Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/jolt_physics/Jolt/Physics/Constraints/HingeConstraint.cpp
21534 views
1
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
2
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
3
// SPDX-License-Identifier: MIT
4
5
#include <Jolt/Jolt.h>
6
7
#include <Jolt/Physics/Constraints/HingeConstraint.h>
8
#include <Jolt/Physics/Constraints/ConstraintPart/RotationEulerConstraintPart.h>
9
#include <Jolt/Physics/Body/Body.h>
10
#include <Jolt/ObjectStream/TypeDeclarations.h>
11
#include <Jolt/Core/StreamIn.h>
12
#include <Jolt/Core/StreamOut.h>
13
#ifdef JPH_DEBUG_RENDERER
14
#include <Jolt/Renderer/DebugRenderer.h>
15
#endif // JPH_DEBUG_RENDERER
16
17
JPH_NAMESPACE_BEGIN
18
19
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(HingeConstraintSettings)
20
{
21
JPH_ADD_BASE_CLASS(HingeConstraintSettings, TwoBodyConstraintSettings)
22
23
JPH_ADD_ENUM_ATTRIBUTE(HingeConstraintSettings, mSpace)
24
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint1)
25
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis1)
26
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis1)
27
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint2)
28
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis2)
29
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis2)
30
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMin)
31
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMax)
32
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsSpringSettings)
33
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMaxFrictionTorque)
34
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMotorSettings)
35
}
36
37
void HingeConstraintSettings::SaveBinaryState(StreamOut &inStream) const
38
{
39
ConstraintSettings::SaveBinaryState(inStream);
40
41
inStream.Write(mSpace);
42
inStream.Write(mPoint1);
43
inStream.Write(mHingeAxis1);
44
inStream.Write(mNormalAxis1);
45
inStream.Write(mPoint2);
46
inStream.Write(mHingeAxis2);
47
inStream.Write(mNormalAxis2);
48
inStream.Write(mLimitsMin);
49
inStream.Write(mLimitsMax);
50
inStream.Write(mMaxFrictionTorque);
51
mLimitsSpringSettings.SaveBinaryState(inStream);
52
mMotorSettings.SaveBinaryState(inStream);
53
}
54
55
void HingeConstraintSettings::RestoreBinaryState(StreamIn &inStream)
56
{
57
ConstraintSettings::RestoreBinaryState(inStream);
58
59
inStream.Read(mSpace);
60
inStream.Read(mPoint1);
61
inStream.Read(mHingeAxis1);
62
inStream.Read(mNormalAxis1);
63
inStream.Read(mPoint2);
64
inStream.Read(mHingeAxis2);
65
inStream.Read(mNormalAxis2);
66
inStream.Read(mLimitsMin);
67
inStream.Read(mLimitsMax);
68
inStream.Read(mMaxFrictionTorque);
69
mLimitsSpringSettings.RestoreBinaryState(inStream);
70
mMotorSettings.RestoreBinaryState(inStream);}
71
72
TwoBodyConstraint *HingeConstraintSettings::Create(Body &inBody1, Body &inBody2) const
73
{
74
return new HingeConstraint(inBody1, inBody2, *this);
75
}
76
77
HingeConstraint::HingeConstraint(Body &inBody1, Body &inBody2, const HingeConstraintSettings &inSettings) :
78
TwoBodyConstraint(inBody1, inBody2, inSettings),
79
mMaxFrictionTorque(inSettings.mMaxFrictionTorque),
80
mMotorSettings(inSettings.mMotorSettings)
81
{
82
// Store limits
83
JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax || inSettings.mLimitsSpringSettings.mFrequency > 0.0f, "Better use a fixed constraint in this case");
84
SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
85
86
// Store inverse of initial rotation from body 1 to body 2 in body 1 space
87
mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientationXZ(inSettings.mNormalAxis1, inSettings.mHingeAxis1, inSettings.mNormalAxis2, inSettings.mHingeAxis2);
88
89
if (inSettings.mSpace == EConstraintSpace::WorldSpace)
90
{
91
// If all properties were specified in world space, take them to local space now
92
RMat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
93
mLocalSpacePosition1 = Vec3(inv_transform1 * inSettings.mPoint1);
94
mLocalSpaceHingeAxis1 = inv_transform1.Multiply3x3(inSettings.mHingeAxis1).Normalized();
95
mLocalSpaceNormalAxis1 = inv_transform1.Multiply3x3(inSettings.mNormalAxis1).Normalized();
96
97
RMat44 inv_transform2 = inBody2.GetInverseCenterOfMassTransform();
98
mLocalSpacePosition2 = Vec3(inv_transform2 * inSettings.mPoint2);
99
mLocalSpaceHingeAxis2 = inv_transform2.Multiply3x3(inSettings.mHingeAxis2).Normalized();
100
mLocalSpaceNormalAxis2 = inv_transform2.Multiply3x3(inSettings.mNormalAxis2).Normalized();
101
102
// Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
103
// => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
104
mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
105
}
106
else
107
{
108
mLocalSpacePosition1 = Vec3(inSettings.mPoint1);
109
mLocalSpaceHingeAxis1 = inSettings.mHingeAxis1;
110
mLocalSpaceNormalAxis1 = inSettings.mNormalAxis1;
111
112
mLocalSpacePosition2 = Vec3(inSettings.mPoint2);
113
mLocalSpaceHingeAxis2 = inSettings.mHingeAxis2;
114
mLocalSpaceNormalAxis2 = inSettings.mNormalAxis2;
115
}
116
117
// Store spring settings
118
SetLimitsSpringSettings(inSettings.mLimitsSpringSettings);
119
}
120
121
void HingeConstraint::NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM)
122
{
123
if (mBody1->GetID() == inBodyID)
124
mLocalSpacePosition1 -= inDeltaCOM;
125
else if (mBody2->GetID() == inBodyID)
126
mLocalSpacePosition2 -= inDeltaCOM;
127
}
128
129
float HingeConstraint::GetCurrentAngle() const
130
{
131
// See: CalculateA1AndTheta
132
Quat rotation1 = mBody1->GetRotation();
133
Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
134
return diff.GetRotationAngle(rotation1 * mLocalSpaceHingeAxis1);
135
}
136
137
void HingeConstraint::SetTargetOrientationBS(QuatArg inOrientation)
138
{
139
// See: CalculateA1AndTheta
140
//
141
// The rotation between body 1 and 2 can be written as:
142
//
143
// q2 = q1 rh1 r0
144
//
145
// where rh1 is a rotation around local hinge axis 1, also:
146
//
147
// q2 = q1 inOrientation
148
//
149
// This means:
150
//
151
// rh1 r0 = inOrientation <=> rh1 = inOrientation * r0^-1
152
Quat rh1 = inOrientation * mInvInitialOrientation;
153
SetTargetAngle(rh1.GetRotationAngle(mLocalSpaceHingeAxis1));
154
}
155
156
void HingeConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
157
{
158
JPH_ASSERT(inLimitsMin <= 0.0f && inLimitsMin >= -JPH_PI);
159
JPH_ASSERT(inLimitsMax >= 0.0f && inLimitsMax <= JPH_PI);
160
mLimitsMin = inLimitsMin;
161
mLimitsMax = inLimitsMax;
162
mHasLimits = mLimitsMin > -JPH_PI || mLimitsMax < JPH_PI;
163
}
164
165
void HingeConstraint::CalculateA1AndTheta()
166
{
167
if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionTorque > 0.0f)
168
{
169
Quat rotation1 = mBody1->GetRotation();
170
171
// Calculate relative rotation in world space
172
//
173
// The rest rotation is:
174
//
175
// q2 = q1 r0
176
//
177
// But the actual rotation is
178
//
179
// q2 = diff q1 r0
180
// <=> diff = q2 r0^-1 q1^-1
181
//
182
// Where:
183
// q1 = current rotation of body 1
184
// q2 = current rotation of body 2
185
// diff = relative rotation in world space
186
Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
187
188
// Calculate hinge axis in world space
189
mA1 = rotation1 * mLocalSpaceHingeAxis1;
190
191
// Get rotation angle around the hinge axis
192
mTheta = diff.GetRotationAngle(mA1);
193
}
194
}
195
196
void HingeConstraint::CalculateRotationLimitsConstraintProperties(float inDeltaTime)
197
{
198
// Apply constraint if outside of limits
199
if (mHasLimits && (mTheta <= mLimitsMin || mTheta >= mLimitsMax))
200
mRotationLimitsConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, *mBody2, mA1, 0.0f, GetSmallestAngleToLimit(), mLimitsSpringSettings);
201
else
202
mRotationLimitsConstraintPart.Deactivate();
203
}
204
205
void HingeConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
206
{
207
switch (mMotorState)
208
{
209
case EMotorState::Off:
210
if (mMaxFrictionTorque > 0.0f)
211
mMotorConstraintPart.CalculateConstraintProperties(*mBody1, *mBody2, mA1);
212
else
213
mMotorConstraintPart.Deactivate();
214
break;
215
216
case EMotorState::Velocity:
217
mMotorConstraintPart.CalculateConstraintProperties(*mBody1, *mBody2, mA1, -mTargetAngularVelocity);
218
break;
219
220
case EMotorState::Position:
221
if (mMotorSettings.mSpringSettings.HasStiffness())
222
mMotorConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, *mBody2, mA1, 0.0f, CenterAngleAroundZero(mTheta - mTargetAngle), mMotorSettings.mSpringSettings);
223
else
224
mMotorConstraintPart.Deactivate();
225
break;
226
}
227
}
228
229
void HingeConstraint::SetupVelocityConstraint(float inDeltaTime)
230
{
231
// Cache constraint values that are valid until the bodies move
232
Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
233
Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
234
mPointConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, mLocalSpacePosition1, *mBody2, rotation2, mLocalSpacePosition2);
235
mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
236
CalculateA1AndTheta();
237
CalculateRotationLimitsConstraintProperties(inDeltaTime);
238
CalculateMotorConstraintProperties(inDeltaTime);
239
}
240
241
void HingeConstraint::ResetWarmStart()
242
{
243
mMotorConstraintPart.Deactivate();
244
mPointConstraintPart.Deactivate();
245
mRotationConstraintPart.Deactivate();
246
mRotationLimitsConstraintPart.Deactivate();
247
}
248
249
void HingeConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
250
{
251
// Warm starting: Apply previous frame impulse
252
mMotorConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
253
mPointConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
254
mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
255
mRotationLimitsConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
256
}
257
258
float HingeConstraint::GetSmallestAngleToLimit() const
259
{
260
float dist_to_min = CenterAngleAroundZero(mTheta - mLimitsMin);
261
float dist_to_max = CenterAngleAroundZero(mTheta - mLimitsMax);
262
return abs(dist_to_min) < abs(dist_to_max)? dist_to_min : dist_to_max;
263
}
264
265
bool HingeConstraint::IsMinLimitClosest() const
266
{
267
float dist_to_min = CenterAngleAroundZero(mTheta - mLimitsMin);
268
float dist_to_max = CenterAngleAroundZero(mTheta - mLimitsMax);
269
return abs(dist_to_min) < abs(dist_to_max);
270
}
271
272
bool HingeConstraint::SolveVelocityConstraint(float inDeltaTime)
273
{
274
// Solve motor
275
bool motor = false;
276
if (mMotorConstraintPart.IsActive())
277
{
278
switch (mMotorState)
279
{
280
case EMotorState::Off:
281
{
282
float max_lambda = mMaxFrictionTorque * inDeltaTime;
283
motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, -max_lambda, max_lambda);
284
break;
285
}
286
287
case EMotorState::Velocity:
288
case EMotorState::Position:
289
motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, inDeltaTime * mMotorSettings.mMinTorqueLimit, inDeltaTime * mMotorSettings.mMaxTorqueLimit);
290
break;
291
}
292
}
293
294
// Solve point constraint
295
bool pos = mPointConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
296
297
// Solve rotation constraint
298
bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
299
300
// Solve rotation limits
301
bool limit = false;
302
if (mRotationLimitsConstraintPart.IsActive())
303
{
304
float min_lambda, max_lambda;
305
if (mLimitsMin == mLimitsMax)
306
{
307
min_lambda = -FLT_MAX;
308
max_lambda = FLT_MAX;
309
}
310
else if (IsMinLimitClosest())
311
{
312
min_lambda = 0.0f;
313
max_lambda = FLT_MAX;
314
}
315
else
316
{
317
min_lambda = -FLT_MAX;
318
max_lambda = 0.0f;
319
}
320
limit = mRotationLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, min_lambda, max_lambda);
321
}
322
323
return motor || pos || rot || limit;
324
}
325
326
bool HingeConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
327
{
328
// Motor operates on velocities only, don't call SolvePositionConstraint
329
330
// Solve point constraint
331
mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), mLocalSpacePosition1, *mBody2, Mat44::sRotation(mBody2->GetRotation()), mLocalSpacePosition2);
332
bool pos = mPointConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
333
334
// Solve rotation constraint
335
Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation()); // Note that previous call to GetRotation() is out of date since the rotation has changed
336
Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
337
mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
338
bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
339
340
// Solve rotation limits
341
bool limit = false;
342
if (mHasLimits && mLimitsSpringSettings.mFrequency <= 0.0f)
343
{
344
CalculateA1AndTheta();
345
CalculateRotationLimitsConstraintProperties(inDeltaTime);
346
if (mRotationLimitsConstraintPart.IsActive())
347
limit = mRotationLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, GetSmallestAngleToLimit(), inBaumgarte);
348
}
349
350
return pos || rot || limit;
351
}
352
353
#ifdef JPH_DEBUG_RENDERER
354
void HingeConstraint::DrawConstraint(DebugRenderer *inRenderer) const
355
{
356
RMat44 transform1 = mBody1->GetCenterOfMassTransform();
357
RMat44 transform2 = mBody2->GetCenterOfMassTransform();
358
359
// Draw constraint
360
RVec3 constraint_pos1 = transform1 * mLocalSpacePosition1;
361
inRenderer->DrawMarker(constraint_pos1, Color::sRed, 0.1f);
362
inRenderer->DrawLine(constraint_pos1, transform1 * (mLocalSpacePosition1 + mDrawConstraintSize * mLocalSpaceHingeAxis1), Color::sRed);
363
364
RVec3 constraint_pos2 = transform2 * mLocalSpacePosition2;
365
inRenderer->DrawMarker(constraint_pos2, Color::sGreen, 0.1f);
366
inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceHingeAxis2), Color::sGreen);
367
inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceNormalAxis2), Color::sWhite);
368
}
369
370
void HingeConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
371
{
372
if (mHasLimits && mLimitsMax > mLimitsMin)
373
{
374
// Get constraint properties in world space
375
RMat44 transform1 = mBody1->GetCenterOfMassTransform();
376
RVec3 position1 = transform1 * mLocalSpacePosition1;
377
Vec3 hinge_axis1 = transform1.Multiply3x3(mLocalSpaceHingeAxis1);
378
Vec3 normal_axis1 = transform1.Multiply3x3(mLocalSpaceNormalAxis1);
379
380
inRenderer->DrawPie(position1, mDrawConstraintSize, hinge_axis1, normal_axis1, mLimitsMin, mLimitsMax, Color::sPurple, DebugRenderer::ECastShadow::Off);
381
}
382
}
383
#endif // JPH_DEBUG_RENDERER
384
385
void HingeConstraint::SaveState(StateRecorder &inStream) const
386
{
387
TwoBodyConstraint::SaveState(inStream);
388
389
mMotorConstraintPart.SaveState(inStream);
390
mRotationConstraintPart.SaveState(inStream);
391
mPointConstraintPart.SaveState(inStream);
392
mRotationLimitsConstraintPart.SaveState(inStream);
393
394
inStream.Write(mMotorState);
395
inStream.Write(mTargetAngularVelocity);
396
inStream.Write(mTargetAngle);
397
}
398
399
void HingeConstraint::RestoreState(StateRecorder &inStream)
400
{
401
TwoBodyConstraint::RestoreState(inStream);
402
403
mMotorConstraintPart.RestoreState(inStream);
404
mRotationConstraintPart.RestoreState(inStream);
405
mPointConstraintPart.RestoreState(inStream);
406
mRotationLimitsConstraintPart.RestoreState(inStream);
407
408
inStream.Read(mMotorState);
409
inStream.Read(mTargetAngularVelocity);
410
inStream.Read(mTargetAngle);
411
}
412
413
414
Ref<ConstraintSettings> HingeConstraint::GetConstraintSettings() const
415
{
416
HingeConstraintSettings *settings = new HingeConstraintSettings;
417
ToConstraintSettings(*settings);
418
settings->mSpace = EConstraintSpace::LocalToBodyCOM;
419
settings->mPoint1 = RVec3(mLocalSpacePosition1);
420
settings->mHingeAxis1 = mLocalSpaceHingeAxis1;
421
settings->mNormalAxis1 = mLocalSpaceNormalAxis1;
422
settings->mPoint2 = RVec3(mLocalSpacePosition2);
423
settings->mHingeAxis2 = mLocalSpaceHingeAxis2;
424
settings->mNormalAxis2 = mLocalSpaceNormalAxis2;
425
settings->mLimitsMin = mLimitsMin;
426
settings->mLimitsMax = mLimitsMax;
427
settings->mLimitsSpringSettings = mLimitsSpringSettings;
428
settings->mMaxFrictionTorque = mMaxFrictionTorque;
429
settings->mMotorSettings = mMotorSettings;
430
return settings;
431
}
432
433
Mat44 HingeConstraint::GetConstraintToBody1Matrix() const
434
{
435
return Mat44(Vec4(mLocalSpaceHingeAxis1, 0), Vec4(mLocalSpaceNormalAxis1, 0), Vec4(mLocalSpaceHingeAxis1.Cross(mLocalSpaceNormalAxis1), 0), Vec4(mLocalSpacePosition1, 1));
436
}
437
438
Mat44 HingeConstraint::GetConstraintToBody2Matrix() const
439
{
440
return Mat44(Vec4(mLocalSpaceHingeAxis2, 0), Vec4(mLocalSpaceNormalAxis2, 0), Vec4(mLocalSpaceHingeAxis2.Cross(mLocalSpaceNormalAxis2), 0), Vec4(mLocalSpacePosition2, 1));
441
}
442
443
JPH_NAMESPACE_END
444
445