Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/jolt_physics/Jolt/Physics/Collision/Shape/CylinderShape.cpp
9913 views
1
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
2
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
3
// SPDX-License-Identifier: MIT
4
5
#include <Jolt/Jolt.h>
6
7
#include <Jolt/Physics/Collision/Shape/CylinderShape.h>
8
#include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
9
#include <Jolt/Physics/Collision/Shape/GetTrianglesContext.h>
10
#include <Jolt/Physics/Collision/RayCast.h>
11
#include <Jolt/Physics/Collision/CastResult.h>
12
#include <Jolt/Physics/Collision/CollidePointResult.h>
13
#include <Jolt/Physics/Collision/TransformedShape.h>
14
#include <Jolt/Physics/Collision/CollideSoftBodyVertexIterator.h>
15
#include <Jolt/Geometry/RayCylinder.h>
16
#include <Jolt/ObjectStream/TypeDeclarations.h>
17
#include <Jolt/Core/StreamIn.h>
18
#include <Jolt/Core/StreamOut.h>
19
#ifdef JPH_DEBUG_RENDERER
20
#include <Jolt/Renderer/DebugRenderer.h>
21
#endif // JPH_DEBUG_RENDERER
22
23
JPH_NAMESPACE_BEGIN
24
25
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(CylinderShapeSettings)
26
{
27
JPH_ADD_BASE_CLASS(CylinderShapeSettings, ConvexShapeSettings)
28
29
JPH_ADD_ATTRIBUTE(CylinderShapeSettings, mHalfHeight)
30
JPH_ADD_ATTRIBUTE(CylinderShapeSettings, mRadius)
31
JPH_ADD_ATTRIBUTE(CylinderShapeSettings, mConvexRadius)
32
}
33
34
// Approximation of top face with 8 vertices
35
static const Vec3 cCylinderTopFace[] =
36
{
37
Vec3(0.0f, 1.0f, 1.0f),
38
Vec3(0.707106769f, 1.0f, 0.707106769f),
39
Vec3(1.0f, 1.0f, 0.0f),
40
Vec3(0.707106769f, 1.0f, -0.707106769f),
41
Vec3(-0.0f, 1.0f, -1.0f),
42
Vec3(-0.707106769f, 1.0f, -0.707106769f),
43
Vec3(-1.0f, 1.0f, 0.0f),
44
Vec3(-0.707106769f, 1.0f, 0.707106769f)
45
};
46
47
static const StaticArray<Vec3, 96> sUnitCylinderTriangles = []() {
48
StaticArray<Vec3, 96> verts;
49
50
const Vec3 bottom_offset(0.0f, -2.0f, 0.0f);
51
52
int num_verts = sizeof(cCylinderTopFace) / sizeof(Vec3);
53
for (int i = 0; i < num_verts; ++i)
54
{
55
Vec3 t1 = cCylinderTopFace[i];
56
Vec3 t2 = cCylinderTopFace[(i + 1) % num_verts];
57
Vec3 b1 = cCylinderTopFace[i] + bottom_offset;
58
Vec3 b2 = cCylinderTopFace[(i + 1) % num_verts] + bottom_offset;
59
60
// Top
61
verts.emplace_back(0.0f, 1.0f, 0.0f);
62
verts.push_back(t1);
63
verts.push_back(t2);
64
65
// Bottom
66
verts.emplace_back(0.0f, -1.0f, 0.0f);
67
verts.push_back(b2);
68
verts.push_back(b1);
69
70
// Side
71
verts.push_back(t1);
72
verts.push_back(b1);
73
verts.push_back(t2);
74
75
verts.push_back(t2);
76
verts.push_back(b1);
77
verts.push_back(b2);
78
}
79
80
return verts;
81
}();
82
83
ShapeSettings::ShapeResult CylinderShapeSettings::Create() const
84
{
85
if (mCachedResult.IsEmpty())
86
Ref<Shape> shape = new CylinderShape(*this, mCachedResult);
87
return mCachedResult;
88
}
89
90
CylinderShape::CylinderShape(const CylinderShapeSettings &inSettings, ShapeResult &outResult) :
91
ConvexShape(EShapeSubType::Cylinder, inSettings, outResult),
92
mHalfHeight(inSettings.mHalfHeight),
93
mRadius(inSettings.mRadius),
94
mConvexRadius(inSettings.mConvexRadius)
95
{
96
if (inSettings.mHalfHeight < inSettings.mConvexRadius)
97
{
98
outResult.SetError("Invalid height");
99
return;
100
}
101
102
if (inSettings.mRadius < inSettings.mConvexRadius)
103
{
104
outResult.SetError("Invalid radius");
105
return;
106
}
107
108
if (inSettings.mConvexRadius < 0.0f)
109
{
110
outResult.SetError("Invalid convex radius");
111
return;
112
}
113
114
outResult.Set(this);
115
}
116
117
CylinderShape::CylinderShape(float inHalfHeight, float inRadius, float inConvexRadius, const PhysicsMaterial *inMaterial) :
118
ConvexShape(EShapeSubType::Cylinder, inMaterial),
119
mHalfHeight(inHalfHeight),
120
mRadius(inRadius),
121
mConvexRadius(inConvexRadius)
122
{
123
JPH_ASSERT(inHalfHeight >= inConvexRadius);
124
JPH_ASSERT(inRadius >= inConvexRadius);
125
JPH_ASSERT(inConvexRadius >= 0.0f);
126
}
127
128
class CylinderShape::Cylinder final : public Support
129
{
130
public:
131
Cylinder(float inHalfHeight, float inRadius, float inConvexRadius) :
132
mHalfHeight(inHalfHeight),
133
mRadius(inRadius),
134
mConvexRadius(inConvexRadius)
135
{
136
static_assert(sizeof(Cylinder) <= sizeof(SupportBuffer), "Buffer size too small");
137
JPH_ASSERT(IsAligned(this, alignof(Cylinder)));
138
}
139
140
virtual Vec3 GetSupport(Vec3Arg inDirection) const override
141
{
142
// Support mapping, taken from:
143
// A Fast and Robust GJK Implementation for Collision Detection of Convex Objects - Gino van den Bergen
144
// page 8
145
float x = inDirection.GetX(), y = inDirection.GetY(), z = inDirection.GetZ();
146
float o = sqrt(Square(x) + Square(z));
147
if (o > 0.0f)
148
return Vec3((mRadius * x) / o, Sign(y) * mHalfHeight, (mRadius * z) / o);
149
else
150
return Vec3(0, Sign(y) * mHalfHeight, 0);
151
}
152
153
virtual float GetConvexRadius() const override
154
{
155
return mConvexRadius;
156
}
157
158
private:
159
float mHalfHeight;
160
float mRadius;
161
float mConvexRadius;
162
};
163
164
const ConvexShape::Support *CylinderShape::GetSupportFunction(ESupportMode inMode, SupportBuffer &inBuffer, Vec3Arg inScale) const
165
{
166
JPH_ASSERT(IsValidScale(inScale));
167
168
// Get scaled cylinder
169
Vec3 abs_scale = inScale.Abs();
170
float scale_xz = abs_scale.GetX();
171
float scale_y = abs_scale.GetY();
172
float scaled_half_height = scale_y * mHalfHeight;
173
float scaled_radius = scale_xz * mRadius;
174
float scaled_convex_radius = ScaleHelpers::ScaleConvexRadius(mConvexRadius, inScale);
175
176
switch (inMode)
177
{
178
case ESupportMode::IncludeConvexRadius:
179
case ESupportMode::Default:
180
return new (&inBuffer) Cylinder(scaled_half_height, scaled_radius, 0.0f);
181
182
case ESupportMode::ExcludeConvexRadius:
183
return new (&inBuffer) Cylinder(scaled_half_height - scaled_convex_radius, scaled_radius - scaled_convex_radius, scaled_convex_radius);
184
}
185
186
JPH_ASSERT(false);
187
return nullptr;
188
}
189
190
void CylinderShape::GetSupportingFace(const SubShapeID &inSubShapeID, Vec3Arg inDirection, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform, SupportingFace &outVertices) const
191
{
192
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
193
JPH_ASSERT(IsValidScale(inScale));
194
195
// Get scaled cylinder
196
Vec3 abs_scale = inScale.Abs();
197
float scale_xz = abs_scale.GetX();
198
float scale_y = abs_scale.GetY();
199
float scaled_half_height = scale_y * mHalfHeight;
200
float scaled_radius = scale_xz * mRadius;
201
202
float x = inDirection.GetX(), y = inDirection.GetY(), z = inDirection.GetZ();
203
float xz_sq = Square(x) + Square(z);
204
float y_sq = Square(y);
205
206
// Check which component is bigger
207
if (xz_sq > y_sq)
208
{
209
// Hitting side
210
float f = -scaled_radius / sqrt(xz_sq);
211
float vx = x * f;
212
float vz = z * f;
213
outVertices.push_back(inCenterOfMassTransform * Vec3(vx, scaled_half_height, vz));
214
outVertices.push_back(inCenterOfMassTransform * Vec3(vx, -scaled_half_height, vz));
215
}
216
else
217
{
218
// Hitting top or bottom
219
220
// When the inDirection is more than 5 degrees from vertical, align the vertices so that 1 of the vertices
221
// points towards inDirection in the XZ plane. This ensures that we always have a vertex towards max penetration depth.
222
Mat44 transform = inCenterOfMassTransform;
223
if (xz_sq > 0.00765427f * y_sq)
224
{
225
Vec4 base_x = Vec4(x, 0, z, 0) / sqrt(xz_sq);
226
Vec4 base_z = base_x.Swizzle<SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_W>() * Vec4(-1, 0, 1, 0);
227
transform = transform * Mat44(base_x, Vec4(0, 1, 0, 0), base_z, Vec4(0, 0, 0, 1));
228
}
229
230
// Adjust for scale and height
231
Vec3 multiplier = y < 0.0f? Vec3(scaled_radius, scaled_half_height, scaled_radius) : Vec3(-scaled_radius, -scaled_half_height, scaled_radius);
232
transform = transform.PreScaled(multiplier);
233
234
for (const Vec3 &v : cCylinderTopFace)
235
outVertices.push_back(transform * v);
236
}
237
}
238
239
MassProperties CylinderShape::GetMassProperties() const
240
{
241
MassProperties p;
242
243
// Mass is surface of circle * height
244
float radius_sq = Square(mRadius);
245
float height = 2.0f * mHalfHeight;
246
p.mMass = JPH_PI * radius_sq * height * GetDensity();
247
248
// Inertia according to https://en.wikipedia.org/wiki/List_of_moments_of_inertia:
249
float inertia_y = radius_sq * p.mMass * 0.5f;
250
float inertia_x = inertia_y * 0.5f + p.mMass * height * height / 12.0f;
251
float inertia_z = inertia_x;
252
253
// Set inertia
254
p.mInertia = Mat44::sScale(Vec3(inertia_x, inertia_y, inertia_z));
255
256
return p;
257
}
258
259
Vec3 CylinderShape::GetSurfaceNormal(const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const
260
{
261
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
262
263
// Calculate distance to infinite cylinder surface
264
Vec3 local_surface_position_xz(inLocalSurfacePosition.GetX(), 0, inLocalSurfacePosition.GetZ());
265
float local_surface_position_xz_len = local_surface_position_xz.Length();
266
float distance_to_curved_surface = abs(local_surface_position_xz_len - mRadius);
267
268
// Calculate distance to top or bottom plane
269
float distance_to_top_or_bottom = abs(abs(inLocalSurfacePosition.GetY()) - mHalfHeight);
270
271
// Return normal according to closest surface
272
if (distance_to_curved_surface < distance_to_top_or_bottom)
273
return local_surface_position_xz / local_surface_position_xz_len;
274
else
275
return inLocalSurfacePosition.GetY() > 0.0f? Vec3::sAxisY() : -Vec3::sAxisY();
276
}
277
278
AABox CylinderShape::GetLocalBounds() const
279
{
280
Vec3 extent = Vec3(mRadius, mHalfHeight, mRadius);
281
return AABox(-extent, extent);
282
}
283
284
#ifdef JPH_DEBUG_RENDERER
285
void CylinderShape::Draw(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inUseMaterialColors, bool inDrawWireframe) const
286
{
287
DebugRenderer::EDrawMode draw_mode = inDrawWireframe? DebugRenderer::EDrawMode::Wireframe : DebugRenderer::EDrawMode::Solid;
288
inRenderer->DrawCylinder(inCenterOfMassTransform * Mat44::sScale(inScale.Abs()), mHalfHeight, mRadius, inUseMaterialColors? GetMaterial()->GetDebugColor() : inColor, DebugRenderer::ECastShadow::On, draw_mode);
289
}
290
#endif // JPH_DEBUG_RENDERER
291
292
bool CylinderShape::CastRay(const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const
293
{
294
// Test ray against capsule
295
float fraction = RayCylinder(inRay.mOrigin, inRay.mDirection, mHalfHeight, mRadius);
296
if (fraction < ioHit.mFraction)
297
{
298
ioHit.mFraction = fraction;
299
ioHit.mSubShapeID2 = inSubShapeIDCreator.GetID();
300
return true;
301
}
302
return false;
303
}
304
305
void CylinderShape::CollidePoint(Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter) const
306
{
307
// Test shape filter
308
if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
309
return;
310
311
// Check if the point is in the cylinder
312
if (abs(inPoint.GetY()) <= mHalfHeight // Within the height
313
&& Square(inPoint.GetX()) + Square(inPoint.GetZ()) <= Square(mRadius)) // Within the radius
314
ioCollector.AddHit({ TransformedShape::sGetBodyID(ioCollector.GetContext()), inSubShapeIDCreator.GetID() });
315
}
316
317
void CylinderShape::CollideSoftBodyVertices(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const CollideSoftBodyVertexIterator &inVertices, uint inNumVertices, int inCollidingShapeIndex) const
318
{
319
JPH_ASSERT(IsValidScale(inScale));
320
321
Mat44 inverse_transform = inCenterOfMassTransform.InversedRotationTranslation();
322
323
// Get scaled cylinder
324
Vec3 abs_scale = inScale.Abs();
325
float half_height = abs_scale.GetY() * mHalfHeight;
326
float radius = abs_scale.GetX() * mRadius;
327
328
for (CollideSoftBodyVertexIterator v = inVertices, sbv_end = inVertices + inNumVertices; v != sbv_end; ++v)
329
if (v.GetInvMass() > 0.0f)
330
{
331
Vec3 local_pos = inverse_transform * v.GetPosition();
332
333
// Calculate penetration into side surface
334
Vec3 side_normal = local_pos;
335
side_normal.SetY(0.0f);
336
float side_normal_length = side_normal.Length();
337
float side_penetration = radius - side_normal_length;
338
339
// Calculate penetration into top or bottom plane
340
float top_penetration = half_height - abs(local_pos.GetY());
341
342
Vec3 point, normal;
343
if (side_penetration < 0.0f && top_penetration < 0.0f)
344
{
345
// We're outside the cylinder height and radius
346
point = side_normal * (radius / side_normal_length) + Vec3(0, half_height * Sign(local_pos.GetY()), 0);
347
normal = (local_pos - point).NormalizedOr(Vec3::sAxisY());
348
}
349
else if (side_penetration < top_penetration)
350
{
351
// Side surface is closest
352
normal = side_normal_length > 0.0f? side_normal / side_normal_length : Vec3::sAxisX();
353
point = radius * normal;
354
}
355
else
356
{
357
// Top or bottom plane is closest
358
normal = Vec3(0, Sign(local_pos.GetY()), 0);
359
point = half_height * normal;
360
}
361
362
// Calculate penetration
363
Plane plane = Plane::sFromPointAndNormal(point, normal);
364
float penetration = -plane.SignedDistance(local_pos);
365
if (v.UpdatePenetration(penetration))
366
v.SetCollision(plane.GetTransformed(inCenterOfMassTransform), inCollidingShapeIndex);
367
}
368
}
369
370
void CylinderShape::GetTrianglesStart(GetTrianglesContext &ioContext, const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) const
371
{
372
Mat44 unit_cylinder_transform(Vec4(mRadius, 0, 0, 0), Vec4(0, mHalfHeight, 0, 0), Vec4(0, 0, mRadius, 0), Vec4(0, 0, 0, 1));
373
new (&ioContext) GetTrianglesContextVertexList(inPositionCOM, inRotation, inScale, unit_cylinder_transform, sUnitCylinderTriangles.data(), sUnitCylinderTriangles.size(), GetMaterial());
374
}
375
376
int CylinderShape::GetTrianglesNext(GetTrianglesContext &ioContext, int inMaxTrianglesRequested, Float3 *outTriangleVertices, const PhysicsMaterial **outMaterials) const
377
{
378
return ((GetTrianglesContextVertexList &)ioContext).GetTrianglesNext(inMaxTrianglesRequested, outTriangleVertices, outMaterials);
379
}
380
381
void CylinderShape::SaveBinaryState(StreamOut &inStream) const
382
{
383
ConvexShape::SaveBinaryState(inStream);
384
385
inStream.Write(mHalfHeight);
386
inStream.Write(mRadius);
387
inStream.Write(mConvexRadius);
388
}
389
390
void CylinderShape::RestoreBinaryState(StreamIn &inStream)
391
{
392
ConvexShape::RestoreBinaryState(inStream);
393
394
inStream.Read(mHalfHeight);
395
inStream.Read(mRadius);
396
inStream.Read(mConvexRadius);
397
}
398
399
bool CylinderShape::IsValidScale(Vec3Arg inScale) const
400
{
401
return ConvexShape::IsValidScale(inScale) && ScaleHelpers::IsUniformScaleXZ(inScale.Abs());
402
}
403
404
Vec3 CylinderShape::MakeScaleValid(Vec3Arg inScale) const
405
{
406
Vec3 scale = ScaleHelpers::MakeNonZeroScale(inScale);
407
408
return scale.GetSign() * ScaleHelpers::MakeUniformScaleXZ(scale.Abs());
409
}
410
411
void CylinderShape::sRegister()
412
{
413
ShapeFunctions &f = ShapeFunctions::sGet(EShapeSubType::Cylinder);
414
f.mConstruct = []() -> Shape * { return new CylinderShape; };
415
f.mColor = Color::sGreen;
416
}
417
418
JPH_NAMESPACE_END
419
420