Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libjpeg-turbo/src/jchuff.c
9904 views
1
/*
2
* jchuff.c
3
*
4
* This file was part of the Independent JPEG Group's software:
5
* Copyright (C) 1991-1997, Thomas G. Lane.
6
* Lossless JPEG Modifications:
7
* Copyright (C) 1999, Ken Murchison.
8
* libjpeg-turbo Modifications:
9
* Copyright (C) 2009-2011, 2014-2016, 2018-2024, D. R. Commander.
10
* Copyright (C) 2015, Matthieu Darbois.
11
* Copyright (C) 2018, Matthias Räncker.
12
* Copyright (C) 2020, Arm Limited.
13
* Copyright (C) 2022, Felix Hanau.
14
* For conditions of distribution and use, see the accompanying README.ijg
15
* file.
16
*
17
* This file contains Huffman entropy encoding routines.
18
*
19
* Much of the complexity here has to do with supporting output suspension.
20
* If the data destination module demands suspension, we want to be able to
21
* back up to the start of the current MCU. To do this, we copy state
22
* variables into local working storage, and update them back to the
23
* permanent JPEG objects only upon successful completion of an MCU.
24
*
25
* NOTE: All referenced figures are from
26
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
27
*/
28
29
#define JPEG_INTERNALS
30
#include "jinclude.h"
31
#include "jpeglib.h"
32
#ifdef WITH_SIMD
33
#include "jsimd.h"
34
#else
35
#include "jchuff.h" /* Declarations shared with jc*huff.c */
36
#endif
37
#include <limits.h>
38
#include "jpeg_nbits.h"
39
40
41
/* Expanded entropy encoder object for Huffman encoding.
42
*
43
* The savable_state subrecord contains fields that change within an MCU,
44
* but must not be updated permanently until we complete the MCU.
45
*/
46
47
#if defined(__x86_64__) && defined(__ILP32__)
48
typedef unsigned long long bit_buf_type;
49
#else
50
typedef size_t bit_buf_type;
51
#endif
52
53
/* NOTE: The more optimal Huffman encoding algorithm is only used by the
54
* intrinsics implementation of the Arm Neon SIMD extensions, which is why we
55
* retain the old Huffman encoder behavior when using the GAS implementation.
56
*/
57
#if defined(WITH_SIMD) && !(defined(__arm__) || defined(__aarch64__) || \
58
defined(_M_ARM) || defined(_M_ARM64))
59
typedef unsigned long long simd_bit_buf_type;
60
#else
61
typedef bit_buf_type simd_bit_buf_type;
62
#endif
63
64
#if (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 8) || defined(_WIN64) || \
65
(defined(__x86_64__) && defined(__ILP32__))
66
#define BIT_BUF_SIZE 64
67
#elif (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 4) || defined(_WIN32)
68
#define BIT_BUF_SIZE 32
69
#else
70
#error Cannot determine word size
71
#endif
72
#define SIMD_BIT_BUF_SIZE (sizeof(simd_bit_buf_type) * 8)
73
74
typedef struct {
75
union {
76
bit_buf_type c;
77
#ifdef WITH_SIMD
78
simd_bit_buf_type simd;
79
#endif
80
} put_buffer; /* current bit accumulation buffer */
81
int free_bits; /* # of bits available in it */
82
/* (Neon GAS: # of bits now in it) */
83
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
84
} savable_state;
85
86
typedef struct {
87
struct jpeg_entropy_encoder pub; /* public fields */
88
89
savable_state saved; /* Bit buffer & DC state at start of MCU */
90
91
/* These fields are NOT loaded into local working state. */
92
unsigned int restarts_to_go; /* MCUs left in this restart interval */
93
int next_restart_num; /* next restart number to write (0-7) */
94
95
/* Pointers to derived tables (these workspaces have image lifespan) */
96
c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
97
c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
98
99
#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
100
long *dc_count_ptrs[NUM_HUFF_TBLS];
101
long *ac_count_ptrs[NUM_HUFF_TBLS];
102
#endif
103
104
#ifdef WITH_SIMD
105
int simd;
106
#endif
107
} huff_entropy_encoder;
108
109
typedef huff_entropy_encoder *huff_entropy_ptr;
110
111
/* Working state while writing an MCU.
112
* This struct contains all the fields that are needed by subroutines.
113
*/
114
115
typedef struct {
116
JOCTET *next_output_byte; /* => next byte to write in buffer */
117
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
118
savable_state cur; /* Current bit buffer & DC state */
119
j_compress_ptr cinfo; /* dump_buffer needs access to this */
120
#ifdef WITH_SIMD
121
int simd;
122
#endif
123
} working_state;
124
125
126
/* Forward declarations */
127
METHODDEF(boolean) encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data);
128
METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo);
129
#ifdef ENTROPY_OPT_SUPPORTED
130
METHODDEF(boolean) encode_mcu_gather(j_compress_ptr cinfo,
131
JBLOCKROW *MCU_data);
132
METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo);
133
#endif
134
135
136
/*
137
* Initialize for a Huffman-compressed scan.
138
* If gather_statistics is TRUE, we do not output anything during the scan,
139
* just count the Huffman symbols used and generate Huffman code tables.
140
*/
141
142
METHODDEF(void)
143
start_pass_huff(j_compress_ptr cinfo, boolean gather_statistics)
144
{
145
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
146
int ci, dctbl, actbl;
147
jpeg_component_info *compptr;
148
149
if (gather_statistics) {
150
#ifdef ENTROPY_OPT_SUPPORTED
151
entropy->pub.encode_mcu = encode_mcu_gather;
152
entropy->pub.finish_pass = finish_pass_gather;
153
#else
154
ERREXIT(cinfo, JERR_NOT_COMPILED);
155
#endif
156
} else {
157
entropy->pub.encode_mcu = encode_mcu_huff;
158
entropy->pub.finish_pass = finish_pass_huff;
159
}
160
161
#ifdef WITH_SIMD
162
entropy->simd = jsimd_can_huff_encode_one_block();
163
#endif
164
165
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
166
compptr = cinfo->cur_comp_info[ci];
167
dctbl = compptr->dc_tbl_no;
168
actbl = compptr->ac_tbl_no;
169
if (gather_statistics) {
170
#ifdef ENTROPY_OPT_SUPPORTED
171
/* Check for invalid table indexes */
172
/* (make_c_derived_tbl does this in the other path) */
173
if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
174
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
175
if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
176
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
177
/* Allocate and zero the statistics tables */
178
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
179
if (entropy->dc_count_ptrs[dctbl] == NULL)
180
entropy->dc_count_ptrs[dctbl] = (long *)
181
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
182
257 * sizeof(long));
183
memset(entropy->dc_count_ptrs[dctbl], 0, 257 * sizeof(long));
184
if (entropy->ac_count_ptrs[actbl] == NULL)
185
entropy->ac_count_ptrs[actbl] = (long *)
186
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
187
257 * sizeof(long));
188
memset(entropy->ac_count_ptrs[actbl], 0, 257 * sizeof(long));
189
#endif
190
} else {
191
/* Compute derived values for Huffman tables */
192
/* We may do this more than once for a table, but it's not expensive */
193
jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
194
&entropy->dc_derived_tbls[dctbl]);
195
jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
196
&entropy->ac_derived_tbls[actbl]);
197
}
198
/* Initialize DC predictions to 0 */
199
entropy->saved.last_dc_val[ci] = 0;
200
}
201
202
/* Initialize bit buffer to empty */
203
#ifdef WITH_SIMD
204
if (entropy->simd) {
205
entropy->saved.put_buffer.simd = 0;
206
#if defined(__aarch64__) && !defined(NEON_INTRINSICS)
207
entropy->saved.free_bits = 0;
208
#else
209
entropy->saved.free_bits = SIMD_BIT_BUF_SIZE;
210
#endif
211
} else
212
#endif
213
{
214
entropy->saved.put_buffer.c = 0;
215
entropy->saved.free_bits = BIT_BUF_SIZE;
216
}
217
218
/* Initialize restart stuff */
219
entropy->restarts_to_go = cinfo->restart_interval;
220
entropy->next_restart_num = 0;
221
}
222
223
224
/*
225
* Compute the derived values for a Huffman table.
226
* This routine also performs some validation checks on the table.
227
*
228
* Note this is also used by jcphuff.c and jclhuff.c.
229
*/
230
231
GLOBAL(void)
232
jpeg_make_c_derived_tbl(j_compress_ptr cinfo, boolean isDC, int tblno,
233
c_derived_tbl **pdtbl)
234
{
235
JHUFF_TBL *htbl;
236
c_derived_tbl *dtbl;
237
int p, i, l, lastp, si, maxsymbol;
238
char huffsize[257];
239
unsigned int huffcode[257];
240
unsigned int code;
241
242
/* Note that huffsize[] and huffcode[] are filled in code-length order,
243
* paralleling the order of the symbols themselves in htbl->huffval[].
244
*/
245
246
/* Find the input Huffman table */
247
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
248
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
249
htbl =
250
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
251
if (htbl == NULL)
252
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
253
254
/* Allocate a workspace if we haven't already done so. */
255
if (*pdtbl == NULL)
256
*pdtbl = (c_derived_tbl *)
257
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
258
sizeof(c_derived_tbl));
259
dtbl = *pdtbl;
260
261
/* Figure C.1: make table of Huffman code length for each symbol */
262
263
p = 0;
264
for (l = 1; l <= 16; l++) {
265
i = (int)htbl->bits[l];
266
if (i < 0 || p + i > 256) /* protect against table overrun */
267
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
268
while (i--)
269
huffsize[p++] = (char)l;
270
}
271
huffsize[p] = 0;
272
lastp = p;
273
274
/* Figure C.2: generate the codes themselves */
275
/* We also validate that the counts represent a legal Huffman code tree. */
276
277
code = 0;
278
si = huffsize[0];
279
p = 0;
280
while (huffsize[p]) {
281
while (((int)huffsize[p]) == si) {
282
huffcode[p++] = code;
283
code++;
284
}
285
/* code is now 1 more than the last code used for codelength si; but
286
* it must still fit in si bits, since no code is allowed to be all ones.
287
*/
288
if (((JLONG)code) >= (((JLONG)1) << si))
289
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
290
code <<= 1;
291
si++;
292
}
293
294
/* Figure C.3: generate encoding tables */
295
/* These are code and size indexed by symbol value */
296
297
/* Set all codeless symbols to have code length 0;
298
* this lets us detect duplicate VAL entries here, and later
299
* allows emit_bits to detect any attempt to emit such symbols.
300
*/
301
memset(dtbl->ehufco, 0, sizeof(dtbl->ehufco));
302
memset(dtbl->ehufsi, 0, sizeof(dtbl->ehufsi));
303
304
/* This is also a convenient place to check for out-of-range and duplicated
305
* VAL entries. We allow 0..255 for AC symbols but only 0..15 for DC in
306
* lossy mode and 0..16 for DC in lossless mode. (We could constrain them
307
* further based on data depth and mode, but this seems enough.)
308
*/
309
maxsymbol = isDC ? (cinfo->master->lossless ? 16 : 15) : 255;
310
311
for (p = 0; p < lastp; p++) {
312
i = htbl->huffval[p];
313
if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
314
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
315
dtbl->ehufco[i] = huffcode[p];
316
dtbl->ehufsi[i] = huffsize[p];
317
}
318
}
319
320
321
/* Outputting bytes to the file */
322
323
/* Emit a byte, taking 'action' if must suspend. */
324
#define emit_byte(state, val, action) { \
325
*(state)->next_output_byte++ = (JOCTET)(val); \
326
if (--(state)->free_in_buffer == 0) \
327
if (!dump_buffer(state)) \
328
{ action; } \
329
}
330
331
332
LOCAL(boolean)
333
dump_buffer(working_state *state)
334
/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
335
{
336
struct jpeg_destination_mgr *dest = state->cinfo->dest;
337
338
if (!(*dest->empty_output_buffer) (state->cinfo))
339
return FALSE;
340
/* After a successful buffer dump, must reset buffer pointers */
341
state->next_output_byte = dest->next_output_byte;
342
state->free_in_buffer = dest->free_in_buffer;
343
return TRUE;
344
}
345
346
347
/* Outputting bits to the file */
348
349
/* Output byte b and, speculatively, an additional 0 byte. 0xFF must be
350
* encoded as 0xFF 0x00, so the output buffer pointer is advanced by 2 if the
351
* byte is 0xFF. Otherwise, the output buffer pointer is advanced by 1, and
352
* the speculative 0 byte will be overwritten by the next byte.
353
*/
354
#define EMIT_BYTE(b) { \
355
buffer[0] = (JOCTET)(b); \
356
buffer[1] = 0; \
357
buffer -= -2 + ((JOCTET)(b) < 0xFF); \
358
}
359
360
/* Output the entire bit buffer. If there are no 0xFF bytes in it, then write
361
* directly to the output buffer. Otherwise, use the EMIT_BYTE() macro to
362
* encode 0xFF as 0xFF 0x00.
363
*/
364
#if BIT_BUF_SIZE == 64
365
366
#define FLUSH() { \
367
if (put_buffer & 0x8080808080808080 & ~(put_buffer + 0x0101010101010101)) { \
368
EMIT_BYTE(put_buffer >> 56) \
369
EMIT_BYTE(put_buffer >> 48) \
370
EMIT_BYTE(put_buffer >> 40) \
371
EMIT_BYTE(put_buffer >> 32) \
372
EMIT_BYTE(put_buffer >> 24) \
373
EMIT_BYTE(put_buffer >> 16) \
374
EMIT_BYTE(put_buffer >> 8) \
375
EMIT_BYTE(put_buffer ) \
376
} else { \
377
buffer[0] = (JOCTET)(put_buffer >> 56); \
378
buffer[1] = (JOCTET)(put_buffer >> 48); \
379
buffer[2] = (JOCTET)(put_buffer >> 40); \
380
buffer[3] = (JOCTET)(put_buffer >> 32); \
381
buffer[4] = (JOCTET)(put_buffer >> 24); \
382
buffer[5] = (JOCTET)(put_buffer >> 16); \
383
buffer[6] = (JOCTET)(put_buffer >> 8); \
384
buffer[7] = (JOCTET)(put_buffer); \
385
buffer += 8; \
386
} \
387
}
388
389
#else
390
391
#define FLUSH() { \
392
if (put_buffer & 0x80808080 & ~(put_buffer + 0x01010101)) { \
393
EMIT_BYTE(put_buffer >> 24) \
394
EMIT_BYTE(put_buffer >> 16) \
395
EMIT_BYTE(put_buffer >> 8) \
396
EMIT_BYTE(put_buffer ) \
397
} else { \
398
buffer[0] = (JOCTET)(put_buffer >> 24); \
399
buffer[1] = (JOCTET)(put_buffer >> 16); \
400
buffer[2] = (JOCTET)(put_buffer >> 8); \
401
buffer[3] = (JOCTET)(put_buffer); \
402
buffer += 4; \
403
} \
404
}
405
406
#endif
407
408
/* Fill the bit buffer to capacity with the leading bits from code, then output
409
* the bit buffer and put the remaining bits from code into the bit buffer.
410
*/
411
#define PUT_AND_FLUSH(code, size) { \
412
put_buffer = (put_buffer << (size + free_bits)) | (code >> -free_bits); \
413
FLUSH() \
414
free_bits += BIT_BUF_SIZE; \
415
put_buffer = code; \
416
}
417
418
/* Insert code into the bit buffer and output the bit buffer if needed.
419
* NOTE: We can't flush with free_bits == 0, since the left shift in
420
* PUT_AND_FLUSH() would have undefined behavior.
421
*/
422
#define PUT_BITS(code, size) { \
423
free_bits -= size; \
424
if (free_bits < 0) \
425
PUT_AND_FLUSH(code, size) \
426
else \
427
put_buffer = (put_buffer << size) | code; \
428
}
429
430
#define PUT_CODE(code, size) { \
431
temp &= (((JLONG)1) << nbits) - 1; \
432
temp |= code << nbits; \
433
nbits += size; \
434
PUT_BITS(temp, nbits) \
435
}
436
437
438
/* Although it is exceedingly rare, it is possible for a Huffman-encoded
439
* coefficient block to be larger than the 128-byte unencoded block. For each
440
* of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
441
* theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
442
* encoded block.) If, for instance, one artificially sets the AC
443
* coefficients to alternating values of 32767 and -32768 (using the JPEG
444
* scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
445
* larger than 200 bytes.
446
*/
447
#define BUFSIZE (DCTSIZE2 * 8)
448
449
#define LOAD_BUFFER() { \
450
if (state->free_in_buffer < BUFSIZE) { \
451
localbuf = 1; \
452
buffer = _buffer; \
453
} else \
454
buffer = state->next_output_byte; \
455
}
456
457
#define STORE_BUFFER() { \
458
if (localbuf) { \
459
size_t bytes, bytestocopy; \
460
bytes = buffer - _buffer; \
461
buffer = _buffer; \
462
while (bytes > 0) { \
463
bytestocopy = MIN(bytes, state->free_in_buffer); \
464
memcpy(state->next_output_byte, buffer, bytestocopy); \
465
state->next_output_byte += bytestocopy; \
466
buffer += bytestocopy; \
467
state->free_in_buffer -= bytestocopy; \
468
if (state->free_in_buffer == 0) \
469
if (!dump_buffer(state)) return FALSE; \
470
bytes -= bytestocopy; \
471
} \
472
} else { \
473
state->free_in_buffer -= (buffer - state->next_output_byte); \
474
state->next_output_byte = buffer; \
475
} \
476
}
477
478
479
LOCAL(boolean)
480
flush_bits(working_state *state)
481
{
482
JOCTET _buffer[BUFSIZE], *buffer, temp;
483
simd_bit_buf_type put_buffer; int put_bits;
484
int localbuf = 0;
485
486
#ifdef WITH_SIMD
487
if (state->simd) {
488
#if defined(__aarch64__) && !defined(NEON_INTRINSICS)
489
put_bits = state->cur.free_bits;
490
#else
491
put_bits = SIMD_BIT_BUF_SIZE - state->cur.free_bits;
492
#endif
493
put_buffer = state->cur.put_buffer.simd;
494
} else
495
#endif
496
{
497
put_bits = BIT_BUF_SIZE - state->cur.free_bits;
498
put_buffer = state->cur.put_buffer.c;
499
}
500
501
LOAD_BUFFER()
502
503
while (put_bits >= 8) {
504
put_bits -= 8;
505
temp = (JOCTET)(put_buffer >> put_bits);
506
EMIT_BYTE(temp)
507
}
508
if (put_bits) {
509
/* fill partial byte with ones */
510
temp = (JOCTET)((put_buffer << (8 - put_bits)) | (0xFF >> put_bits));
511
EMIT_BYTE(temp)
512
}
513
514
#ifdef WITH_SIMD
515
if (state->simd) { /* and reset bit buffer to empty */
516
state->cur.put_buffer.simd = 0;
517
#if defined(__aarch64__) && !defined(NEON_INTRINSICS)
518
state->cur.free_bits = 0;
519
#else
520
state->cur.free_bits = SIMD_BIT_BUF_SIZE;
521
#endif
522
} else
523
#endif
524
{
525
state->cur.put_buffer.c = 0;
526
state->cur.free_bits = BIT_BUF_SIZE;
527
}
528
STORE_BUFFER()
529
530
return TRUE;
531
}
532
533
534
#ifdef WITH_SIMD
535
536
/* Encode a single block's worth of coefficients */
537
538
LOCAL(boolean)
539
encode_one_block_simd(working_state *state, JCOEFPTR block, int last_dc_val,
540
c_derived_tbl *dctbl, c_derived_tbl *actbl)
541
{
542
JOCTET _buffer[BUFSIZE], *buffer;
543
int localbuf = 0;
544
545
#ifdef ZERO_BUFFERS
546
memset(_buffer, 0, sizeof(_buffer));
547
#endif
548
549
LOAD_BUFFER()
550
551
buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val,
552
dctbl, actbl);
553
554
STORE_BUFFER()
555
556
return TRUE;
557
}
558
559
#endif
560
561
LOCAL(boolean)
562
encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val,
563
c_derived_tbl *dctbl, c_derived_tbl *actbl)
564
{
565
int temp, nbits, free_bits;
566
bit_buf_type put_buffer;
567
JOCTET _buffer[BUFSIZE], *buffer;
568
int localbuf = 0;
569
int max_coef_bits = state->cinfo->data_precision + 2;
570
571
free_bits = state->cur.free_bits;
572
put_buffer = state->cur.put_buffer.c;
573
LOAD_BUFFER()
574
575
/* Encode the DC coefficient difference per section F.1.2.1 */
576
577
temp = block[0] - last_dc_val;
578
579
/* This is a well-known technique for obtaining the absolute value without a
580
* branch. It is derived from an assembly language technique presented in
581
* "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
582
* Agner Fog. This code assumes we are on a two's complement machine.
583
*/
584
nbits = temp >> (CHAR_BIT * sizeof(int) - 1);
585
temp += nbits;
586
nbits ^= temp;
587
588
/* Find the number of bits needed for the magnitude of the coefficient */
589
nbits = JPEG_NBITS(nbits);
590
/* Check for out-of-range coefficient values.
591
* Since we're encoding a difference, the range limit is twice as much.
592
*/
593
if (nbits > max_coef_bits + 1)
594
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
595
596
/* Emit the Huffman-coded symbol for the number of bits.
597
* Emit that number of bits of the value, if positive,
598
* or the complement of its magnitude, if negative.
599
*/
600
PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits])
601
602
/* Encode the AC coefficients per section F.1.2.2 */
603
604
{
605
int r = 0; /* r = run length of zeros */
606
607
/* Manually unroll the k loop to eliminate the counter variable. This
608
* improves performance greatly on systems with a limited number of
609
* registers (such as x86.)
610
*/
611
#define kloop(jpeg_natural_order_of_k) { \
612
if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
613
r += 16; \
614
} else { \
615
/* Branch-less absolute value, bitwise complement, etc., same as above */ \
616
nbits = temp >> (CHAR_BIT * sizeof(int) - 1); \
617
temp += nbits; \
618
nbits ^= temp; \
619
nbits = JPEG_NBITS_NONZERO(nbits); \
620
/* Check for out-of-range coefficient values */ \
621
if (nbits > max_coef_bits) \
622
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); \
623
/* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
624
while (r >= 16 * 16) { \
625
r -= 16 * 16; \
626
PUT_BITS(actbl->ehufco[0xf0], actbl->ehufsi[0xf0]) \
627
} \
628
/* Emit Huffman symbol for run length / number of bits */ \
629
r += nbits; \
630
PUT_CODE(actbl->ehufco[r], actbl->ehufsi[r]) \
631
r = 0; \
632
} \
633
}
634
635
/* One iteration for each value in jpeg_natural_order[] */
636
kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3);
637
kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18);
638
kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26);
639
kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27);
640
kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21);
641
kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57);
642
kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15);
643
kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58);
644
kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39);
645
kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47);
646
kloop(55); kloop(62); kloop(63);
647
648
/* If the last coef(s) were zero, emit an end-of-block code */
649
if (r > 0) {
650
PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
651
}
652
}
653
654
state->cur.put_buffer.c = put_buffer;
655
state->cur.free_bits = free_bits;
656
STORE_BUFFER()
657
658
return TRUE;
659
}
660
661
662
/*
663
* Emit a restart marker & resynchronize predictions.
664
*/
665
666
LOCAL(boolean)
667
emit_restart(working_state *state, int restart_num)
668
{
669
int ci;
670
671
if (!flush_bits(state))
672
return FALSE;
673
674
emit_byte(state, 0xFF, return FALSE);
675
emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
676
677
/* Re-initialize DC predictions to 0 */
678
for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
679
state->cur.last_dc_val[ci] = 0;
680
681
/* The restart counter is not updated until we successfully write the MCU. */
682
683
return TRUE;
684
}
685
686
687
/*
688
* Encode and output one MCU's worth of Huffman-compressed coefficients.
689
*/
690
691
METHODDEF(boolean)
692
encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
693
{
694
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
695
working_state state;
696
int blkn, ci;
697
jpeg_component_info *compptr;
698
699
/* Load up working state */
700
state.next_output_byte = cinfo->dest->next_output_byte;
701
state.free_in_buffer = cinfo->dest->free_in_buffer;
702
state.cur = entropy->saved;
703
state.cinfo = cinfo;
704
#ifdef WITH_SIMD
705
state.simd = entropy->simd;
706
#endif
707
708
/* Emit restart marker if needed */
709
if (cinfo->restart_interval) {
710
if (entropy->restarts_to_go == 0)
711
if (!emit_restart(&state, entropy->next_restart_num))
712
return FALSE;
713
}
714
715
/* Encode the MCU data blocks */
716
#ifdef WITH_SIMD
717
if (entropy->simd) {
718
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
719
ci = cinfo->MCU_membership[blkn];
720
compptr = cinfo->cur_comp_info[ci];
721
if (!encode_one_block_simd(&state,
722
MCU_data[blkn][0], state.cur.last_dc_val[ci],
723
entropy->dc_derived_tbls[compptr->dc_tbl_no],
724
entropy->ac_derived_tbls[compptr->ac_tbl_no]))
725
return FALSE;
726
/* Update last_dc_val */
727
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
728
}
729
} else
730
#endif
731
{
732
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
733
ci = cinfo->MCU_membership[blkn];
734
compptr = cinfo->cur_comp_info[ci];
735
if (!encode_one_block(&state,
736
MCU_data[blkn][0], state.cur.last_dc_val[ci],
737
entropy->dc_derived_tbls[compptr->dc_tbl_no],
738
entropy->ac_derived_tbls[compptr->ac_tbl_no]))
739
return FALSE;
740
/* Update last_dc_val */
741
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
742
}
743
}
744
745
/* Completed MCU, so update state */
746
cinfo->dest->next_output_byte = state.next_output_byte;
747
cinfo->dest->free_in_buffer = state.free_in_buffer;
748
entropy->saved = state.cur;
749
750
/* Update restart-interval state too */
751
if (cinfo->restart_interval) {
752
if (entropy->restarts_to_go == 0) {
753
entropy->restarts_to_go = cinfo->restart_interval;
754
entropy->next_restart_num++;
755
entropy->next_restart_num &= 7;
756
}
757
entropy->restarts_to_go--;
758
}
759
760
return TRUE;
761
}
762
763
764
/*
765
* Finish up at the end of a Huffman-compressed scan.
766
*/
767
768
METHODDEF(void)
769
finish_pass_huff(j_compress_ptr cinfo)
770
{
771
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
772
working_state state;
773
774
/* Load up working state ... flush_bits needs it */
775
state.next_output_byte = cinfo->dest->next_output_byte;
776
state.free_in_buffer = cinfo->dest->free_in_buffer;
777
state.cur = entropy->saved;
778
state.cinfo = cinfo;
779
#ifdef WITH_SIMD
780
state.simd = entropy->simd;
781
#endif
782
783
/* Flush out the last data */
784
if (!flush_bits(&state))
785
ERREXIT(cinfo, JERR_CANT_SUSPEND);
786
787
/* Update state */
788
cinfo->dest->next_output_byte = state.next_output_byte;
789
cinfo->dest->free_in_buffer = state.free_in_buffer;
790
entropy->saved = state.cur;
791
}
792
793
794
/*
795
* Huffman coding optimization.
796
*
797
* We first scan the supplied data and count the number of uses of each symbol
798
* that is to be Huffman-coded. (This process MUST agree with the code above.)
799
* Then we build a Huffman coding tree for the observed counts.
800
* Symbols which are not needed at all for the particular image are not
801
* assigned any code, which saves space in the DHT marker as well as in
802
* the compressed data.
803
*/
804
805
#ifdef ENTROPY_OPT_SUPPORTED
806
807
808
/* Process a single block's worth of coefficients */
809
810
LOCAL(void)
811
htest_one_block(j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
812
long dc_counts[], long ac_counts[])
813
{
814
register int temp;
815
register int nbits;
816
register int k, r;
817
int max_coef_bits = cinfo->data_precision + 2;
818
819
/* Encode the DC coefficient difference per section F.1.2.1 */
820
821
temp = block[0] - last_dc_val;
822
if (temp < 0)
823
temp = -temp;
824
825
/* Find the number of bits needed for the magnitude of the coefficient */
826
nbits = 0;
827
while (temp) {
828
nbits++;
829
temp >>= 1;
830
}
831
/* Check for out-of-range coefficient values.
832
* Since we're encoding a difference, the range limit is twice as much.
833
*/
834
if (nbits > max_coef_bits + 1)
835
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
836
837
/* Count the Huffman symbol for the number of bits */
838
dc_counts[nbits]++;
839
840
/* Encode the AC coefficients per section F.1.2.2 */
841
842
r = 0; /* r = run length of zeros */
843
844
for (k = 1; k < DCTSIZE2; k++) {
845
if ((temp = block[jpeg_natural_order[k]]) == 0) {
846
r++;
847
} else {
848
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
849
while (r > 15) {
850
ac_counts[0xF0]++;
851
r -= 16;
852
}
853
854
/* Find the number of bits needed for the magnitude of the coefficient */
855
if (temp < 0)
856
temp = -temp;
857
858
/* Find the number of bits needed for the magnitude of the coefficient */
859
nbits = 1; /* there must be at least one 1 bit */
860
while ((temp >>= 1))
861
nbits++;
862
/* Check for out-of-range coefficient values */
863
if (nbits > max_coef_bits)
864
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
865
866
/* Count Huffman symbol for run length / number of bits */
867
ac_counts[(r << 4) + nbits]++;
868
869
r = 0;
870
}
871
}
872
873
/* If the last coef(s) were zero, emit an end-of-block code */
874
if (r > 0)
875
ac_counts[0]++;
876
}
877
878
879
/*
880
* Trial-encode one MCU's worth of Huffman-compressed coefficients.
881
* No data is actually output, so no suspension return is possible.
882
*/
883
884
METHODDEF(boolean)
885
encode_mcu_gather(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
886
{
887
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
888
int blkn, ci;
889
jpeg_component_info *compptr;
890
891
/* Take care of restart intervals if needed */
892
if (cinfo->restart_interval) {
893
if (entropy->restarts_to_go == 0) {
894
/* Re-initialize DC predictions to 0 */
895
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
896
entropy->saved.last_dc_val[ci] = 0;
897
/* Update restart state */
898
entropy->restarts_to_go = cinfo->restart_interval;
899
}
900
entropy->restarts_to_go--;
901
}
902
903
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
904
ci = cinfo->MCU_membership[blkn];
905
compptr = cinfo->cur_comp_info[ci];
906
htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
907
entropy->dc_count_ptrs[compptr->dc_tbl_no],
908
entropy->ac_count_ptrs[compptr->ac_tbl_no]);
909
entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
910
}
911
912
return TRUE;
913
}
914
915
916
/*
917
* Generate the best Huffman code table for the given counts, fill htbl.
918
* Note this is also used by jcphuff.c and jclhuff.c.
919
*
920
* The JPEG standard requires that no symbol be assigned a codeword of all
921
* one bits (so that padding bits added at the end of a compressed segment
922
* can't look like a valid code). Because of the canonical ordering of
923
* codewords, this just means that there must be an unused slot in the
924
* longest codeword length category. Annex K (Clause K.2) of
925
* Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 suggests reserving such a slot
926
* by pretending that symbol 256 is a valid symbol with count 1. In theory
927
* that's not optimal; giving it count zero but including it in the symbol set
928
* anyway should give a better Huffman code. But the theoretically better code
929
* actually seems to come out worse in practice, because it produces more
930
* all-ones bytes (which incur stuffed zero bytes in the final file). In any
931
* case the difference is tiny.
932
*
933
* The JPEG standard requires Huffman codes to be no more than 16 bits long.
934
* If some symbols have a very small but nonzero probability, the Huffman tree
935
* must be adjusted to meet the code length restriction. We currently use
936
* the adjustment method suggested in JPEG section K.2. This method is *not*
937
* optimal; it may not choose the best possible limited-length code. But
938
* typically only very-low-frequency symbols will be given less-than-optimal
939
* lengths, so the code is almost optimal. Experimental comparisons against
940
* an optimal limited-length-code algorithm indicate that the difference is
941
* microscopic --- usually less than a hundredth of a percent of total size.
942
* So the extra complexity of an optimal algorithm doesn't seem worthwhile.
943
*/
944
945
GLOBAL(void)
946
jpeg_gen_optimal_table(j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
947
{
948
#define MAX_CLEN 32 /* assumed maximum initial code length */
949
UINT8 bits[MAX_CLEN + 1]; /* bits[k] = # of symbols with code length k */
950
int bit_pos[MAX_CLEN + 1]; /* # of symbols with smaller code length */
951
int codesize[257]; /* codesize[k] = code length of symbol k */
952
int nz_index[257]; /* index of nonzero symbol in the original freq
953
array */
954
int others[257]; /* next symbol in current branch of tree */
955
int c1, c2;
956
int p, i, j;
957
int num_nz_symbols;
958
long v, v2;
959
960
/* This algorithm is explained in section K.2 of the JPEG standard */
961
962
memset(bits, 0, sizeof(bits));
963
memset(codesize, 0, sizeof(codesize));
964
for (i = 0; i < 257; i++)
965
others[i] = -1; /* init links to empty */
966
967
freq[256] = 1; /* make sure 256 has a nonzero count */
968
/* Including the pseudo-symbol 256 in the Huffman procedure guarantees
969
* that no real symbol is given code-value of all ones, because 256
970
* will be placed last in the largest codeword category.
971
*/
972
973
/* Group nonzero frequencies together so we can more easily find the
974
* smallest.
975
*/
976
num_nz_symbols = 0;
977
for (i = 0; i < 257; i++) {
978
if (freq[i]) {
979
nz_index[num_nz_symbols] = i;
980
freq[num_nz_symbols] = freq[i];
981
num_nz_symbols++;
982
}
983
}
984
985
/* Huffman's basic algorithm to assign optimal code lengths to symbols */
986
987
for (;;) {
988
/* Find the two smallest nonzero frequencies; set c1, c2 = their symbols */
989
/* In case of ties, take the larger symbol number. Since we have grouped
990
* the nonzero symbols together, checking for zero symbols is not
991
* necessary.
992
*/
993
c1 = -1;
994
c2 = -1;
995
v = 1000000000L;
996
v2 = 1000000000L;
997
for (i = 0; i < num_nz_symbols; i++) {
998
if (freq[i] <= v2) {
999
if (freq[i] <= v) {
1000
c2 = c1;
1001
v2 = v;
1002
v = freq[i];
1003
c1 = i;
1004
} else {
1005
v2 = freq[i];
1006
c2 = i;
1007
}
1008
}
1009
}
1010
1011
/* Done if we've merged everything into one frequency */
1012
if (c2 < 0)
1013
break;
1014
1015
/* Else merge the two counts/trees */
1016
freq[c1] += freq[c2];
1017
/* Set the frequency to a very high value instead of zero, so we don't have
1018
* to check for zero values.
1019
*/
1020
freq[c2] = 1000000001L;
1021
1022
/* Increment the codesize of everything in c1's tree branch */
1023
codesize[c1]++;
1024
while (others[c1] >= 0) {
1025
c1 = others[c1];
1026
codesize[c1]++;
1027
}
1028
1029
others[c1] = c2; /* chain c2 onto c1's tree branch */
1030
1031
/* Increment the codesize of everything in c2's tree branch */
1032
codesize[c2]++;
1033
while (others[c2] >= 0) {
1034
c2 = others[c2];
1035
codesize[c2]++;
1036
}
1037
}
1038
1039
/* Now count the number of symbols of each code length */
1040
for (i = 0; i < num_nz_symbols; i++) {
1041
/* The JPEG standard seems to think that this can't happen, */
1042
/* but I'm paranoid... */
1043
if (codesize[i] > MAX_CLEN)
1044
ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
1045
1046
bits[codesize[i]]++;
1047
}
1048
1049
/* Count the number of symbols with a length smaller than i bits, so we can
1050
* construct the symbol table more efficiently. Note that this includes the
1051
* pseudo-symbol 256, but since it is the last symbol, it will not affect the
1052
* table.
1053
*/
1054
p = 0;
1055
for (i = 1; i <= MAX_CLEN; i++) {
1056
bit_pos[i] = p;
1057
p += bits[i];
1058
}
1059
1060
/* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
1061
* Huffman procedure assigned any such lengths, we must adjust the coding.
1062
* Here is what Rec. ITU-T T.81 | ISO/IEC 10918-1 says about how this next
1063
* bit works: Since symbols are paired for the longest Huffman code, the
1064
* symbols are removed from this length category two at a time. The prefix
1065
* for the pair (which is one bit shorter) is allocated to one of the pair;
1066
* then, skipping the BITS entry for that prefix length, a code word from the
1067
* next shortest nonzero BITS entry is converted into a prefix for two code
1068
* words one bit longer.
1069
*/
1070
1071
for (i = MAX_CLEN; i > 16; i--) {
1072
while (bits[i] > 0) {
1073
j = i - 2; /* find length of new prefix to be used */
1074
while (bits[j] == 0)
1075
j--;
1076
1077
bits[i] -= 2; /* remove two symbols */
1078
bits[i - 1]++; /* one goes in this length */
1079
bits[j + 1] += 2; /* two new symbols in this length */
1080
bits[j]--; /* symbol of this length is now a prefix */
1081
}
1082
}
1083
1084
/* Remove the count for the pseudo-symbol 256 from the largest codelength */
1085
while (bits[i] == 0) /* find largest codelength still in use */
1086
i--;
1087
bits[i]--;
1088
1089
/* Return final symbol counts (only for lengths 0..16) */
1090
memcpy(htbl->bits, bits, sizeof(htbl->bits));
1091
1092
/* Return a list of the symbols sorted by code length */
1093
/* It's not real clear to me why we don't need to consider the codelength
1094
* changes made above, but Rec. ITU-T T.81 | ISO/IEC 10918-1 seems to think
1095
* this works.
1096
*/
1097
for (i = 0; i < num_nz_symbols - 1; i++) {
1098
htbl->huffval[bit_pos[codesize[i]]] = (UINT8)nz_index[i];
1099
bit_pos[codesize[i]]++;
1100
}
1101
1102
/* Set sent_table FALSE so updated table will be written to JPEG file. */
1103
htbl->sent_table = FALSE;
1104
}
1105
1106
1107
/*
1108
* Finish up a statistics-gathering pass and create the new Huffman tables.
1109
*/
1110
1111
METHODDEF(void)
1112
finish_pass_gather(j_compress_ptr cinfo)
1113
{
1114
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
1115
int ci, dctbl, actbl;
1116
jpeg_component_info *compptr;
1117
JHUFF_TBL **htblptr;
1118
boolean did_dc[NUM_HUFF_TBLS];
1119
boolean did_ac[NUM_HUFF_TBLS];
1120
1121
/* It's important not to apply jpeg_gen_optimal_table more than once
1122
* per table, because it clobbers the input frequency counts!
1123
*/
1124
memset(did_dc, 0, sizeof(did_dc));
1125
memset(did_ac, 0, sizeof(did_ac));
1126
1127
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1128
compptr = cinfo->cur_comp_info[ci];
1129
dctbl = compptr->dc_tbl_no;
1130
actbl = compptr->ac_tbl_no;
1131
if (!did_dc[dctbl]) {
1132
htblptr = &cinfo->dc_huff_tbl_ptrs[dctbl];
1133
if (*htblptr == NULL)
1134
*htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
1135
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
1136
did_dc[dctbl] = TRUE;
1137
}
1138
if (!did_ac[actbl]) {
1139
htblptr = &cinfo->ac_huff_tbl_ptrs[actbl];
1140
if (*htblptr == NULL)
1141
*htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
1142
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
1143
did_ac[actbl] = TRUE;
1144
}
1145
}
1146
}
1147
1148
1149
#endif /* ENTROPY_OPT_SUPPORTED */
1150
1151
1152
/*
1153
* Module initialization routine for Huffman entropy encoding.
1154
*/
1155
1156
GLOBAL(void)
1157
jinit_huff_encoder(j_compress_ptr cinfo)
1158
{
1159
huff_entropy_ptr entropy;
1160
int i;
1161
1162
entropy = (huff_entropy_ptr)
1163
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
1164
sizeof(huff_entropy_encoder));
1165
cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
1166
entropy->pub.start_pass = start_pass_huff;
1167
1168
/* Mark tables unallocated */
1169
for (i = 0; i < NUM_HUFF_TBLS; i++) {
1170
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1171
#ifdef ENTROPY_OPT_SUPPORTED
1172
entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1173
#endif
1174
}
1175
}
1176
1177