Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libjpeg-turbo/src/jcdctmgr.c
9904 views
1
/*
2
* jcdctmgr.c
3
*
4
* This file was part of the Independent JPEG Group's software:
5
* Copyright (C) 1994-1996, Thomas G. Lane.
6
* libjpeg-turbo Modifications:
7
* Copyright (C) 1999-2006, MIYASAKA Masaru.
8
* Copyright 2009 Pierre Ossman <[email protected]> for Cendio AB
9
* Copyright (C) 2011, 2014-2015, 2022, 2024, D. R. Commander.
10
* For conditions of distribution and use, see the accompanying README.ijg
11
* file.
12
*
13
* This file contains the forward-DCT management logic.
14
* This code selects a particular DCT implementation to be used,
15
* and it performs related housekeeping chores including coefficient
16
* quantization.
17
*/
18
19
#define JPEG_INTERNALS
20
#include "jinclude.h"
21
#include "jpeglib.h"
22
#include "jdct.h" /* Private declarations for DCT subsystem */
23
#include "jsimddct.h"
24
25
26
/* Private subobject for this module */
27
28
typedef void (*forward_DCT_method_ptr) (DCTELEM *data);
29
typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data);
30
31
typedef void (*convsamp_method_ptr) (_JSAMPARRAY sample_data,
32
JDIMENSION start_col,
33
DCTELEM *workspace);
34
typedef void (*float_convsamp_method_ptr) (_JSAMPARRAY sample_data,
35
JDIMENSION start_col,
36
FAST_FLOAT *workspace);
37
38
typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors,
39
DCTELEM *workspace);
40
typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block,
41
FAST_FLOAT *divisors,
42
FAST_FLOAT *workspace);
43
44
METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *);
45
46
typedef struct {
47
struct jpeg_forward_dct pub; /* public fields */
48
49
/* Pointer to the DCT routine actually in use */
50
forward_DCT_method_ptr dct;
51
convsamp_method_ptr convsamp;
52
quantize_method_ptr quantize;
53
54
/* The actual post-DCT divisors --- not identical to the quant table
55
* entries, because of scaling (especially for an unnormalized DCT).
56
* Each table is given in normal array order.
57
*/
58
DCTELEM *divisors[NUM_QUANT_TBLS];
59
60
/* work area for FDCT subroutine */
61
DCTELEM *workspace;
62
63
#ifdef DCT_FLOAT_SUPPORTED
64
/* Same as above for the floating-point case. */
65
float_DCT_method_ptr float_dct;
66
float_convsamp_method_ptr float_convsamp;
67
float_quantize_method_ptr float_quantize;
68
FAST_FLOAT *float_divisors[NUM_QUANT_TBLS];
69
FAST_FLOAT *float_workspace;
70
#endif
71
} my_fdct_controller;
72
73
typedef my_fdct_controller *my_fdct_ptr;
74
75
76
#if BITS_IN_JSAMPLE == 8
77
78
/*
79
* Find the highest bit in an integer through binary search.
80
*/
81
82
LOCAL(int)
83
flss(UINT16 val)
84
{
85
int bit;
86
87
bit = 16;
88
89
if (!val)
90
return 0;
91
92
if (!(val & 0xff00)) {
93
bit -= 8;
94
val <<= 8;
95
}
96
if (!(val & 0xf000)) {
97
bit -= 4;
98
val <<= 4;
99
}
100
if (!(val & 0xc000)) {
101
bit -= 2;
102
val <<= 2;
103
}
104
if (!(val & 0x8000)) {
105
bit -= 1;
106
val <<= 1;
107
}
108
109
return bit;
110
}
111
112
113
/*
114
* Compute values to do a division using reciprocal.
115
*
116
* This implementation is based on an algorithm described in
117
* "Optimizing subroutines in assembly language:
118
* An optimization guide for x86 platforms" (https://agner.org/optimize).
119
* More information about the basic algorithm can be found in
120
* the paper "Integer Division Using Reciprocals" by Robert Alverson.
121
*
122
* The basic idea is to replace x/d by x * d^-1. In order to store
123
* d^-1 with enough precision we shift it left a few places. It turns
124
* out that this algoright gives just enough precision, and also fits
125
* into DCTELEM:
126
*
127
* b = (the number of significant bits in divisor) - 1
128
* r = (word size) + b
129
* f = 2^r / divisor
130
*
131
* f will not be an integer for most cases, so we need to compensate
132
* for the rounding error introduced:
133
*
134
* no fractional part:
135
*
136
* result = input >> r
137
*
138
* fractional part of f < 0.5:
139
*
140
* round f down to nearest integer
141
* result = ((input + 1) * f) >> r
142
*
143
* fractional part of f > 0.5:
144
*
145
* round f up to nearest integer
146
* result = (input * f) >> r
147
*
148
* This is the original algorithm that gives truncated results. But we
149
* want properly rounded results, so we replace "input" with
150
* "input + divisor/2".
151
*
152
* In order to allow SIMD implementations we also tweak the values to
153
* allow the same calculation to be made at all times:
154
*
155
* dctbl[0] = f rounded to nearest integer
156
* dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
157
* dctbl[2] = 1 << ((word size) * 2 - r)
158
* dctbl[3] = r - (word size)
159
*
160
* dctbl[2] is for stupid instruction sets where the shift operation
161
* isn't member wise (e.g. MMX).
162
*
163
* The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
164
* is that most SIMD implementations have a "multiply and store top
165
* half" operation.
166
*
167
* Lastly, we store each of the values in their own table instead
168
* of in a consecutive manner, yet again in order to allow SIMD
169
* routines.
170
*/
171
172
LOCAL(int)
173
compute_reciprocal(UINT16 divisor, DCTELEM *dtbl)
174
{
175
UDCTELEM2 fq, fr;
176
UDCTELEM c;
177
int b, r;
178
179
if (divisor == 1) {
180
/* divisor == 1 means unquantized, so these reciprocal/correction/shift
181
* values will cause the C quantization algorithm to act like the
182
* identity function. Since only the C quantization algorithm is used in
183
* these cases, the scale value is irrelevant.
184
*/
185
dtbl[DCTSIZE2 * 0] = (DCTELEM)1; /* reciprocal */
186
dtbl[DCTSIZE2 * 1] = (DCTELEM)0; /* correction */
187
dtbl[DCTSIZE2 * 2] = (DCTELEM)1; /* scale */
188
dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8); /* shift */
189
return 0;
190
}
191
192
b = flss(divisor) - 1;
193
r = sizeof(DCTELEM) * 8 + b;
194
195
fq = ((UDCTELEM2)1 << r) / divisor;
196
fr = ((UDCTELEM2)1 << r) % divisor;
197
198
c = divisor / 2; /* for rounding */
199
200
if (fr == 0) { /* divisor is power of two */
201
/* fq will be one bit too large to fit in DCTELEM, so adjust */
202
fq >>= 1;
203
r--;
204
} else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */
205
c++;
206
} else { /* fractional part is > 0.5 */
207
fq++;
208
}
209
210
dtbl[DCTSIZE2 * 0] = (DCTELEM)fq; /* reciprocal */
211
dtbl[DCTSIZE2 * 1] = (DCTELEM)c; /* correction + roundfactor */
212
#ifdef WITH_SIMD
213
dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */
214
#else
215
dtbl[DCTSIZE2 * 2] = 1;
216
#endif
217
dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */
218
219
if (r <= 16) return 0;
220
else return 1;
221
}
222
223
#endif
224
225
226
/*
227
* Initialize for a processing pass.
228
* Verify that all referenced Q-tables are present, and set up
229
* the divisor table for each one.
230
* In the current implementation, DCT of all components is done during
231
* the first pass, even if only some components will be output in the
232
* first scan. Hence all components should be examined here.
233
*/
234
235
METHODDEF(void)
236
start_pass_fdctmgr(j_compress_ptr cinfo)
237
{
238
my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
239
int ci, qtblno, i;
240
jpeg_component_info *compptr;
241
JQUANT_TBL *qtbl;
242
DCTELEM *dtbl;
243
244
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
245
ci++, compptr++) {
246
qtblno = compptr->quant_tbl_no;
247
/* Make sure specified quantization table is present */
248
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
249
cinfo->quant_tbl_ptrs[qtblno] == NULL)
250
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
251
qtbl = cinfo->quant_tbl_ptrs[qtblno];
252
/* Compute divisors for this quant table */
253
/* We may do this more than once for same table, but it's not a big deal */
254
switch (cinfo->dct_method) {
255
#ifdef DCT_ISLOW_SUPPORTED
256
case JDCT_ISLOW:
257
/* For LL&M IDCT method, divisors are equal to raw quantization
258
* coefficients multiplied by 8 (to counteract scaling).
259
*/
260
if (fdct->divisors[qtblno] == NULL) {
261
fdct->divisors[qtblno] = (DCTELEM *)
262
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
263
(DCTSIZE2 * 4) * sizeof(DCTELEM));
264
}
265
dtbl = fdct->divisors[qtblno];
266
for (i = 0; i < DCTSIZE2; i++) {
267
#if BITS_IN_JSAMPLE == 8
268
#ifdef WITH_SIMD
269
if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) &&
270
fdct->quantize == jsimd_quantize)
271
fdct->quantize = quantize;
272
#else
273
compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]);
274
#endif
275
#else
276
dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3;
277
#endif
278
}
279
break;
280
#endif
281
#ifdef DCT_IFAST_SUPPORTED
282
case JDCT_IFAST:
283
{
284
/* For AA&N IDCT method, divisors are equal to quantization
285
* coefficients scaled by scalefactor[row]*scalefactor[col], where
286
* scalefactor[0] = 1
287
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
288
* We apply a further scale factor of 8.
289
*/
290
#define CONST_BITS 14
291
static const INT16 aanscales[DCTSIZE2] = {
292
/* precomputed values scaled up by 14 bits */
293
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
294
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
295
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
296
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
297
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
298
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
299
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
300
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
301
};
302
SHIFT_TEMPS
303
304
if (fdct->divisors[qtblno] == NULL) {
305
fdct->divisors[qtblno] = (DCTELEM *)
306
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
307
(DCTSIZE2 * 4) * sizeof(DCTELEM));
308
}
309
dtbl = fdct->divisors[qtblno];
310
for (i = 0; i < DCTSIZE2; i++) {
311
#if BITS_IN_JSAMPLE == 8
312
#ifdef WITH_SIMD
313
if (!compute_reciprocal(
314
DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
315
(JLONG)aanscales[i]),
316
CONST_BITS - 3), &dtbl[i]) &&
317
fdct->quantize == jsimd_quantize)
318
fdct->quantize = quantize;
319
#else
320
compute_reciprocal(
321
DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
322
(JLONG)aanscales[i]),
323
CONST_BITS-3), &dtbl[i]);
324
#endif
325
#else
326
dtbl[i] = (DCTELEM)
327
DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
328
(JLONG)aanscales[i]),
329
CONST_BITS - 3);
330
#endif
331
}
332
}
333
break;
334
#endif
335
#ifdef DCT_FLOAT_SUPPORTED
336
case JDCT_FLOAT:
337
{
338
/* For float AA&N IDCT method, divisors are equal to quantization
339
* coefficients scaled by scalefactor[row]*scalefactor[col], where
340
* scalefactor[0] = 1
341
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
342
* We apply a further scale factor of 8.
343
* What's actually stored is 1/divisor so that the inner loop can
344
* use a multiplication rather than a division.
345
*/
346
FAST_FLOAT *fdtbl;
347
int row, col;
348
static const double aanscalefactor[DCTSIZE] = {
349
1.0, 1.387039845, 1.306562965, 1.175875602,
350
1.0, 0.785694958, 0.541196100, 0.275899379
351
};
352
353
if (fdct->float_divisors[qtblno] == NULL) {
354
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
355
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
356
DCTSIZE2 * sizeof(FAST_FLOAT));
357
}
358
fdtbl = fdct->float_divisors[qtblno];
359
i = 0;
360
for (row = 0; row < DCTSIZE; row++) {
361
for (col = 0; col < DCTSIZE; col++) {
362
fdtbl[i] = (FAST_FLOAT)
363
(1.0 / (((double)qtbl->quantval[i] *
364
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
365
i++;
366
}
367
}
368
}
369
break;
370
#endif
371
default:
372
ERREXIT(cinfo, JERR_NOT_COMPILED);
373
break;
374
}
375
}
376
}
377
378
379
/*
380
* Load data into workspace, applying unsigned->signed conversion.
381
*/
382
383
METHODDEF(void)
384
convsamp(_JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace)
385
{
386
register DCTELEM *workspaceptr;
387
register _JSAMPROW elemptr;
388
register int elemr;
389
390
workspaceptr = workspace;
391
for (elemr = 0; elemr < DCTSIZE; elemr++) {
392
elemptr = sample_data[elemr] + start_col;
393
394
#if DCTSIZE == 8 /* unroll the inner loop */
395
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
396
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
397
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
398
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
399
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
400
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
401
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
402
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
403
#else
404
{
405
register int elemc;
406
for (elemc = DCTSIZE; elemc > 0; elemc--)
407
*workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
408
}
409
#endif
410
}
411
}
412
413
414
/*
415
* Quantize/descale the coefficients, and store into coef_blocks[].
416
*/
417
418
METHODDEF(void)
419
quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
420
{
421
int i;
422
DCTELEM temp;
423
JCOEFPTR output_ptr = coef_block;
424
425
#if BITS_IN_JSAMPLE == 8
426
427
UDCTELEM recip, corr;
428
int shift;
429
UDCTELEM2 product;
430
431
for (i = 0; i < DCTSIZE2; i++) {
432
temp = workspace[i];
433
recip = divisors[i + DCTSIZE2 * 0];
434
corr = divisors[i + DCTSIZE2 * 1];
435
shift = divisors[i + DCTSIZE2 * 3];
436
437
if (temp < 0) {
438
temp = -temp;
439
product = (UDCTELEM2)(temp + corr) * recip;
440
product >>= shift + sizeof(DCTELEM) * 8;
441
temp = (DCTELEM)product;
442
temp = -temp;
443
} else {
444
product = (UDCTELEM2)(temp + corr) * recip;
445
product >>= shift + sizeof(DCTELEM) * 8;
446
temp = (DCTELEM)product;
447
}
448
output_ptr[i] = (JCOEF)temp;
449
}
450
451
#else
452
453
register DCTELEM qval;
454
455
for (i = 0; i < DCTSIZE2; i++) {
456
qval = divisors[i];
457
temp = workspace[i];
458
/* Divide the coefficient value by qval, ensuring proper rounding.
459
* Since C does not specify the direction of rounding for negative
460
* quotients, we have to force the dividend positive for portability.
461
*
462
* In most files, at least half of the output values will be zero
463
* (at default quantization settings, more like three-quarters...)
464
* so we should ensure that this case is fast. On many machines,
465
* a comparison is enough cheaper than a divide to make a special test
466
* a win. Since both inputs will be nonnegative, we need only test
467
* for a < b to discover whether a/b is 0.
468
* If your machine's division is fast enough, define FAST_DIVIDE.
469
*/
470
#ifdef FAST_DIVIDE
471
#define DIVIDE_BY(a, b) a /= b
472
#else
473
#define DIVIDE_BY(a, b) if (a >= b) a /= b; else a = 0
474
#endif
475
if (temp < 0) {
476
temp = -temp;
477
temp += qval >> 1; /* for rounding */
478
DIVIDE_BY(temp, qval);
479
temp = -temp;
480
} else {
481
temp += qval >> 1; /* for rounding */
482
DIVIDE_BY(temp, qval);
483
}
484
output_ptr[i] = (JCOEF)temp;
485
}
486
487
#endif
488
489
}
490
491
492
/*
493
* Perform forward DCT on one or more blocks of a component.
494
*
495
* The input samples are taken from the sample_data[] array starting at
496
* position start_row/start_col, and moving to the right for any additional
497
* blocks. The quantized coefficients are returned in coef_blocks[].
498
*/
499
500
METHODDEF(void)
501
forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr,
502
_JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
503
JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks)
504
/* This version is used for integer DCT implementations. */
505
{
506
/* This routine is heavily used, so it's worth coding it tightly. */
507
my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
508
DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no];
509
DCTELEM *workspace;
510
JDIMENSION bi;
511
512
/* Make sure the compiler doesn't look up these every pass */
513
forward_DCT_method_ptr do_dct = fdct->dct;
514
convsamp_method_ptr do_convsamp = fdct->convsamp;
515
quantize_method_ptr do_quantize = fdct->quantize;
516
workspace = fdct->workspace;
517
518
sample_data += start_row; /* fold in the vertical offset once */
519
520
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
521
/* Load data into workspace, applying unsigned->signed conversion */
522
(*do_convsamp) (sample_data, start_col, workspace);
523
524
/* Perform the DCT */
525
(*do_dct) (workspace);
526
527
/* Quantize/descale the coefficients, and store into coef_blocks[] */
528
(*do_quantize) (coef_blocks[bi], divisors, workspace);
529
}
530
}
531
532
533
#ifdef DCT_FLOAT_SUPPORTED
534
535
METHODDEF(void)
536
convsamp_float(_JSAMPARRAY sample_data, JDIMENSION start_col,
537
FAST_FLOAT *workspace)
538
{
539
register FAST_FLOAT *workspaceptr;
540
register _JSAMPROW elemptr;
541
register int elemr;
542
543
workspaceptr = workspace;
544
for (elemr = 0; elemr < DCTSIZE; elemr++) {
545
elemptr = sample_data[elemr] + start_col;
546
#if DCTSIZE == 8 /* unroll the inner loop */
547
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
548
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
549
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
550
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
551
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
552
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
553
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
554
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
555
#else
556
{
557
register int elemc;
558
for (elemc = DCTSIZE; elemc > 0; elemc--)
559
*workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
560
}
561
#endif
562
}
563
}
564
565
566
METHODDEF(void)
567
quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors,
568
FAST_FLOAT *workspace)
569
{
570
register FAST_FLOAT temp;
571
register int i;
572
register JCOEFPTR output_ptr = coef_block;
573
574
for (i = 0; i < DCTSIZE2; i++) {
575
/* Apply the quantization and scaling factor */
576
temp = workspace[i] * divisors[i];
577
578
/* Round to nearest integer.
579
* Since C does not specify the direction of rounding for negative
580
* quotients, we have to force the dividend positive for portability.
581
* The maximum coefficient size is +-16K (for 12-bit data), so this
582
* code should work for either 16-bit or 32-bit ints.
583
*/
584
output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384);
585
}
586
}
587
588
589
METHODDEF(void)
590
forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr,
591
_JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
592
JDIMENSION start_row, JDIMENSION start_col,
593
JDIMENSION num_blocks)
594
/* This version is used for floating-point DCT implementations. */
595
{
596
/* This routine is heavily used, so it's worth coding it tightly. */
597
my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
598
FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no];
599
FAST_FLOAT *workspace;
600
JDIMENSION bi;
601
602
603
/* Make sure the compiler doesn't look up these every pass */
604
float_DCT_method_ptr do_dct = fdct->float_dct;
605
float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
606
float_quantize_method_ptr do_quantize = fdct->float_quantize;
607
workspace = fdct->float_workspace;
608
609
sample_data += start_row; /* fold in the vertical offset once */
610
611
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
612
/* Load data into workspace, applying unsigned->signed conversion */
613
(*do_convsamp) (sample_data, start_col, workspace);
614
615
/* Perform the DCT */
616
(*do_dct) (workspace);
617
618
/* Quantize/descale the coefficients, and store into coef_blocks[] */
619
(*do_quantize) (coef_blocks[bi], divisors, workspace);
620
}
621
}
622
623
#endif /* DCT_FLOAT_SUPPORTED */
624
625
626
/*
627
* Initialize FDCT manager.
628
*/
629
630
GLOBAL(void)
631
_jinit_forward_dct(j_compress_ptr cinfo)
632
{
633
my_fdct_ptr fdct;
634
int i;
635
636
if (cinfo->data_precision != BITS_IN_JSAMPLE)
637
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
638
639
fdct = (my_fdct_ptr)
640
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
641
sizeof(my_fdct_controller));
642
cinfo->fdct = (struct jpeg_forward_dct *)fdct;
643
fdct->pub.start_pass = start_pass_fdctmgr;
644
645
/* First determine the DCT... */
646
switch (cinfo->dct_method) {
647
#ifdef DCT_ISLOW_SUPPORTED
648
case JDCT_ISLOW:
649
fdct->pub._forward_DCT = forward_DCT;
650
#ifdef WITH_SIMD
651
if (jsimd_can_fdct_islow())
652
fdct->dct = jsimd_fdct_islow;
653
else
654
#endif
655
fdct->dct = _jpeg_fdct_islow;
656
break;
657
#endif
658
#ifdef DCT_IFAST_SUPPORTED
659
case JDCT_IFAST:
660
fdct->pub._forward_DCT = forward_DCT;
661
#ifdef WITH_SIMD
662
if (jsimd_can_fdct_ifast())
663
fdct->dct = jsimd_fdct_ifast;
664
else
665
#endif
666
fdct->dct = _jpeg_fdct_ifast;
667
break;
668
#endif
669
#ifdef DCT_FLOAT_SUPPORTED
670
case JDCT_FLOAT:
671
fdct->pub._forward_DCT = forward_DCT_float;
672
#ifdef WITH_SIMD
673
if (jsimd_can_fdct_float())
674
fdct->float_dct = jsimd_fdct_float;
675
else
676
#endif
677
fdct->float_dct = jpeg_fdct_float;
678
break;
679
#endif
680
default:
681
ERREXIT(cinfo, JERR_NOT_COMPILED);
682
break;
683
}
684
685
/* ...then the supporting stages. */
686
switch (cinfo->dct_method) {
687
#ifdef DCT_ISLOW_SUPPORTED
688
case JDCT_ISLOW:
689
#endif
690
#ifdef DCT_IFAST_SUPPORTED
691
case JDCT_IFAST:
692
#endif
693
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
694
#ifdef WITH_SIMD
695
if (jsimd_can_convsamp())
696
fdct->convsamp = jsimd_convsamp;
697
else
698
#endif
699
fdct->convsamp = convsamp;
700
#ifdef WITH_SIMD
701
if (jsimd_can_quantize())
702
fdct->quantize = jsimd_quantize;
703
else
704
#endif
705
fdct->quantize = quantize;
706
break;
707
#endif
708
#ifdef DCT_FLOAT_SUPPORTED
709
case JDCT_FLOAT:
710
#ifdef WITH_SIMD
711
if (jsimd_can_convsamp_float())
712
fdct->float_convsamp = jsimd_convsamp_float;
713
else
714
#endif
715
fdct->float_convsamp = convsamp_float;
716
#ifdef WITH_SIMD
717
if (jsimd_can_quantize_float())
718
fdct->float_quantize = jsimd_quantize_float;
719
else
720
#endif
721
fdct->float_quantize = quantize_float;
722
break;
723
#endif
724
default:
725
ERREXIT(cinfo, JERR_NOT_COMPILED);
726
break;
727
}
728
729
/* Allocate workspace memory */
730
#ifdef DCT_FLOAT_SUPPORTED
731
if (cinfo->dct_method == JDCT_FLOAT)
732
fdct->float_workspace = (FAST_FLOAT *)
733
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
734
sizeof(FAST_FLOAT) * DCTSIZE2);
735
else
736
#endif
737
fdct->workspace = (DCTELEM *)
738
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
739
sizeof(DCTELEM) * DCTSIZE2);
740
741
/* Mark divisor tables unallocated */
742
for (i = 0; i < NUM_QUANT_TBLS; i++) {
743
fdct->divisors[i] = NULL;
744
#ifdef DCT_FLOAT_SUPPORTED
745
fdct->float_divisors[i] = NULL;
746
#endif
747
}
748
}
749
750