Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/jolt_physics/Jolt/Physics/Constraints/ConstraintPart/RackAndPinionConstraintPart.h
9913 views
1
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
2
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
3
// SPDX-License-Identifier: MIT
4
5
#pragma once
6
7
#include <Jolt/Physics/Body/Body.h>
8
#include <Jolt/Physics/StateRecorder.h>
9
10
JPH_NAMESPACE_BEGIN
11
12
/// Constraint that constrains a rotation to a translation
13
///
14
/// Constraint equation:
15
///
16
/// C = Theta(t) - r d(t)
17
///
18
/// Derivative:
19
///
20
/// d/dt C = 0
21
/// <=> w1 . a - r v2 . b = 0
22
///
23
/// Jacobian:
24
///
25
/// \f[J = \begin{bmatrix}0 & a^T & -r b^T & 0\end{bmatrix}\f]
26
///
27
/// Used terms (here and below, everything in world space):\n
28
/// a = axis around which body 1 rotates (normalized).\n
29
/// b = axis along which body 2 slides (normalized).\n
30
/// Theta(t) = rotation around a of body 1.\n
31
/// d(t) = distance body 2 slides.\n
32
/// r = ratio between rotation and translation.\n
33
/// v = [v1, w1, v2, w2].\n
34
/// v1, v2 = linear velocity of body 1 and 2.\n
35
/// w1, w2 = angular velocity of body 1 and 2.\n
36
/// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
37
/// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
38
/// \f$\beta\f$ = baumgarte constant.
39
class RackAndPinionConstraintPart
40
{
41
/// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
42
JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, float inLambda) const
43
{
44
// Apply impulse if delta is not zero
45
if (inLambda != 0.0f)
46
{
47
// Calculate velocity change due to constraint
48
//
49
// Impulse:
50
// P = J^T lambda
51
//
52
// Euler velocity integration:
53
// v' = v + M^-1 P
54
ioBody1.GetMotionProperties()->AddAngularVelocityStep(inLambda * mInvI1_A);
55
ioBody2.GetMotionProperties()->SubLinearVelocityStep(inLambda * mRatio_InvM2_B);
56
return true;
57
}
58
59
return false;
60
}
61
62
public:
63
/// Calculate properties used during the functions below
64
/// @param inBody1 The first body that this constraint is attached to
65
/// @param inBody2 The second body that this constraint is attached to
66
/// @param inWorldSpaceHingeAxis The axis around which body 1 rotates
67
/// @param inWorldSpaceSliderAxis The axis along which body 2 slides
68
/// @param inRatio The ratio between rotation and translation
69
inline void CalculateConstraintProperties(const Body &inBody1, Vec3Arg inWorldSpaceHingeAxis, const Body &inBody2, Vec3Arg inWorldSpaceSliderAxis, float inRatio)
70
{
71
JPH_ASSERT(inWorldSpaceHingeAxis.IsNormalized(1.0e-4f));
72
JPH_ASSERT(inWorldSpaceSliderAxis.IsNormalized(1.0e-4f));
73
74
// Calculate: I1^-1 a
75
mInvI1_A = inBody1.GetMotionProperties()->MultiplyWorldSpaceInverseInertiaByVector(inBody1.GetRotation(), inWorldSpaceHingeAxis);
76
77
// Calculate: r/m2 b
78
float inv_m2 = inBody2.GetMotionProperties()->GetInverseMass();
79
mRatio_InvM2_B = inRatio * inv_m2 * inWorldSpaceSliderAxis;
80
81
// K^-1 = 1 / (J M^-1 J^T) = 1 / (a^T I1^-1 a + 1/m2 * r^2 * b . b)
82
float inv_effective_mass = (inWorldSpaceHingeAxis.Dot(mInvI1_A) + inv_m2 * Square(inRatio));
83
if (inv_effective_mass == 0.0f)
84
Deactivate();
85
else
86
mEffectiveMass = 1.0f / inv_effective_mass;
87
}
88
89
/// Deactivate this constraint
90
inline void Deactivate()
91
{
92
mEffectiveMass = 0.0f;
93
mTotalLambda = 0.0f;
94
}
95
96
/// Check if constraint is active
97
inline bool IsActive() const
98
{
99
return mEffectiveMass != 0.0f;
100
}
101
102
/// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
103
/// @param ioBody1 The first body that this constraint is attached to
104
/// @param ioBody2 The second body that this constraint is attached to
105
/// @param inWarmStartImpulseRatio Ratio of new step to old time step (dt_new / dt_old) for scaling the lagrange multiplier of the previous frame
106
inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
107
{
108
mTotalLambda *= inWarmStartImpulseRatio;
109
ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
110
}
111
112
/// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
113
/// @param ioBody1 The first body that this constraint is attached to
114
/// @param ioBody2 The second body that this constraint is attached to
115
/// @param inWorldSpaceHingeAxis The axis around which body 1 rotates
116
/// @param inWorldSpaceSliderAxis The axis along which body 2 slides
117
/// @param inRatio The ratio between rotation and translation
118
inline bool SolveVelocityConstraint(Body &ioBody1, Vec3Arg inWorldSpaceHingeAxis, Body &ioBody2, Vec3Arg inWorldSpaceSliderAxis, float inRatio)
119
{
120
// Lagrange multiplier is:
121
//
122
// lambda = -K^-1 (J v + b)
123
float lambda = mEffectiveMass * (inRatio * inWorldSpaceSliderAxis.Dot(ioBody2.GetLinearVelocity()) - inWorldSpaceHingeAxis.Dot(ioBody1.GetAngularVelocity()));
124
mTotalLambda += lambda; // Store accumulated impulse
125
126
return ApplyVelocityStep(ioBody1, ioBody2, lambda);
127
}
128
129
/// Return lagrange multiplier
130
float GetTotalLambda() const
131
{
132
return mTotalLambda;
133
}
134
135
/// Iteratively update the position constraint. Makes sure C(...) == 0.
136
/// @param ioBody1 The first body that this constraint is attached to
137
/// @param ioBody2 The second body that this constraint is attached to
138
/// @param inC Value of the constraint equation (C)
139
/// @param inBaumgarte Baumgarte constant (fraction of the error to correct)
140
inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inC, float inBaumgarte) const
141
{
142
// Only apply position constraint when the constraint is hard, otherwise the velocity bias will fix the constraint
143
if (inC != 0.0f)
144
{
145
// Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
146
//
147
// lambda = -K^-1 * beta / dt * C
148
//
149
// We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
150
float lambda = -mEffectiveMass * inBaumgarte * inC;
151
152
// Directly integrate velocity change for one time step
153
//
154
// Euler velocity integration:
155
// dv = M^-1 P
156
//
157
// Impulse:
158
// P = J^T lambda
159
//
160
// Euler position integration:
161
// x' = x + dv * dt
162
//
163
// Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
164
// Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
165
// stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
166
// integrate + a position integrate and then discard the velocity change.
167
if (ioBody1.IsDynamic())
168
ioBody1.AddRotationStep(lambda * mInvI1_A);
169
if (ioBody2.IsDynamic())
170
ioBody2.SubPositionStep(lambda * mRatio_InvM2_B);
171
return true;
172
}
173
174
return false;
175
}
176
177
/// Save state of this constraint part
178
void SaveState(StateRecorder &inStream) const
179
{
180
inStream.Write(mTotalLambda);
181
}
182
183
/// Restore state of this constraint part
184
void RestoreState(StateRecorder &inStream)
185
{
186
inStream.Read(mTotalLambda);
187
}
188
189
private:
190
Vec3 mInvI1_A;
191
Vec3 mRatio_InvM2_B;
192
float mEffectiveMass = 0.0f;
193
float mTotalLambda = 0.0f;
194
};
195
196
JPH_NAMESPACE_END
197
198