Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/jolt_physics/Jolt/Physics/Constraints/ConstraintPart/HingeRotationConstraintPart.h
9913 views
1
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
2
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
3
// SPDX-License-Identifier: MIT
4
5
#pragma once
6
7
#include <Jolt/Physics/Body/Body.h>
8
#include <Jolt/Physics/StateRecorder.h>
9
#include <Jolt/Math/Vector.h>
10
#include <Jolt/Math/Matrix.h>
11
12
JPH_NAMESPACE_BEGIN
13
14
/**
15
Constrains rotation around 2 axis so that it only allows rotation around 1 axis
16
17
Based on: "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.4.1
18
19
Constraint equation (eq 87):
20
21
\f[C = \begin{bmatrix}a_1 \cdot b_2 \\ a_1 \cdot c_2\end{bmatrix}\f]
22
23
Jacobian (eq 90):
24
25
\f[J = \begin{bmatrix}
26
0 & -b_2 \times a_1 & 0 & b_2 \times a_1 \\
27
0 & -c_2 \times a_1 & 0 & c2 \times a_1
28
\end{bmatrix}\f]
29
30
Used terms (here and below, everything in world space):\n
31
a1 = hinge axis on body 1.\n
32
b2, c2 = axis perpendicular to hinge axis on body 2.\n
33
x1, x2 = center of mass for the bodies.\n
34
v = [v1, w1, v2, w2].\n
35
v1, v2 = linear velocity of body 1 and 2.\n
36
w1, w2 = angular velocity of body 1 and 2.\n
37
M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
38
\f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
39
b = velocity bias.\n
40
\f$\beta\f$ = baumgarte constant.\n
41
E = identity matrix.
42
**/
43
class HingeRotationConstraintPart
44
{
45
public:
46
using Vec2 = Vector<2>;
47
using Mat22 = Matrix<2, 2>;
48
49
private:
50
/// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
51
JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, const Vec2 &inLambda) const
52
{
53
// Apply impulse if delta is not zero
54
if (!inLambda.IsZero())
55
{
56
// Calculate velocity change due to constraint
57
//
58
// Impulse:
59
// P = J^T lambda
60
//
61
// Euler velocity integration:
62
// v' = v + M^-1 P
63
Vec3 impulse = mB2xA1 * inLambda[0] + mC2xA1 * inLambda[1];
64
if (ioBody1.IsDynamic())
65
ioBody1.GetMotionProperties()->SubAngularVelocityStep(mInvI1.Multiply3x3(impulse));
66
if (ioBody2.IsDynamic())
67
ioBody2.GetMotionProperties()->AddAngularVelocityStep(mInvI2.Multiply3x3(impulse));
68
return true;
69
}
70
71
return false;
72
}
73
74
public:
75
/// Calculate properties used during the functions below
76
inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inWorldSpaceHingeAxis1, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inWorldSpaceHingeAxis2)
77
{
78
JPH_ASSERT(inWorldSpaceHingeAxis1.IsNormalized(1.0e-5f));
79
JPH_ASSERT(inWorldSpaceHingeAxis2.IsNormalized(1.0e-5f));
80
81
// Calculate hinge axis in world space
82
mA1 = inWorldSpaceHingeAxis1;
83
Vec3 a2 = inWorldSpaceHingeAxis2;
84
float dot = mA1.Dot(a2);
85
if (dot <= 1.0e-3f)
86
{
87
// World space axes are more than 90 degrees apart, get a perpendicular vector in the plane formed by mA1 and a2 as hinge axis until the rotation is less than 90 degrees
88
Vec3 perp = a2 - dot * mA1;
89
if (perp.LengthSq() < 1.0e-6f)
90
{
91
// mA1 ~ -a2, take random perpendicular
92
perp = mA1.GetNormalizedPerpendicular();
93
}
94
95
// Blend in a little bit from mA1 so we're less than 90 degrees apart
96
a2 = (0.99f * perp.Normalized() + 0.01f * mA1).Normalized();
97
}
98
mB2 = a2.GetNormalizedPerpendicular();
99
mC2 = a2.Cross(mB2);
100
101
// Calculate properties used during constraint solving
102
mInvI1 = inBody1.IsDynamic()? inBody1.GetMotionProperties()->GetInverseInertiaForRotation(inRotation1) : Mat44::sZero();
103
mInvI2 = inBody2.IsDynamic()? inBody2.GetMotionProperties()->GetInverseInertiaForRotation(inRotation2) : Mat44::sZero();
104
mB2xA1 = mB2.Cross(mA1);
105
mC2xA1 = mC2.Cross(mA1);
106
107
// Calculate effective mass: K^-1 = (J M^-1 J^T)^-1
108
Mat44 summed_inv_inertia = mInvI1 + mInvI2;
109
Mat22 inv_effective_mass;
110
inv_effective_mass(0, 0) = mB2xA1.Dot(summed_inv_inertia.Multiply3x3(mB2xA1));
111
inv_effective_mass(0, 1) = mB2xA1.Dot(summed_inv_inertia.Multiply3x3(mC2xA1));
112
inv_effective_mass(1, 0) = mC2xA1.Dot(summed_inv_inertia.Multiply3x3(mB2xA1));
113
inv_effective_mass(1, 1) = mC2xA1.Dot(summed_inv_inertia.Multiply3x3(mC2xA1));
114
if (!mEffectiveMass.SetInversed(inv_effective_mass))
115
Deactivate();
116
}
117
118
/// Deactivate this constraint
119
inline void Deactivate()
120
{
121
mEffectiveMass.SetZero();
122
mTotalLambda.SetZero();
123
}
124
125
/// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
126
inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
127
{
128
mTotalLambda *= inWarmStartImpulseRatio;
129
ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
130
}
131
132
/// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
133
inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2)
134
{
135
// Calculate lagrange multiplier:
136
//
137
// lambda = -K^-1 (J v + b)
138
Vec3 delta_ang = ioBody1.GetAngularVelocity() - ioBody2.GetAngularVelocity();
139
Vec2 jv;
140
jv[0] = mB2xA1.Dot(delta_ang);
141
jv[1] = mC2xA1.Dot(delta_ang);
142
Vec2 lambda = mEffectiveMass * jv;
143
144
// Store accumulated lambda
145
mTotalLambda += lambda;
146
147
return ApplyVelocityStep(ioBody1, ioBody2, lambda);
148
}
149
150
/// Iteratively update the position constraint. Makes sure C(...) = 0.
151
inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inBaumgarte) const
152
{
153
// Constraint needs Axis of body 1 perpendicular to both B and C from body 2 (which are both perpendicular to the Axis of body 2)
154
Vec2 c;
155
c[0] = mA1.Dot(mB2);
156
c[1] = mA1.Dot(mC2);
157
if (!c.IsZero())
158
{
159
// Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
160
//
161
// lambda = -K^-1 * beta / dt * C
162
//
163
// We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
164
Vec2 lambda = -inBaumgarte * (mEffectiveMass * c);
165
166
// Directly integrate velocity change for one time step
167
//
168
// Euler velocity integration:
169
// dv = M^-1 P
170
//
171
// Impulse:
172
// P = J^T lambda
173
//
174
// Euler position integration:
175
// x' = x + dv * dt
176
//
177
// Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
178
// Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
179
// stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
180
// integrate + a position integrate and then discard the velocity change.
181
Vec3 impulse = mB2xA1 * lambda[0] + mC2xA1 * lambda[1];
182
if (ioBody1.IsDynamic())
183
ioBody1.SubRotationStep(mInvI1.Multiply3x3(impulse));
184
if (ioBody2.IsDynamic())
185
ioBody2.AddRotationStep(mInvI2.Multiply3x3(impulse));
186
return true;
187
}
188
189
return false;
190
}
191
192
/// Return lagrange multiplier
193
const Vec2 & GetTotalLambda() const
194
{
195
return mTotalLambda;
196
}
197
198
/// Save state of this constraint part
199
void SaveState(StateRecorder &inStream) const
200
{
201
inStream.Write(mTotalLambda);
202
}
203
204
/// Restore state of this constraint part
205
void RestoreState(StateRecorder &inStream)
206
{
207
inStream.Read(mTotalLambda);
208
}
209
210
private:
211
Vec3 mA1; ///< World space hinge axis for body 1
212
Vec3 mB2; ///< World space perpendiculars of hinge axis for body 2
213
Vec3 mC2;
214
Mat44 mInvI1;
215
Mat44 mInvI2;
216
Vec3 mB2xA1;
217
Vec3 mC2xA1;
218
Mat22 mEffectiveMass;
219
Vec2 mTotalLambda { Vec2::sZero() };
220
};
221
222
JPH_NAMESPACE_END
223
224