Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/jolt_physics/Jolt/Physics/Constraints/ConstraintPart/RotationQuatConstraintPart.h
9913 views
1
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
2
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
3
// SPDX-License-Identifier: MIT
4
5
#pragma once
6
7
#include <Jolt/Physics/Body/Body.h>
8
#include <Jolt/Physics/StateRecorder.h>
9
10
JPH_NAMESPACE_BEGIN
11
12
/// Quaternion based constraint that constrains rotation around all axis so that only translation is allowed.
13
///
14
/// NOTE: This constraint part is more expensive than the RotationEulerConstraintPart and slightly more correct since
15
/// RotationEulerConstraintPart::SolvePositionConstraint contains an approximation. In practice the difference
16
/// is small, so the RotationEulerConstraintPart is probably the better choice.
17
///
18
/// Rotation is fixed between bodies like this:
19
///
20
/// q2 = q1 r0
21
///
22
/// Where:
23
/// q1, q2 = world space quaternions representing rotation of body 1 and 2.
24
/// r0 = initial rotation between bodies in local space of body 1, this can be calculated by:
25
///
26
/// q20 = q10 r0
27
/// <=> r0 = q10^* q20
28
///
29
/// Where:
30
/// q10, q20 = initial world space rotations of body 1 and 2.
31
/// q10^* = conjugate of quaternion q10 (which is the same as the inverse for a unit quaternion)
32
///
33
/// We exclusively use the conjugate below:
34
///
35
/// r0^* = q20^* q10
36
///
37
/// The error in the rotation is (in local space of body 1):
38
///
39
/// q2 = q1 error r0
40
/// <=> error = q1^* q2 r0^*
41
///
42
/// The imaginary part of the quaternion represents the rotation axis * sin(angle / 2). The real part of the quaternion
43
/// does not add any additional information (we know the quaternion in normalized) and we're removing 3 degrees of freedom
44
/// so we want 3 parameters. Therefore we define the constraint equation like:
45
///
46
/// C = A q1^* q2 r0^* = 0
47
///
48
/// Where (if you write a quaternion as [real-part, i-part, j-part, k-part]):
49
///
50
/// [0, 1, 0, 0]
51
/// A = [0, 0, 1, 0]
52
/// [0, 0, 0, 1]
53
///
54
/// or in our case since we store a quaternion like [i-part, j-part, k-part, real-part]:
55
///
56
/// [1, 0, 0, 0]
57
/// A = [0, 1, 0, 0]
58
/// [0, 0, 1, 0]
59
///
60
/// Time derivative:
61
///
62
/// d/dt C = A (q1^* d/dt(q2) + d/dt(q1^*) q2) r0^*
63
/// = A (q1^* (1/2 W2 q2) + (1/2 W1 q1)^* q2) r0^*
64
/// = 1/2 A (q1^* W2 q2 + q1^* W1^* q2) r0^*
65
/// = 1/2 A (q1^* W2 q2 - q1^* W1 * q2) r0^*
66
/// = 1/2 A ML(q1^*) MR(q2 r0^*) (W2 - W1)
67
/// = 1/2 A ML(q1^*) MR(q2 r0^*) A^T (w2 - w1)
68
///
69
/// Where:
70
/// W1 = [0, w1], W2 = [0, w2] (converting angular velocity to imaginary part of quaternion).
71
/// w1, w2 = angular velocity of body 1 and 2.
72
/// d/dt(q) = 1/2 W q (time derivative of a quaternion).
73
/// W^* = -W (conjugate negates angular velocity as quaternion).
74
/// ML(q): 4x4 matrix so that q * p = ML(q) * p, where q and p are quaternions.
75
/// MR(p): 4x4 matrix so that q * p = MR(p) * q, where q and p are quaternions.
76
/// A^T: Transpose of A.
77
///
78
/// Jacobian:
79
///
80
/// J = [0, -1/2 A ML(q1^*) MR(q2 r0^*) A^T, 0, 1/2 A ML(q1^*) MR(q2 r0^*) A^T]
81
/// = [0, -JP, 0, JP]
82
///
83
/// Suggested reading:
84
/// - 3D Constraint Derivations for Impulse Solvers - Marijn Tamis
85
/// - Game Physics Pearls - Section 9 - Quaternion Based Constraints - Claude Lacoursiere
86
class RotationQuatConstraintPart
87
{
88
private:
89
/// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
90
JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inLambda) const
91
{
92
// Apply impulse if delta is not zero
93
if (inLambda != Vec3::sZero())
94
{
95
// Calculate velocity change due to constraint
96
//
97
// Impulse:
98
// P = J^T lambda
99
//
100
// Euler velocity integration:
101
// v' = v + M^-1 P
102
if (ioBody1.IsDynamic())
103
ioBody1.GetMotionProperties()->SubAngularVelocityStep(mInvI1_JPT.Multiply3x3(inLambda));
104
if (ioBody2.IsDynamic())
105
ioBody2.GetMotionProperties()->AddAngularVelocityStep(mInvI2_JPT.Multiply3x3(inLambda));
106
return true;
107
}
108
109
return false;
110
}
111
112
public:
113
/// Return inverse of initial rotation from body 1 to body 2 in body 1 space
114
static Quat sGetInvInitialOrientation(const Body &inBody1, const Body &inBody2)
115
{
116
// q20 = q10 r0
117
// <=> r0 = q10^-1 q20
118
// <=> r0^-1 = q20^-1 q10
119
//
120
// where:
121
//
122
// q20 = initial orientation of body 2
123
// q10 = initial orientation of body 1
124
// r0 = initial rotation from body 1 to body 2
125
return inBody2.GetRotation().Conjugated() * inBody1.GetRotation();
126
}
127
128
/// Calculate properties used during the functions below
129
inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, const Body &inBody2, Mat44Arg inRotation2, QuatArg inInvInitialOrientation)
130
{
131
// Calculate: JP = 1/2 A ML(q1^*) MR(q2 r0^*) A^T
132
Mat44 jp = (Mat44::sQuatLeftMultiply(0.5f * inBody1.GetRotation().Conjugated()) * Mat44::sQuatRightMultiply(inBody2.GetRotation() * inInvInitialOrientation)).GetRotationSafe();
133
134
// Calculate properties used during constraint solving
135
Mat44 inv_i1 = inBody1.IsDynamic()? inBody1.GetMotionProperties()->GetInverseInertiaForRotation(inRotation1) : Mat44::sZero();
136
Mat44 inv_i2 = inBody2.IsDynamic()? inBody2.GetMotionProperties()->GetInverseInertiaForRotation(inRotation2) : Mat44::sZero();
137
mInvI1_JPT = inv_i1.Multiply3x3RightTransposed(jp);
138
mInvI2_JPT = inv_i2.Multiply3x3RightTransposed(jp);
139
140
// Calculate effective mass: K^-1 = (J M^-1 J^T)^-1
141
// = (JP * I1^-1 * JP^T + JP * I2^-1 * JP^T)^-1
142
// = (JP * (I1^-1 + I2^-1) * JP^T)^-1
143
if (!mEffectiveMass.SetInversed3x3(jp.Multiply3x3(inv_i1 + inv_i2).Multiply3x3RightTransposed(jp)))
144
Deactivate();
145
else
146
mEffectiveMass_JP = mEffectiveMass.Multiply3x3(jp);
147
}
148
149
/// Deactivate this constraint
150
inline void Deactivate()
151
{
152
mEffectiveMass = Mat44::sZero();
153
mEffectiveMass_JP = Mat44::sZero();
154
mTotalLambda = Vec3::sZero();
155
}
156
157
/// Check if constraint is active
158
inline bool IsActive() const
159
{
160
return mEffectiveMass(3, 3) != 0.0f;
161
}
162
163
/// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
164
inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
165
{
166
mTotalLambda *= inWarmStartImpulseRatio;
167
ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
168
}
169
170
/// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
171
inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2)
172
{
173
// Calculate lagrange multiplier:
174
//
175
// lambda = -K^-1 (J v + b)
176
Vec3 lambda = mEffectiveMass_JP.Multiply3x3(ioBody1.GetAngularVelocity() - ioBody2.GetAngularVelocity());
177
mTotalLambda += lambda;
178
return ApplyVelocityStep(ioBody1, ioBody2, lambda);
179
}
180
181
/// Iteratively update the position constraint. Makes sure C(...) = 0.
182
inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, QuatArg inInvInitialOrientation, float inBaumgarte) const
183
{
184
// Calculate constraint equation
185
Vec3 c = (ioBody1.GetRotation().Conjugated() * ioBody2.GetRotation() * inInvInitialOrientation).GetXYZ();
186
if (c != Vec3::sZero())
187
{
188
// Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
189
//
190
// lambda = -K^-1 * beta / dt * C
191
//
192
// We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
193
Vec3 lambda = -inBaumgarte * mEffectiveMass * c;
194
195
// Directly integrate velocity change for one time step
196
//
197
// Euler velocity integration:
198
// dv = M^-1 P
199
//
200
// Impulse:
201
// P = J^T lambda
202
//
203
// Euler position integration:
204
// x' = x + dv * dt
205
//
206
// Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
207
// Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
208
// stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
209
// integrate + a position integrate and then discard the velocity change.
210
if (ioBody1.IsDynamic())
211
ioBody1.SubRotationStep(mInvI1_JPT.Multiply3x3(lambda));
212
if (ioBody2.IsDynamic())
213
ioBody2.AddRotationStep(mInvI2_JPT.Multiply3x3(lambda));
214
return true;
215
}
216
217
return false;
218
}
219
220
/// Return lagrange multiplier
221
Vec3 GetTotalLambda() const
222
{
223
return mTotalLambda;
224
}
225
226
/// Save state of this constraint part
227
void SaveState(StateRecorder &inStream) const
228
{
229
inStream.Write(mTotalLambda);
230
}
231
232
/// Restore state of this constraint part
233
void RestoreState(StateRecorder &inStream)
234
{
235
inStream.Read(mTotalLambda);
236
}
237
238
private:
239
Mat44 mInvI1_JPT;
240
Mat44 mInvI2_JPT;
241
Mat44 mEffectiveMass;
242
Mat44 mEffectiveMass_JP;
243
Vec3 mTotalLambda { Vec3::sZero() };
244
};
245
246
JPH_NAMESPACE_END
247
248