Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libjpeg-turbo/src/jdcoefct.c
9904 views
1
/*
2
* jdcoefct.c
3
*
4
* This file was part of the Independent JPEG Group's software:
5
* Copyright (C) 1994-1997, Thomas G. Lane.
6
* libjpeg-turbo Modifications:
7
* Copyright 2009 Pierre Ossman <[email protected]> for Cendio AB
8
* Copyright (C) 2010, 2015-2016, 2019-2020, 2022-2023, D. R. Commander.
9
* Copyright (C) 2015, 2020, Google, Inc.
10
* For conditions of distribution and use, see the accompanying README.ijg
11
* file.
12
*
13
* This file contains the coefficient buffer controller for decompression.
14
* This controller is the top level of the lossy JPEG decompressor proper.
15
* The coefficient buffer lies between entropy decoding and inverse-DCT steps.
16
*
17
* In buffered-image mode, this controller is the interface between
18
* input-oriented processing and output-oriented processing.
19
* Also, the input side (only) is used when reading a file for transcoding.
20
*/
21
22
#include "jinclude.h"
23
#include "jdcoefct.h"
24
#include "jpegapicomp.h"
25
#include "jsamplecomp.h"
26
27
28
/* Forward declarations */
29
METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo,
30
_JSAMPIMAGE output_buf);
31
#ifdef D_MULTISCAN_FILES_SUPPORTED
32
METHODDEF(int) decompress_data(j_decompress_ptr cinfo, _JSAMPIMAGE output_buf);
33
#endif
34
#ifdef BLOCK_SMOOTHING_SUPPORTED
35
LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo);
36
METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo,
37
_JSAMPIMAGE output_buf);
38
#endif
39
40
41
/*
42
* Initialize for an input processing pass.
43
*/
44
45
METHODDEF(void)
46
start_input_pass(j_decompress_ptr cinfo)
47
{
48
cinfo->input_iMCU_row = 0;
49
start_iMCU_row(cinfo);
50
}
51
52
53
/*
54
* Initialize for an output processing pass.
55
*/
56
57
METHODDEF(void)
58
start_output_pass(j_decompress_ptr cinfo)
59
{
60
#ifdef BLOCK_SMOOTHING_SUPPORTED
61
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
62
63
/* If multipass, check to see whether to use block smoothing on this pass */
64
if (coef->pub.coef_arrays != NULL) {
65
if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
66
coef->pub._decompress_data = decompress_smooth_data;
67
else
68
coef->pub._decompress_data = decompress_data;
69
}
70
#endif
71
cinfo->output_iMCU_row = 0;
72
}
73
74
75
/*
76
* Decompress and return some data in the single-pass case.
77
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
78
* Input and output must run in lockstep since we have only a one-MCU buffer.
79
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
80
*
81
* NB: output_buf contains a plane for each component in image,
82
* which we index according to the component's SOF position.
83
*/
84
85
METHODDEF(int)
86
decompress_onepass(j_decompress_ptr cinfo, _JSAMPIMAGE output_buf)
87
{
88
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
89
JDIMENSION MCU_col_num; /* index of current MCU within row */
90
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
91
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
92
int blkn, ci, xindex, yindex, yoffset, useful_width;
93
_JSAMPARRAY output_ptr;
94
JDIMENSION start_col, output_col;
95
jpeg_component_info *compptr;
96
_inverse_DCT_method_ptr inverse_DCT;
97
98
/* Loop to process as much as one whole iMCU row */
99
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
100
yoffset++) {
101
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
102
MCU_col_num++) {
103
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
104
jzero_far((void *)coef->MCU_buffer[0],
105
(size_t)(cinfo->blocks_in_MCU * sizeof(JBLOCK)));
106
if (!cinfo->entropy->insufficient_data)
107
cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row;
108
if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
109
/* Suspension forced; update state counters and exit */
110
coef->MCU_vert_offset = yoffset;
111
coef->MCU_ctr = MCU_col_num;
112
return JPEG_SUSPENDED;
113
}
114
115
/* Only perform the IDCT on blocks that are contained within the desired
116
* cropping region.
117
*/
118
if (MCU_col_num >= cinfo->master->first_iMCU_col &&
119
MCU_col_num <= cinfo->master->last_iMCU_col) {
120
/* Determine where data should go in output_buf and do the IDCT thing.
121
* We skip dummy blocks at the right and bottom edges (but blkn gets
122
* incremented past them!). Note the inner loop relies on having
123
* allocated the MCU_buffer[] blocks sequentially.
124
*/
125
blkn = 0; /* index of current DCT block within MCU */
126
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
127
compptr = cinfo->cur_comp_info[ci];
128
/* Don't bother to IDCT an uninteresting component. */
129
if (!compptr->component_needed) {
130
blkn += compptr->MCU_blocks;
131
continue;
132
}
133
inverse_DCT = cinfo->idct->_inverse_DCT[compptr->component_index];
134
useful_width = (MCU_col_num < last_MCU_col) ?
135
compptr->MCU_width : compptr->last_col_width;
136
output_ptr = output_buf[compptr->component_index] +
137
yoffset * compptr->_DCT_scaled_size;
138
start_col = (MCU_col_num - cinfo->master->first_iMCU_col) *
139
compptr->MCU_sample_width;
140
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
141
if (cinfo->input_iMCU_row < last_iMCU_row ||
142
yoffset + yindex < compptr->last_row_height) {
143
output_col = start_col;
144
for (xindex = 0; xindex < useful_width; xindex++) {
145
(*inverse_DCT) (cinfo, compptr,
146
(JCOEFPTR)coef->MCU_buffer[blkn + xindex],
147
output_ptr, output_col);
148
output_col += compptr->_DCT_scaled_size;
149
}
150
}
151
blkn += compptr->MCU_width;
152
output_ptr += compptr->_DCT_scaled_size;
153
}
154
}
155
}
156
}
157
/* Completed an MCU row, but perhaps not an iMCU row */
158
coef->MCU_ctr = 0;
159
}
160
/* Completed the iMCU row, advance counters for next one */
161
cinfo->output_iMCU_row++;
162
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
163
start_iMCU_row(cinfo);
164
return JPEG_ROW_COMPLETED;
165
}
166
/* Completed the scan */
167
(*cinfo->inputctl->finish_input_pass) (cinfo);
168
return JPEG_SCAN_COMPLETED;
169
}
170
171
172
/*
173
* Dummy consume-input routine for single-pass operation.
174
*/
175
176
METHODDEF(int)
177
dummy_consume_data(j_decompress_ptr cinfo)
178
{
179
return JPEG_SUSPENDED; /* Always indicate nothing was done */
180
}
181
182
183
#ifdef D_MULTISCAN_FILES_SUPPORTED
184
185
/*
186
* Consume input data and store it in the full-image coefficient buffer.
187
* We read as much as one fully interleaved MCU row ("iMCU" row) per call,
188
* ie, v_samp_factor block rows for each component in the scan.
189
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
190
*/
191
192
METHODDEF(int)
193
consume_data(j_decompress_ptr cinfo)
194
{
195
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
196
JDIMENSION MCU_col_num; /* index of current MCU within row */
197
int blkn, ci, xindex, yindex, yoffset;
198
JDIMENSION start_col;
199
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
200
JBLOCKROW buffer_ptr;
201
jpeg_component_info *compptr;
202
203
/* Align the virtual buffers for the components used in this scan. */
204
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
205
compptr = cinfo->cur_comp_info[ci];
206
buffer[ci] = (*cinfo->mem->access_virt_barray)
207
((j_common_ptr)cinfo, coef->whole_image[compptr->component_index],
208
cinfo->input_iMCU_row * compptr->v_samp_factor,
209
(JDIMENSION)compptr->v_samp_factor, TRUE);
210
/* Note: entropy decoder expects buffer to be zeroed,
211
* but this is handled automatically by the memory manager
212
* because we requested a pre-zeroed array.
213
*/
214
}
215
216
/* Loop to process one whole iMCU row */
217
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
218
yoffset++) {
219
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
220
MCU_col_num++) {
221
/* Construct list of pointers to DCT blocks belonging to this MCU */
222
blkn = 0; /* index of current DCT block within MCU */
223
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
224
compptr = cinfo->cur_comp_info[ci];
225
start_col = MCU_col_num * compptr->MCU_width;
226
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
227
buffer_ptr = buffer[ci][yindex + yoffset] + start_col;
228
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
229
coef->MCU_buffer[blkn++] = buffer_ptr++;
230
}
231
}
232
}
233
if (!cinfo->entropy->insufficient_data)
234
cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row;
235
/* Try to fetch the MCU. */
236
if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
237
/* Suspension forced; update state counters and exit */
238
coef->MCU_vert_offset = yoffset;
239
coef->MCU_ctr = MCU_col_num;
240
return JPEG_SUSPENDED;
241
}
242
}
243
/* Completed an MCU row, but perhaps not an iMCU row */
244
coef->MCU_ctr = 0;
245
}
246
/* Completed the iMCU row, advance counters for next one */
247
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
248
start_iMCU_row(cinfo);
249
return JPEG_ROW_COMPLETED;
250
}
251
/* Completed the scan */
252
(*cinfo->inputctl->finish_input_pass) (cinfo);
253
return JPEG_SCAN_COMPLETED;
254
}
255
256
257
/*
258
* Decompress and return some data in the multi-pass case.
259
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
260
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
261
*
262
* NB: output_buf contains a plane for each component in image.
263
*/
264
265
METHODDEF(int)
266
decompress_data(j_decompress_ptr cinfo, _JSAMPIMAGE output_buf)
267
{
268
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
269
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
270
JDIMENSION block_num;
271
int ci, block_row, block_rows;
272
JBLOCKARRAY buffer;
273
JBLOCKROW buffer_ptr;
274
_JSAMPARRAY output_ptr;
275
JDIMENSION output_col;
276
jpeg_component_info *compptr;
277
_inverse_DCT_method_ptr inverse_DCT;
278
279
/* Force some input to be done if we are getting ahead of the input. */
280
while (cinfo->input_scan_number < cinfo->output_scan_number ||
281
(cinfo->input_scan_number == cinfo->output_scan_number &&
282
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
283
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
284
return JPEG_SUSPENDED;
285
}
286
287
/* OK, output from the virtual arrays. */
288
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
289
ci++, compptr++) {
290
/* Don't bother to IDCT an uninteresting component. */
291
if (!compptr->component_needed)
292
continue;
293
/* Align the virtual buffer for this component. */
294
buffer = (*cinfo->mem->access_virt_barray)
295
((j_common_ptr)cinfo, coef->whole_image[ci],
296
cinfo->output_iMCU_row * compptr->v_samp_factor,
297
(JDIMENSION)compptr->v_samp_factor, FALSE);
298
/* Count non-dummy DCT block rows in this iMCU row. */
299
if (cinfo->output_iMCU_row < last_iMCU_row)
300
block_rows = compptr->v_samp_factor;
301
else {
302
/* NB: can't use last_row_height here; it is input-side-dependent! */
303
block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
304
if (block_rows == 0) block_rows = compptr->v_samp_factor;
305
}
306
inverse_DCT = cinfo->idct->_inverse_DCT[ci];
307
output_ptr = output_buf[ci];
308
/* Loop over all DCT blocks to be processed. */
309
for (block_row = 0; block_row < block_rows; block_row++) {
310
buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
311
output_col = 0;
312
for (block_num = cinfo->master->first_MCU_col[ci];
313
block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
314
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR)buffer_ptr, output_ptr,
315
output_col);
316
buffer_ptr++;
317
output_col += compptr->_DCT_scaled_size;
318
}
319
output_ptr += compptr->_DCT_scaled_size;
320
}
321
}
322
323
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
324
return JPEG_ROW_COMPLETED;
325
return JPEG_SCAN_COMPLETED;
326
}
327
328
#endif /* D_MULTISCAN_FILES_SUPPORTED */
329
330
331
#ifdef BLOCK_SMOOTHING_SUPPORTED
332
333
/*
334
* This code applies interblock smoothing; the first 9 AC coefficients are
335
* estimated from the DC values of a DCT block and its 24 neighboring blocks.
336
* We apply smoothing only for progressive JPEG decoding, and only if
337
* the coefficients it can estimate are not yet known to full precision.
338
*/
339
340
/* Natural-order array positions of the first 9 zigzag-order coefficients */
341
#define Q01_POS 1
342
#define Q10_POS 8
343
#define Q20_POS 16
344
#define Q11_POS 9
345
#define Q02_POS 2
346
#define Q03_POS 3
347
#define Q12_POS 10
348
#define Q21_POS 17
349
#define Q30_POS 24
350
351
/*
352
* Determine whether block smoothing is applicable and safe.
353
* We also latch the current states of the coef_bits[] entries for the
354
* AC coefficients; otherwise, if the input side of the decompressor
355
* advances into a new scan, we might think the coefficients are known
356
* more accurately than they really are.
357
*/
358
359
LOCAL(boolean)
360
smoothing_ok(j_decompress_ptr cinfo)
361
{
362
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
363
boolean smoothing_useful = FALSE;
364
int ci, coefi;
365
jpeg_component_info *compptr;
366
JQUANT_TBL *qtable;
367
int *coef_bits, *prev_coef_bits;
368
int *coef_bits_latch, *prev_coef_bits_latch;
369
370
if (!cinfo->progressive_mode || cinfo->coef_bits == NULL)
371
return FALSE;
372
373
/* Allocate latch area if not already done */
374
if (coef->coef_bits_latch == NULL)
375
coef->coef_bits_latch = (int *)
376
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
377
cinfo->num_components * 2 *
378
(SAVED_COEFS * sizeof(int)));
379
coef_bits_latch = coef->coef_bits_latch;
380
prev_coef_bits_latch =
381
&coef->coef_bits_latch[cinfo->num_components * SAVED_COEFS];
382
383
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
384
ci++, compptr++) {
385
/* All components' quantization values must already be latched. */
386
if ((qtable = compptr->quant_table) == NULL)
387
return FALSE;
388
/* Verify DC & first 9 AC quantizers are nonzero to avoid zero-divide. */
389
if (qtable->quantval[0] == 0 ||
390
qtable->quantval[Q01_POS] == 0 ||
391
qtable->quantval[Q10_POS] == 0 ||
392
qtable->quantval[Q20_POS] == 0 ||
393
qtable->quantval[Q11_POS] == 0 ||
394
qtable->quantval[Q02_POS] == 0 ||
395
qtable->quantval[Q03_POS] == 0 ||
396
qtable->quantval[Q12_POS] == 0 ||
397
qtable->quantval[Q21_POS] == 0 ||
398
qtable->quantval[Q30_POS] == 0)
399
return FALSE;
400
/* DC values must be at least partly known for all components. */
401
coef_bits = cinfo->coef_bits[ci];
402
prev_coef_bits = cinfo->coef_bits[ci + cinfo->num_components];
403
if (coef_bits[0] < 0)
404
return FALSE;
405
coef_bits_latch[0] = coef_bits[0];
406
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */
407
for (coefi = 1; coefi < SAVED_COEFS; coefi++) {
408
if (cinfo->input_scan_number > 1)
409
prev_coef_bits_latch[coefi] = prev_coef_bits[coefi];
410
else
411
prev_coef_bits_latch[coefi] = -1;
412
coef_bits_latch[coefi] = coef_bits[coefi];
413
if (coef_bits[coefi] != 0)
414
smoothing_useful = TRUE;
415
}
416
coef_bits_latch += SAVED_COEFS;
417
prev_coef_bits_latch += SAVED_COEFS;
418
}
419
420
return smoothing_useful;
421
}
422
423
424
/*
425
* Variant of decompress_data for use when doing block smoothing.
426
*/
427
428
METHODDEF(int)
429
decompress_smooth_data(j_decompress_ptr cinfo, _JSAMPIMAGE output_buf)
430
{
431
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
432
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
433
JDIMENSION block_num, last_block_column;
434
int ci, block_row, block_rows, access_rows, image_block_row,
435
image_block_rows;
436
JBLOCKARRAY buffer;
437
JBLOCKROW buffer_ptr, prev_prev_block_row, prev_block_row;
438
JBLOCKROW next_block_row, next_next_block_row;
439
_JSAMPARRAY output_ptr;
440
JDIMENSION output_col;
441
jpeg_component_info *compptr;
442
_inverse_DCT_method_ptr inverse_DCT;
443
boolean change_dc;
444
JCOEF *workspace;
445
int *coef_bits;
446
JQUANT_TBL *quanttbl;
447
JLONG Q00, Q01, Q02, Q03 = 0, Q10, Q11, Q12 = 0, Q20, Q21 = 0, Q30 = 0, num;
448
int DC01, DC02, DC03, DC04, DC05, DC06, DC07, DC08, DC09, DC10, DC11, DC12,
449
DC13, DC14, DC15, DC16, DC17, DC18, DC19, DC20, DC21, DC22, DC23, DC24,
450
DC25;
451
int Al, pred;
452
453
/* Keep a local variable to avoid looking it up more than once */
454
workspace = coef->workspace;
455
456
/* Force some input to be done if we are getting ahead of the input. */
457
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
458
!cinfo->inputctl->eoi_reached) {
459
if (cinfo->input_scan_number == cinfo->output_scan_number) {
460
/* If input is working on current scan, we ordinarily want it to
461
* have completed the current row. But if input scan is DC,
462
* we want it to keep two rows ahead so that next two block rows' DC
463
* values are up to date.
464
*/
465
JDIMENSION delta = (cinfo->Ss == 0) ? 2 : 0;
466
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta)
467
break;
468
}
469
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
470
return JPEG_SUSPENDED;
471
}
472
473
/* OK, output from the virtual arrays. */
474
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
475
ci++, compptr++) {
476
/* Don't bother to IDCT an uninteresting component. */
477
if (!compptr->component_needed)
478
continue;
479
/* Count non-dummy DCT block rows in this iMCU row. */
480
if (cinfo->output_iMCU_row + 1 < last_iMCU_row) {
481
block_rows = compptr->v_samp_factor;
482
access_rows = block_rows * 3; /* this and next two iMCU rows */
483
} else if (cinfo->output_iMCU_row < last_iMCU_row) {
484
block_rows = compptr->v_samp_factor;
485
access_rows = block_rows * 2; /* this and next iMCU row */
486
} else {
487
/* NB: can't use last_row_height here; it is input-side-dependent! */
488
block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
489
if (block_rows == 0) block_rows = compptr->v_samp_factor;
490
access_rows = block_rows; /* this iMCU row only */
491
}
492
/* Align the virtual buffer for this component. */
493
if (cinfo->output_iMCU_row > 1) {
494
access_rows += 2 * compptr->v_samp_factor; /* prior two iMCU rows too */
495
buffer = (*cinfo->mem->access_virt_barray)
496
((j_common_ptr)cinfo, coef->whole_image[ci],
497
(cinfo->output_iMCU_row - 2) * compptr->v_samp_factor,
498
(JDIMENSION)access_rows, FALSE);
499
buffer += 2 * compptr->v_samp_factor; /* point to current iMCU row */
500
} else if (cinfo->output_iMCU_row > 0) {
501
access_rows += compptr->v_samp_factor; /* prior iMCU row too */
502
buffer = (*cinfo->mem->access_virt_barray)
503
((j_common_ptr)cinfo, coef->whole_image[ci],
504
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
505
(JDIMENSION)access_rows, FALSE);
506
buffer += compptr->v_samp_factor; /* point to current iMCU row */
507
} else {
508
buffer = (*cinfo->mem->access_virt_barray)
509
((j_common_ptr)cinfo, coef->whole_image[ci],
510
(JDIMENSION)0, (JDIMENSION)access_rows, FALSE);
511
}
512
/* Fetch component-dependent info.
513
* If the current scan is incomplete, then we use the component-dependent
514
* info from the previous scan.
515
*/
516
if (cinfo->output_iMCU_row > cinfo->master->last_good_iMCU_row)
517
coef_bits =
518
coef->coef_bits_latch + ((ci + cinfo->num_components) * SAVED_COEFS);
519
else
520
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
521
522
/* We only do DC interpolation if no AC coefficient data is available. */
523
change_dc =
524
coef_bits[1] == -1 && coef_bits[2] == -1 && coef_bits[3] == -1 &&
525
coef_bits[4] == -1 && coef_bits[5] == -1 && coef_bits[6] == -1 &&
526
coef_bits[7] == -1 && coef_bits[8] == -1 && coef_bits[9] == -1;
527
528
quanttbl = compptr->quant_table;
529
Q00 = quanttbl->quantval[0];
530
Q01 = quanttbl->quantval[Q01_POS];
531
Q10 = quanttbl->quantval[Q10_POS];
532
Q20 = quanttbl->quantval[Q20_POS];
533
Q11 = quanttbl->quantval[Q11_POS];
534
Q02 = quanttbl->quantval[Q02_POS];
535
if (change_dc) {
536
Q03 = quanttbl->quantval[Q03_POS];
537
Q12 = quanttbl->quantval[Q12_POS];
538
Q21 = quanttbl->quantval[Q21_POS];
539
Q30 = quanttbl->quantval[Q30_POS];
540
}
541
inverse_DCT = cinfo->idct->_inverse_DCT[ci];
542
output_ptr = output_buf[ci];
543
/* Loop over all DCT blocks to be processed. */
544
image_block_rows = block_rows * cinfo->total_iMCU_rows;
545
for (block_row = 0; block_row < block_rows; block_row++) {
546
image_block_row = cinfo->output_iMCU_row * block_rows + block_row;
547
buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
548
549
if (image_block_row > 0)
550
prev_block_row =
551
buffer[block_row - 1] + cinfo->master->first_MCU_col[ci];
552
else
553
prev_block_row = buffer_ptr;
554
555
if (image_block_row > 1)
556
prev_prev_block_row =
557
buffer[block_row - 2] + cinfo->master->first_MCU_col[ci];
558
else
559
prev_prev_block_row = prev_block_row;
560
561
if (image_block_row < image_block_rows - 1)
562
next_block_row =
563
buffer[block_row + 1] + cinfo->master->first_MCU_col[ci];
564
else
565
next_block_row = buffer_ptr;
566
567
if (image_block_row < image_block_rows - 2)
568
next_next_block_row =
569
buffer[block_row + 2] + cinfo->master->first_MCU_col[ci];
570
else
571
next_next_block_row = next_block_row;
572
573
/* We fetch the surrounding DC values using a sliding-register approach.
574
* Initialize all 25 here so as to do the right thing on narrow pics.
575
*/
576
DC01 = DC02 = DC03 = DC04 = DC05 = (int)prev_prev_block_row[0][0];
577
DC06 = DC07 = DC08 = DC09 = DC10 = (int)prev_block_row[0][0];
578
DC11 = DC12 = DC13 = DC14 = DC15 = (int)buffer_ptr[0][0];
579
DC16 = DC17 = DC18 = DC19 = DC20 = (int)next_block_row[0][0];
580
DC21 = DC22 = DC23 = DC24 = DC25 = (int)next_next_block_row[0][0];
581
output_col = 0;
582
last_block_column = compptr->width_in_blocks - 1;
583
for (block_num = cinfo->master->first_MCU_col[ci];
584
block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
585
/* Fetch current DCT block into workspace so we can modify it. */
586
jcopy_block_row(buffer_ptr, (JBLOCKROW)workspace, (JDIMENSION)1);
587
/* Update DC values */
588
if (block_num == cinfo->master->first_MCU_col[ci] &&
589
block_num < last_block_column) {
590
DC04 = DC05 = (int)prev_prev_block_row[1][0];
591
DC09 = DC10 = (int)prev_block_row[1][0];
592
DC14 = DC15 = (int)buffer_ptr[1][0];
593
DC19 = DC20 = (int)next_block_row[1][0];
594
DC24 = DC25 = (int)next_next_block_row[1][0];
595
}
596
if (block_num + 1 < last_block_column) {
597
DC05 = (int)prev_prev_block_row[2][0];
598
DC10 = (int)prev_block_row[2][0];
599
DC15 = (int)buffer_ptr[2][0];
600
DC20 = (int)next_block_row[2][0];
601
DC25 = (int)next_next_block_row[2][0];
602
}
603
/* If DC interpolation is enabled, compute coefficient estimates using
604
* a Gaussian-like kernel, keeping the averages of the DC values.
605
*
606
* If DC interpolation is disabled, compute coefficient estimates using
607
* an algorithm similar to the one described in Section K.8 of the JPEG
608
* standard, except applied to a 5x5 window rather than a 3x3 window.
609
*
610
* An estimate is applied only if the coefficient is still zero and is
611
* not known to be fully accurate.
612
*/
613
/* AC01 */
614
if ((Al = coef_bits[1]) != 0 && workspace[1] == 0) {
615
num = Q00 * (change_dc ?
616
(-DC01 - DC02 + DC04 + DC05 - 3 * DC06 + 13 * DC07 -
617
13 * DC09 + 3 * DC10 - 3 * DC11 + 38 * DC12 - 38 * DC14 +
618
3 * DC15 - 3 * DC16 + 13 * DC17 - 13 * DC19 + 3 * DC20 -
619
DC21 - DC22 + DC24 + DC25) :
620
(-7 * DC11 + 50 * DC12 - 50 * DC14 + 7 * DC15));
621
if (num >= 0) {
622
pred = (int)(((Q01 << 7) + num) / (Q01 << 8));
623
if (Al > 0 && pred >= (1 << Al))
624
pred = (1 << Al) - 1;
625
} else {
626
pred = (int)(((Q01 << 7) - num) / (Q01 << 8));
627
if (Al > 0 && pred >= (1 << Al))
628
pred = (1 << Al) - 1;
629
pred = -pred;
630
}
631
workspace[1] = (JCOEF)pred;
632
}
633
/* AC10 */
634
if ((Al = coef_bits[2]) != 0 && workspace[8] == 0) {
635
num = Q00 * (change_dc ?
636
(-DC01 - 3 * DC02 - 3 * DC03 - 3 * DC04 - DC05 - DC06 +
637
13 * DC07 + 38 * DC08 + 13 * DC09 - DC10 + DC16 -
638
13 * DC17 - 38 * DC18 - 13 * DC19 + DC20 + DC21 +
639
3 * DC22 + 3 * DC23 + 3 * DC24 + DC25) :
640
(-7 * DC03 + 50 * DC08 - 50 * DC18 + 7 * DC23));
641
if (num >= 0) {
642
pred = (int)(((Q10 << 7) + num) / (Q10 << 8));
643
if (Al > 0 && pred >= (1 << Al))
644
pred = (1 << Al) - 1;
645
} else {
646
pred = (int)(((Q10 << 7) - num) / (Q10 << 8));
647
if (Al > 0 && pred >= (1 << Al))
648
pred = (1 << Al) - 1;
649
pred = -pred;
650
}
651
workspace[8] = (JCOEF)pred;
652
}
653
/* AC20 */
654
if ((Al = coef_bits[3]) != 0 && workspace[16] == 0) {
655
num = Q00 * (change_dc ?
656
(DC03 + 2 * DC07 + 7 * DC08 + 2 * DC09 - 5 * DC12 - 14 * DC13 -
657
5 * DC14 + 2 * DC17 + 7 * DC18 + 2 * DC19 + DC23) :
658
(-DC03 + 13 * DC08 - 24 * DC13 + 13 * DC18 - DC23));
659
if (num >= 0) {
660
pred = (int)(((Q20 << 7) + num) / (Q20 << 8));
661
if (Al > 0 && pred >= (1 << Al))
662
pred = (1 << Al) - 1;
663
} else {
664
pred = (int)(((Q20 << 7) - num) / (Q20 << 8));
665
if (Al > 0 && pred >= (1 << Al))
666
pred = (1 << Al) - 1;
667
pred = -pred;
668
}
669
workspace[16] = (JCOEF)pred;
670
}
671
/* AC11 */
672
if ((Al = coef_bits[4]) != 0 && workspace[9] == 0) {
673
num = Q00 * (change_dc ?
674
(-DC01 + DC05 + 9 * DC07 - 9 * DC09 - 9 * DC17 +
675
9 * DC19 + DC21 - DC25) :
676
(DC10 + DC16 - 10 * DC17 + 10 * DC19 - DC02 - DC20 + DC22 -
677
DC24 + DC04 - DC06 + 10 * DC07 - 10 * DC09));
678
if (num >= 0) {
679
pred = (int)(((Q11 << 7) + num) / (Q11 << 8));
680
if (Al > 0 && pred >= (1 << Al))
681
pred = (1 << Al) - 1;
682
} else {
683
pred = (int)(((Q11 << 7) - num) / (Q11 << 8));
684
if (Al > 0 && pred >= (1 << Al))
685
pred = (1 << Al) - 1;
686
pred = -pred;
687
}
688
workspace[9] = (JCOEF)pred;
689
}
690
/* AC02 */
691
if ((Al = coef_bits[5]) != 0 && workspace[2] == 0) {
692
num = Q00 * (change_dc ?
693
(2 * DC07 - 5 * DC08 + 2 * DC09 + DC11 + 7 * DC12 - 14 * DC13 +
694
7 * DC14 + DC15 + 2 * DC17 - 5 * DC18 + 2 * DC19) :
695
(-DC11 + 13 * DC12 - 24 * DC13 + 13 * DC14 - DC15));
696
if (num >= 0) {
697
pred = (int)(((Q02 << 7) + num) / (Q02 << 8));
698
if (Al > 0 && pred >= (1 << Al))
699
pred = (1 << Al) - 1;
700
} else {
701
pred = (int)(((Q02 << 7) - num) / (Q02 << 8));
702
if (Al > 0 && pred >= (1 << Al))
703
pred = (1 << Al) - 1;
704
pred = -pred;
705
}
706
workspace[2] = (JCOEF)pred;
707
}
708
if (change_dc) {
709
/* AC03 */
710
if ((Al = coef_bits[6]) != 0 && workspace[3] == 0) {
711
num = Q00 * (DC07 - DC09 + 2 * DC12 - 2 * DC14 + DC17 - DC19);
712
if (num >= 0) {
713
pred = (int)(((Q03 << 7) + num) / (Q03 << 8));
714
if (Al > 0 && pred >= (1 << Al))
715
pred = (1 << Al) - 1;
716
} else {
717
pred = (int)(((Q03 << 7) - num) / (Q03 << 8));
718
if (Al > 0 && pred >= (1 << Al))
719
pred = (1 << Al) - 1;
720
pred = -pred;
721
}
722
workspace[3] = (JCOEF)pred;
723
}
724
/* AC12 */
725
if ((Al = coef_bits[7]) != 0 && workspace[10] == 0) {
726
num = Q00 * (DC07 - 3 * DC08 + DC09 - DC17 + 3 * DC18 - DC19);
727
if (num >= 0) {
728
pred = (int)(((Q12 << 7) + num) / (Q12 << 8));
729
if (Al > 0 && pred >= (1 << Al))
730
pred = (1 << Al) - 1;
731
} else {
732
pred = (int)(((Q12 << 7) - num) / (Q12 << 8));
733
if (Al > 0 && pred >= (1 << Al))
734
pred = (1 << Al) - 1;
735
pred = -pred;
736
}
737
workspace[10] = (JCOEF)pred;
738
}
739
/* AC21 */
740
if ((Al = coef_bits[8]) != 0 && workspace[17] == 0) {
741
num = Q00 * (DC07 - DC09 - 3 * DC12 + 3 * DC14 + DC17 - DC19);
742
if (num >= 0) {
743
pred = (int)(((Q21 << 7) + num) / (Q21 << 8));
744
if (Al > 0 && pred >= (1 << Al))
745
pred = (1 << Al) - 1;
746
} else {
747
pred = (int)(((Q21 << 7) - num) / (Q21 << 8));
748
if (Al > 0 && pred >= (1 << Al))
749
pred = (1 << Al) - 1;
750
pred = -pred;
751
}
752
workspace[17] = (JCOEF)pred;
753
}
754
/* AC30 */
755
if ((Al = coef_bits[9]) != 0 && workspace[24] == 0) {
756
num = Q00 * (DC07 + 2 * DC08 + DC09 - DC17 - 2 * DC18 - DC19);
757
if (num >= 0) {
758
pred = (int)(((Q30 << 7) + num) / (Q30 << 8));
759
if (Al > 0 && pred >= (1 << Al))
760
pred = (1 << Al) - 1;
761
} else {
762
pred = (int)(((Q30 << 7) - num) / (Q30 << 8));
763
if (Al > 0 && pred >= (1 << Al))
764
pred = (1 << Al) - 1;
765
pred = -pred;
766
}
767
workspace[24] = (JCOEF)pred;
768
}
769
/* coef_bits[0] is non-negative. Otherwise this function would not
770
* be called.
771
*/
772
num = Q00 *
773
(-2 * DC01 - 6 * DC02 - 8 * DC03 - 6 * DC04 - 2 * DC05 -
774
6 * DC06 + 6 * DC07 + 42 * DC08 + 6 * DC09 - 6 * DC10 -
775
8 * DC11 + 42 * DC12 + 152 * DC13 + 42 * DC14 - 8 * DC15 -
776
6 * DC16 + 6 * DC17 + 42 * DC18 + 6 * DC19 - 6 * DC20 -
777
2 * DC21 - 6 * DC22 - 8 * DC23 - 6 * DC24 - 2 * DC25);
778
if (num >= 0) {
779
pred = (int)(((Q00 << 7) + num) / (Q00 << 8));
780
} else {
781
pred = (int)(((Q00 << 7) - num) / (Q00 << 8));
782
pred = -pred;
783
}
784
workspace[0] = (JCOEF)pred;
785
} /* change_dc */
786
787
/* OK, do the IDCT */
788
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR)workspace, output_ptr,
789
output_col);
790
/* Advance for next column */
791
DC01 = DC02; DC02 = DC03; DC03 = DC04; DC04 = DC05;
792
DC06 = DC07; DC07 = DC08; DC08 = DC09; DC09 = DC10;
793
DC11 = DC12; DC12 = DC13; DC13 = DC14; DC14 = DC15;
794
DC16 = DC17; DC17 = DC18; DC18 = DC19; DC19 = DC20;
795
DC21 = DC22; DC22 = DC23; DC23 = DC24; DC24 = DC25;
796
buffer_ptr++, prev_block_row++, next_block_row++,
797
prev_prev_block_row++, next_next_block_row++;
798
output_col += compptr->_DCT_scaled_size;
799
}
800
output_ptr += compptr->_DCT_scaled_size;
801
}
802
}
803
804
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
805
return JPEG_ROW_COMPLETED;
806
return JPEG_SCAN_COMPLETED;
807
}
808
809
#endif /* BLOCK_SMOOTHING_SUPPORTED */
810
811
812
/*
813
* Initialize coefficient buffer controller.
814
*/
815
816
GLOBAL(void)
817
_jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer)
818
{
819
my_coef_ptr coef;
820
821
if (cinfo->data_precision != BITS_IN_JSAMPLE)
822
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
823
824
coef = (my_coef_ptr)
825
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
826
sizeof(my_coef_controller));
827
cinfo->coef = (struct jpeg_d_coef_controller *)coef;
828
coef->pub.start_input_pass = start_input_pass;
829
coef->pub.start_output_pass = start_output_pass;
830
#ifdef BLOCK_SMOOTHING_SUPPORTED
831
coef->coef_bits_latch = NULL;
832
#endif
833
834
/* Create the coefficient buffer. */
835
if (need_full_buffer) {
836
#ifdef D_MULTISCAN_FILES_SUPPORTED
837
/* Allocate a full-image virtual array for each component, */
838
/* padded to a multiple of samp_factor DCT blocks in each direction. */
839
/* Note we ask for a pre-zeroed array. */
840
int ci, access_rows;
841
jpeg_component_info *compptr;
842
843
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
844
ci++, compptr++) {
845
access_rows = compptr->v_samp_factor;
846
#ifdef BLOCK_SMOOTHING_SUPPORTED
847
/* If block smoothing could be used, need a bigger window */
848
if (cinfo->progressive_mode)
849
access_rows *= 5;
850
#endif
851
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
852
((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE,
853
(JDIMENSION)jround_up((long)compptr->width_in_blocks,
854
(long)compptr->h_samp_factor),
855
(JDIMENSION)jround_up((long)compptr->height_in_blocks,
856
(long)compptr->v_samp_factor),
857
(JDIMENSION)access_rows);
858
}
859
coef->pub.consume_data = consume_data;
860
coef->pub._decompress_data = decompress_data;
861
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
862
#else
863
ERREXIT(cinfo, JERR_NOT_COMPILED);
864
#endif
865
} else {
866
/* We only need a single-MCU buffer. */
867
JBLOCKROW buffer;
868
int i;
869
870
buffer = (JBLOCKROW)
871
(*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE,
872
D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
873
for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
874
coef->MCU_buffer[i] = buffer + i;
875
}
876
coef->pub.consume_data = dummy_consume_data;
877
coef->pub._decompress_data = decompress_onepass;
878
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
879
}
880
881
/* Allocate the workspace buffer */
882
coef->workspace = (JCOEF *)
883
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
884
sizeof(JCOEF) * DCTSIZE2);
885
}
886
887