Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/jolt_physics/Jolt/Physics/Constraints/ConstraintPart/AngleConstraintPart.h
9913 views
1
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
2
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
3
// SPDX-License-Identifier: MIT
4
5
#pragma once
6
7
#include <Jolt/Physics/Body/Body.h>
8
#include <Jolt/Physics/Constraints/ConstraintPart/SpringPart.h>
9
#include <Jolt/Physics/Constraints/SpringSettings.h>
10
#include <Jolt/Physics/StateRecorder.h>
11
12
JPH_NAMESPACE_BEGIN
13
14
/// Constraint that constrains rotation along 1 axis
15
///
16
/// Based on: "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, see section 2.4.5
17
///
18
/// Constraint equation (eq 108):
19
///
20
/// \f[C = \theta(t) - \theta_{min}\f]
21
///
22
/// Jacobian (eq 109):
23
///
24
/// \f[J = \begin{bmatrix}0 & -a^T & 0 & a^T\end{bmatrix}\f]
25
///
26
/// Used terms (here and below, everything in world space):\n
27
/// a = axis around which rotation is constrained (normalized).\n
28
/// x1, x2 = center of mass for the bodies.\n
29
/// v = [v1, w1, v2, w2].\n
30
/// v1, v2 = linear velocity of body 1 and 2.\n
31
/// w1, w2 = angular velocity of body 1 and 2.\n
32
/// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
33
/// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
34
/// b = velocity bias.\n
35
/// \f$\beta\f$ = baumgarte constant.
36
class AngleConstraintPart
37
{
38
/// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
39
JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, float inLambda) const
40
{
41
// Apply impulse if delta is not zero
42
if (inLambda != 0.0f)
43
{
44
// Calculate velocity change due to constraint
45
//
46
// Impulse:
47
// P = J^T lambda
48
//
49
// Euler velocity integration:
50
// v' = v + M^-1 P
51
if (ioBody1.IsDynamic())
52
ioBody1.GetMotionProperties()->SubAngularVelocityStep(inLambda * mInvI1_Axis);
53
if (ioBody2.IsDynamic())
54
ioBody2.GetMotionProperties()->AddAngularVelocityStep(inLambda * mInvI2_Axis);
55
return true;
56
}
57
58
return false;
59
}
60
61
/// Internal helper function to calculate the inverse effective mass
62
JPH_INLINE float CalculateInverseEffectiveMass(const Body &inBody1, const Body &inBody2, Vec3Arg inWorldSpaceAxis)
63
{
64
JPH_ASSERT(inWorldSpaceAxis.IsNormalized(1.0e-4f));
65
66
// Calculate properties used below
67
mInvI1_Axis = inBody1.IsDynamic()? inBody1.GetMotionProperties()->MultiplyWorldSpaceInverseInertiaByVector(inBody1.GetRotation(), inWorldSpaceAxis) : Vec3::sZero();
68
mInvI2_Axis = inBody2.IsDynamic()? inBody2.GetMotionProperties()->MultiplyWorldSpaceInverseInertiaByVector(inBody2.GetRotation(), inWorldSpaceAxis) : Vec3::sZero();
69
70
// Calculate inverse effective mass: K = J M^-1 J^T
71
return inWorldSpaceAxis.Dot(mInvI1_Axis + mInvI2_Axis);
72
}
73
74
public:
75
/// Calculate properties used during the functions below
76
/// @param inBody1 The first body that this constraint is attached to
77
/// @param inBody2 The second body that this constraint is attached to
78
/// @param inWorldSpaceAxis The axis of rotation along which the constraint acts (normalized)
79
/// Set the following terms to zero if you don't want to drive the constraint to zero with a spring:
80
/// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b
81
inline void CalculateConstraintProperties(const Body &inBody1, const Body &inBody2, Vec3Arg inWorldSpaceAxis, float inBias = 0.0f)
82
{
83
float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inBody2, inWorldSpaceAxis);
84
85
if (inv_effective_mass == 0.0f)
86
Deactivate();
87
else
88
{
89
mEffectiveMass = 1.0f / inv_effective_mass;
90
mSpringPart.CalculateSpringPropertiesWithBias(inBias);
91
}
92
}
93
94
/// Calculate properties used during the functions below
95
/// @param inDeltaTime Time step
96
/// @param inBody1 The first body that this constraint is attached to
97
/// @param inBody2 The second body that this constraint is attached to
98
/// @param inWorldSpaceAxis The axis of rotation along which the constraint acts (normalized)
99
/// Set the following terms to zero if you don't want to drive the constraint to zero with a spring:
100
/// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b
101
/// @param inC Value of the constraint equation (C)
102
/// @param inFrequency Oscillation frequency (Hz)
103
/// @param inDamping Damping factor (0 = no damping, 1 = critical damping)
104
inline void CalculateConstraintPropertiesWithFrequencyAndDamping(float inDeltaTime, const Body &inBody1, const Body &inBody2, Vec3Arg inWorldSpaceAxis, float inBias, float inC, float inFrequency, float inDamping)
105
{
106
float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inBody2, inWorldSpaceAxis);
107
108
if (inv_effective_mass == 0.0f)
109
Deactivate();
110
else
111
mSpringPart.CalculateSpringPropertiesWithFrequencyAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inFrequency, inDamping, mEffectiveMass);
112
}
113
114
/// Calculate properties used during the functions below
115
/// @param inDeltaTime Time step
116
/// @param inBody1 The first body that this constraint is attached to
117
/// @param inBody2 The second body that this constraint is attached to
118
/// @param inWorldSpaceAxis The axis of rotation along which the constraint acts (normalized)
119
/// Set the following terms to zero if you don't want to drive the constraint to zero with a spring:
120
/// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b
121
/// @param inC Value of the constraint equation (C)
122
/// @param inStiffness Spring stiffness k.
123
/// @param inDamping Spring damping coefficient c.
124
inline void CalculateConstraintPropertiesWithStiffnessAndDamping(float inDeltaTime, const Body &inBody1, const Body &inBody2, Vec3Arg inWorldSpaceAxis, float inBias, float inC, float inStiffness, float inDamping)
125
{
126
float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inBody2, inWorldSpaceAxis);
127
128
if (inv_effective_mass == 0.0f)
129
Deactivate();
130
else
131
mSpringPart.CalculateSpringPropertiesWithStiffnessAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inStiffness, inDamping, mEffectiveMass);
132
}
133
134
/// Selects one of the above functions based on the spring settings
135
inline void CalculateConstraintPropertiesWithSettings(float inDeltaTime, const Body &inBody1, const Body &inBody2, Vec3Arg inWorldSpaceAxis, float inBias, float inC, const SpringSettings &inSpringSettings)
136
{
137
float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inBody2, inWorldSpaceAxis);
138
139
if (inv_effective_mass == 0.0f)
140
Deactivate();
141
else if (inSpringSettings.mMode == ESpringMode::FrequencyAndDamping)
142
mSpringPart.CalculateSpringPropertiesWithFrequencyAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inSpringSettings.mFrequency, inSpringSettings.mDamping, mEffectiveMass);
143
else
144
mSpringPart.CalculateSpringPropertiesWithStiffnessAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inSpringSettings.mStiffness, inSpringSettings.mDamping, mEffectiveMass);
145
}
146
147
/// Deactivate this constraint
148
inline void Deactivate()
149
{
150
mEffectiveMass = 0.0f;
151
mTotalLambda = 0.0f;
152
}
153
154
/// Check if constraint is active
155
inline bool IsActive() const
156
{
157
return mEffectiveMass != 0.0f;
158
}
159
160
/// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
161
/// @param ioBody1 The first body that this constraint is attached to
162
/// @param ioBody2 The second body that this constraint is attached to
163
/// @param inWarmStartImpulseRatio Ratio of new step to old time step (dt_new / dt_old) for scaling the lagrange multiplier of the previous frame
164
inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
165
{
166
mTotalLambda *= inWarmStartImpulseRatio;
167
ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
168
}
169
170
/// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
171
/// @param ioBody1 The first body that this constraint is attached to
172
/// @param ioBody2 The second body that this constraint is attached to
173
/// @param inWorldSpaceAxis The axis of rotation along which the constraint acts (normalized)
174
/// @param inMinLambda Minimum angular impulse to apply (N m s)
175
/// @param inMaxLambda Maximum angular impulse to apply (N m s)
176
inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inWorldSpaceAxis, float inMinLambda, float inMaxLambda)
177
{
178
// Lagrange multiplier is:
179
//
180
// lambda = -K^-1 (J v + b)
181
float lambda = mEffectiveMass * (inWorldSpaceAxis.Dot(ioBody1.GetAngularVelocity() - ioBody2.GetAngularVelocity()) - mSpringPart.GetBias(mTotalLambda));
182
float new_lambda = Clamp(mTotalLambda + lambda, inMinLambda, inMaxLambda); // Clamp impulse
183
lambda = new_lambda - mTotalLambda; // Lambda potentially got clamped, calculate the new impulse to apply
184
mTotalLambda = new_lambda; // Store accumulated impulse
185
186
return ApplyVelocityStep(ioBody1, ioBody2, lambda);
187
}
188
189
/// Return lagrange multiplier
190
float GetTotalLambda() const
191
{
192
return mTotalLambda;
193
}
194
195
/// Iteratively update the position constraint. Makes sure C(...) == 0.
196
/// @param ioBody1 The first body that this constraint is attached to
197
/// @param ioBody2 The second body that this constraint is attached to
198
/// @param inC Value of the constraint equation (C)
199
/// @param inBaumgarte Baumgarte constant (fraction of the error to correct)
200
inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inC, float inBaumgarte) const
201
{
202
// Only apply position constraint when the constraint is hard, otherwise the velocity bias will fix the constraint
203
if (inC != 0.0f && !mSpringPart.IsActive())
204
{
205
// Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
206
//
207
// lambda = -K^-1 * beta / dt * C
208
//
209
// We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
210
float lambda = -mEffectiveMass * inBaumgarte * inC;
211
212
// Directly integrate velocity change for one time step
213
//
214
// Euler velocity integration:
215
// dv = M^-1 P
216
//
217
// Impulse:
218
// P = J^T lambda
219
//
220
// Euler position integration:
221
// x' = x + dv * dt
222
//
223
// Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
224
// Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
225
// stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
226
// integrate + a position integrate and then discard the velocity change.
227
if (ioBody1.IsDynamic())
228
ioBody1.SubRotationStep(lambda * mInvI1_Axis);
229
if (ioBody2.IsDynamic())
230
ioBody2.AddRotationStep(lambda * mInvI2_Axis);
231
return true;
232
}
233
234
return false;
235
}
236
237
/// Save state of this constraint part
238
void SaveState(StateRecorder &inStream) const
239
{
240
inStream.Write(mTotalLambda);
241
}
242
243
/// Restore state of this constraint part
244
void RestoreState(StateRecorder &inStream)
245
{
246
inStream.Read(mTotalLambda);
247
}
248
249
private:
250
Vec3 mInvI1_Axis;
251
Vec3 mInvI2_Axis;
252
float mEffectiveMass = 0.0f;
253
SpringPart mSpringPart;
254
float mTotalLambda = 0.0f;
255
};
256
257
JPH_NAMESPACE_END
258
259