9798/// @return [0, 0, 0, 0]99JPH_INLINE static Quat sZero() { return Quat(Vec4::sZero()); }100101/// @return [1, 0, 0, 0] (or in storage format Quat(0, 0, 0, 1))102JPH_INLINE static Quat sIdentity() { return Quat(0, 0, 0, 1); }103104///@}105106/// Rotation from axis and angle107JPH_INLINE static Quat sRotation(Vec3Arg inAxis, float inAngle);108109/// Get axis and angle that represents this quaternion, outAngle will always be in the range \f$[0, \pi]\f$110JPH_INLINE void GetAxisAngle(Vec3 &outAxis, float &outAngle) const;111112/// Create quaternion that rotates a vector from the direction of inFrom to the direction of inTo along the shortest path113/// @see https://www.euclideanspace.com/maths/algebra/vectors/angleBetween/index.htm114JPH_INLINE static Quat sFromTo(Vec3Arg inFrom, Vec3Arg inTo);115116/// Random unit quaternion117template <class Random>118inline static Quat sRandom(Random &inRandom);119120/// Conversion from Euler angles. Rotation order is X then Y then Z (RotZ * RotY * RotX). Angles in radians.121inline static Quat sEulerAngles(Vec3Arg inAngles);122123/// Conversion to Euler angles. Rotation order is X then Y then Z (RotZ * RotY * RotX). Angles in radians.124inline Vec3 GetEulerAngles() const;125126///@name Length / normalization operations127///@{128129/// Squared length of quaternion.130/// @return Squared length of quaternion (\f$|v|^2\f$)131JPH_INLINE float LengthSq() const { return mValue.LengthSq(); }132133/// Length of quaternion.134/// @return Length of quaternion (\f$|v|\f$)135JPH_INLINE float Length() const { return mValue.Length(); }136137/// Normalize the quaternion (make it length 1)138JPH_INLINE Quat Normalized() const { return Quat(mValue.Normalized()); }139140///@}141///@name Additions / multiplications142///@{143144JPH_INLINE void operator += (QuatArg inRHS) { mValue += inRHS.mValue; }145JPH_INLINE void operator -= (QuatArg inRHS) { mValue -= inRHS.mValue; }146JPH_INLINE void operator *= (float inValue) { mValue *= inValue; }147JPH_INLINE void operator /= (float inValue) { mValue /= inValue; }148JPH_INLINE Quat operator - () const { return Quat(-mValue); }149JPH_INLINE Quat operator + (QuatArg inRHS) const { return Quat(mValue + inRHS.mValue); }150JPH_INLINE Quat operator - (QuatArg inRHS) const { return Quat(mValue - inRHS.mValue); }151JPH_INLINE Quat operator * (QuatArg inRHS) const;152JPH_INLINE Quat operator * (float inValue) const { return Quat(mValue * inValue); }153inline friend Quat operator * (float inValue, QuatArg inRHS) { return Quat(inRHS.mValue * inValue); }154JPH_INLINE Quat operator / (float inValue) const { return Quat(mValue / inValue); }155156///@}157158/// Rotate a vector by this quaternion159JPH_INLINE Vec3 operator * (Vec3Arg inValue) const;160161/// Rotate a vector by the inverse of this quaternion162JPH_INLINE Vec3 InverseRotate(Vec3Arg inValue) const;163164/// Rotate a the vector (1, 0, 0) with this quaternion165JPH_INLINE Vec3 RotateAxisX() const;166167/// Rotate a the vector (0, 1, 0) with this quaternion168JPH_INLINE Vec3 RotateAxisY() const;169170/// Rotate a the vector (0, 0, 1) with this quaternion171JPH_INLINE Vec3 RotateAxisZ() const;172173/// Dot product174JPH_INLINE float Dot(QuatArg inRHS) const { return mValue.Dot(inRHS.mValue); }175176/// The conjugate [w, -x, -y, -z] is the same as the inverse for unit quaternions177JPH_INLINE Quat Conjugated() const { return Quat(Vec4::sXor(mValue, UVec4(0x80000000, 0x80000000, 0x80000000, 0).ReinterpretAsFloat())); }178179/// Get inverse quaternion180JPH_INLINE Quat Inversed() const { return Conjugated() / Length(); }181182/// Ensures that the W component is positive by negating the entire quaternion if it is not. This is useful when you want to store a quaternion as a 3 vector by discarding W and reconstructing it as sqrt(1 - x^2 - y^2 - z^2).183JPH_INLINE Quat EnsureWPositive() const { return Quat(Vec4::sXor(mValue, Vec4::sAnd(mValue.SplatW(), UVec4::sReplicate(0x80000000).ReinterpretAsFloat()))); }184185/// Get a quaternion that is perpendicular to this quaternion186JPH_INLINE Quat GetPerpendicular() const { return Quat(Vec4(1, -1, 1, -1) * mValue.Swizzle<SWIZZLE_Y, SWIZZLE_X, SWIZZLE_W, SWIZZLE_Z>()); }187188/// Get rotation angle around inAxis (uses Swing Twist Decomposition to get the twist quaternion and uses q(axis, angle) = [cos(angle / 2), axis * sin(angle / 2)])189JPH_INLINE float GetRotationAngle(Vec3Arg inAxis) const { return GetW() == 0.0f? JPH_PI : 2.0f * ATan(GetXYZ().Dot(inAxis) / GetW()); }190191/// Swing Twist Decomposition: any quaternion can be split up as:192///193/// \f[q = q_{swing} \: q_{twist}\f]194///195/// where \f$q_{twist}\f$ rotates only around axis v.196///197/// \f$q_{twist}\f$ is:198///199/// \f[q_{twist} = \frac{[q_w, q_{ijk} \cdot v \: v]}{\left|[q_w, q_{ijk} \cdot v \: v]\right|}\f]200///201/// where q_w is the real part of the quaternion and q_i the imaginary part (a 3 vector).202///203/// The swing can then be calculated as:204///205/// \f[q_{swing} = q \: q_{twist}^* \f]206///207/// Where \f$q_{twist}^*\f$ = complex conjugate of \f$q_{twist}\f$208JPH_INLINE Quat GetTwist(Vec3Arg inAxis) const;209210/// Decomposes quaternion into swing and twist component:211///212/// \f$q = q_{swing} \: q_{twist}\f$213///214/// where \f$q_{swing} \: \hat{x} = q_{twist} \: \hat{y} = q_{twist} \: \hat{z} = 0\f$215///216/// In other words:217///218/// - \f$q_{twist}\f$ only rotates around the X-axis.219/// - \f$q_{swing}\f$ only rotates around the Y and Z-axis.220///221/// @see Gino van den Bergen - Rotational Joint Limits in Quaternion Space - GDC 2016222JPH_INLINE void GetSwingTwist(Quat &outSwing, Quat &outTwist) const;223224/// Linear interpolation between two quaternions (for small steps).225/// @param inFraction is in the range [0, 1]226/// @param inDestination The destination quaternion227/// @return (1 - inFraction) * this + fraction * inDestination228JPH_INLINE Quat LERP(QuatArg inDestination, float inFraction) const;229230/// Spherical linear interpolation between two quaternions.231/// @param inFraction is in the range [0, 1]232/// @param inDestination The destination quaternion233/// @return When fraction is zero this quaternion is returned, when fraction is 1 inDestination is returned.234/// When fraction is between 0 and 1 an interpolation along the shortest path is returned.235JPH_INLINE Quat SLERP(QuatArg inDestination, float inFraction) const;236237/// Load 3 floats from memory (X, Y and Z component and then calculates W) reads 32 bits extra which it doesn't use238static JPH_INLINE Quat sLoadFloat3Unsafe(const Float3 &inV);239240/// Store 3 as floats to memory (X, Y and Z component)241JPH_INLINE void StoreFloat3(Float3 *outV) const;242243/// To String244friend ostream & operator << (ostream &inStream, QuatArg inQ) { inStream << inQ.mValue; return inStream; }245246/// 4 vector that stores [x, y, z, w] parts of the quaternion247Vec4 mValue;248};249250static_assert(std::is_trivial<Quat>(), "Is supposed to be a trivial type!");251252JPH_NAMESPACE_END253254#include "Quat.inl"255256257