Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libjpeg-turbo/src/jdhuff.c
9904 views
1
/*
2
* jdhuff.c
3
*
4
* This file was part of the Independent JPEG Group's software:
5
* Copyright (C) 1991-1997, Thomas G. Lane.
6
* Lossless JPEG Modifications:
7
* Copyright (C) 1999, Ken Murchison.
8
* libjpeg-turbo Modifications:
9
* Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
* Copyright (C) 2018, Matthias Räncker.
11
* For conditions of distribution and use, see the accompanying README.ijg
12
* file.
13
*
14
* This file contains Huffman entropy decoding routines.
15
*
16
* Much of the complexity here has to do with supporting input suspension.
17
* If the data source module demands suspension, we want to be able to back
18
* up to the start of the current MCU. To do this, we copy state variables
19
* into local working storage, and update them back to the permanent
20
* storage only upon successful completion of an MCU.
21
*
22
* NOTE: All referenced figures are from
23
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
*/
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h" /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
* Expanded entropy decoder object for Huffman decoding.
36
*
37
* The savable_state subrecord contains fields that change within an MCU,
38
* but must not be updated permanently until we complete the MCU.
39
*/
40
41
typedef struct {
42
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
struct jpeg_entropy_decoder pub; /* public fields */
47
48
/* These fields are loaded into local variables at start of each MCU.
49
* In case of suspension, we exit WITHOUT updating them.
50
*/
51
bitread_perm_state bitstate; /* Bit buffer at start of MCU */
52
savable_state saved; /* Other state at start of MCU */
53
54
/* These fields are NOT loaded into local working state. */
55
unsigned int restarts_to_go; /* MCUs left in this restart interval */
56
57
/* Pointers to derived tables (these workspaces have image lifespan) */
58
d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
/* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
/* Pointers to derived tables to be used for each block within an MCU */
64
d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
/* Whether we care about the DC and AC coefficient values for each block */
67
boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
* Initialize for a Huffman-compressed scan.
76
*/
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
{
81
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
int ci, blkn, dctbl, actbl;
83
d_derived_tbl **pdtbl;
84
jpeg_component_info *compptr;
85
86
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
* This ought to be an error condition, but we make it a warning because
88
* there are some baseline files out there with all zeroes in these bytes.
89
*/
90
if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
cinfo->Ah != 0 || cinfo->Al != 0)
92
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
compptr = cinfo->cur_comp_info[ci];
96
dctbl = compptr->dc_tbl_no;
97
actbl = compptr->ac_tbl_no;
98
/* Compute derived values for Huffman tables */
99
/* We may do this more than once for a table, but it's not expensive */
100
pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
/* Initialize DC predictions to 0 */
105
entropy->saved.last_dc_val[ci] = 0;
106
}
107
108
/* Precalculate decoding info for each block in an MCU of this scan */
109
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
ci = cinfo->MCU_membership[blkn];
111
compptr = cinfo->cur_comp_info[ci];
112
/* Precalculate which table to use for each block */
113
entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
/* Decide whether we really care about the coefficient values */
116
if (compptr->component_needed) {
117
entropy->dc_needed[blkn] = TRUE;
118
/* we don't need the ACs if producing a 1/8th-size image */
119
entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
} else {
121
entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
}
123
}
124
125
/* Initialize bitread state variables */
126
entropy->bitstate.bits_left = 0;
127
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
entropy->pub.insufficient_data = FALSE;
129
130
/* Initialize restart counter */
131
entropy->restarts_to_go = cinfo->restart_interval;
132
}
133
134
135
/*
136
* Compute the derived values for a Huffman table.
137
* This routine also performs some validation checks on the table.
138
*
139
* Note this is also used by jdphuff.c and jdlhuff.c.
140
*/
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
d_derived_tbl **pdtbl)
145
{
146
JHUFF_TBL *htbl;
147
d_derived_tbl *dtbl;
148
int p, i, l, si, numsymbols;
149
int lookbits, ctr;
150
char huffsize[257];
151
unsigned int huffcode[257];
152
unsigned int code;
153
154
/* Note that huffsize[] and huffcode[] are filled in code-length order,
155
* paralleling the order of the symbols themselves in htbl->huffval[].
156
*/
157
158
/* Find the input Huffman table */
159
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
htbl =
162
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
if (htbl == NULL)
164
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
/* Allocate a workspace if we haven't already done so. */
167
if (*pdtbl == NULL)
168
*pdtbl = (d_derived_tbl *)
169
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
sizeof(d_derived_tbl));
171
dtbl = *pdtbl;
172
dtbl->pub = htbl; /* fill in back link */
173
174
/* Figure C.1: make table of Huffman code length for each symbol */
175
176
p = 0;
177
for (l = 1; l <= 16; l++) {
178
i = (int)htbl->bits[l];
179
if (i < 0 || p + i > 256) /* protect against table overrun */
180
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
while (i--)
182
huffsize[p++] = (char)l;
183
}
184
huffsize[p] = 0;
185
numsymbols = p;
186
187
/* Figure C.2: generate the codes themselves */
188
/* We also validate that the counts represent a legal Huffman code tree. */
189
190
code = 0;
191
si = huffsize[0];
192
p = 0;
193
while (huffsize[p]) {
194
while (((int)huffsize[p]) == si) {
195
huffcode[p++] = code;
196
code++;
197
}
198
/* code is now 1 more than the last code used for codelength si; but
199
* it must still fit in si bits, since no code is allowed to be all ones.
200
*/
201
if (((JLONG)code) >= (((JLONG)1) << si))
202
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
code <<= 1;
204
si++;
205
}
206
207
/* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
p = 0;
210
for (l = 1; l <= 16; l++) {
211
if (htbl->bits[l]) {
212
/* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
* minus the minimum code of length l
214
*/
215
dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
p += htbl->bits[l];
217
dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
} else {
219
dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
220
}
221
}
222
dtbl->valoffset[17] = 0;
223
dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
/* Compute lookahead tables to speed up decoding.
226
* First we set all the table entries to 0, indicating "too long";
227
* then we iterate through the Huffman codes that are short enough and
228
* fill in all the entries that correspond to bit sequences starting
229
* with that code.
230
*/
231
232
for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
p = 0;
236
for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
/* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
/* Generate left-justified code followed by all possible bit sequences */
240
lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
lookbits++;
244
}
245
}
246
}
247
248
/* Validate symbols as being reasonable.
249
* For AC tables, we make no check, but accept all byte values 0..255.
250
* For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
* and 0..16 in lossless mode. (Tighter bounds could be applied depending on
252
* the data depth and mode, but this is sufficient to ensure safe decoding.)
253
*/
254
if (isDC) {
255
for (i = 0; i < numsymbols; i++) {
256
int sym = htbl->huffval[i];
257
if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
}
260
}
261
}
262
263
264
/*
265
* Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
* See jdhuff.h for info about usage.
267
* Note: current values of get_buffer and bits_left are passed as parameters,
268
* but are returned in the corresponding fields of the state struct.
269
*
270
* On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
* of get_buffer to be used. (On machines with wider words, an even larger
272
* buffer could be used.) However, on some machines 32-bit shifts are
273
* quite slow and take time proportional to the number of places shifted.
274
* (This is true with most PC compilers, for instance.) In this case it may
275
* be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
276
* average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
*/
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS 15 /* minimum allowable value */
281
#else
282
#define MIN_GET_BITS (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
register bit_buf_type get_buffer, register int bits_left,
289
int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
{
292
/* Copy heavily used state fields into locals (hopefully registers) */
293
register const JOCTET *next_input_byte = state->next_input_byte;
294
register size_t bytes_in_buffer = state->bytes_in_buffer;
295
j_decompress_ptr cinfo = state->cinfo;
296
297
/* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
/* (It is assumed that no request will be for more than that many bits.) */
299
/* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
302
while (bits_left < MIN_GET_BITS) {
303
register int c;
304
305
/* Attempt to read a byte */
306
if (bytes_in_buffer == 0) {
307
if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
return FALSE;
309
next_input_byte = cinfo->src->next_input_byte;
310
bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
}
312
bytes_in_buffer--;
313
c = *next_input_byte++;
314
315
/* If it's 0xFF, check and discard stuffed zero byte */
316
if (c == 0xFF) {
317
/* Loop here to discard any padding FF's on terminating marker,
318
* so that we can save a valid unread_marker value. NOTE: we will
319
* accept multiple FF's followed by a 0 as meaning a single FF data
320
* byte. This data pattern is not valid according to the standard.
321
*/
322
do {
323
if (bytes_in_buffer == 0) {
324
if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
return FALSE;
326
next_input_byte = cinfo->src->next_input_byte;
327
bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
}
329
bytes_in_buffer--;
330
c = *next_input_byte++;
331
} while (c == 0xFF);
332
333
if (c == 0) {
334
/* Found FF/00, which represents an FF data byte */
335
c = 0xFF;
336
} else {
337
/* Oops, it's actually a marker indicating end of compressed data.
338
* Save the marker code for later use.
339
* Fine point: it might appear that we should save the marker into
340
* bitread working state, not straight into permanent state. But
341
* once we have hit a marker, we cannot need to suspend within the
342
* current MCU, because we will read no more bytes from the data
343
* source. So it is OK to update permanent state right away.
344
*/
345
cinfo->unread_marker = c;
346
/* See if we need to insert some fake zero bits. */
347
goto no_more_bytes;
348
}
349
}
350
351
/* OK, load c into get_buffer */
352
get_buffer = (get_buffer << 8) | c;
353
bits_left += 8;
354
} /* end while */
355
} else {
356
no_more_bytes:
357
/* We get here if we've read the marker that terminates the compressed
358
* data segment. There should be enough bits in the buffer register
359
* to satisfy the request; if so, no problem.
360
*/
361
if (nbits > bits_left) {
362
/* Uh-oh. Report corrupted data to user and stuff zeroes into
363
* the data stream, so that we can produce some kind of image.
364
* We use a nonvolatile flag to ensure that only one warning message
365
* appears per data segment.
366
*/
367
if (!cinfo->entropy->insufficient_data) {
368
WARNMS(cinfo, JWRN_HIT_MARKER);
369
cinfo->entropy->insufficient_data = TRUE;
370
}
371
/* Fill the buffer with zero bits */
372
get_buffer <<= MIN_GET_BITS - bits_left;
373
bits_left = MIN_GET_BITS;
374
}
375
}
376
377
/* Unload the local registers */
378
state->next_input_byte = next_input_byte;
379
state->bytes_in_buffer = bytes_in_buffer;
380
state->get_buffer = get_buffer;
381
state->bits_left = bits_left;
382
383
return TRUE;
384
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
handle markers. We have to hand off any blocks with markers to the
389
slower routines. */
390
391
#define GET_BYTE { \
392
register int c0, c1; \
393
c0 = *buffer++; \
394
c1 = *buffer; \
395
/* Pre-execute most common case */ \
396
get_buffer = (get_buffer << 8) | c0; \
397
bits_left += 8; \
398
if (c0 == 0xFF) { \
399
/* Pre-execute case of FF/00, which represents an FF data byte */ \
400
buffer++; \
401
if (c1 != 0) { \
402
/* Oops, it's actually a marker indicating end of compressed data. */ \
403
cinfo->unread_marker = c1; \
404
/* Back out pre-execution and fill the buffer with zero bits */ \
405
buffer -= 2; \
406
get_buffer &= ~0xFF; \
407
} \
408
} \
409
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
if (bits_left <= 16) { \
416
GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
}
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
if (bits_left <= 16) { \
424
GET_BYTE GET_BYTE \
425
}
426
427
#endif
428
429
430
/*
431
* Out-of-line code for Huffman code decoding.
432
* See jdhuff.h for info about usage.
433
*/
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
register bit_buf_type get_buffer, register int bits_left,
438
d_derived_tbl *htbl, int min_bits)
439
{
440
register int l = min_bits;
441
register JLONG code;
442
443
/* HUFF_DECODE has determined that the code is at least min_bits */
444
/* bits long, so fetch that many bits in one swoop. */
445
446
CHECK_BIT_BUFFER(*state, l, return -1);
447
code = GET_BITS(l);
448
449
/* Collect the rest of the Huffman code one bit at a time. */
450
/* This is per Figure F.16. */
451
452
while (code > htbl->maxcode[l]) {
453
code <<= 1;
454
CHECK_BIT_BUFFER(*state, 1, return -1);
455
code |= GET_BITS(1);
456
l++;
457
}
458
459
/* Unload the local registers */
460
state->get_buffer = get_buffer;
461
state->bits_left = bits_left;
462
463
/* With garbage input we may reach the sentinel value l = 17. */
464
465
if (l > 16) {
466
WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
return 0; /* fake a zero as the safest result */
468
}
469
470
return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
}
472
473
474
/*
475
* Figure F.12: extend sign bit.
476
* On some machines, a shift and add will be faster than a table lookup.
477
*/
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
#define NEG_1 ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = { /* entry n is 2**(n-1) */
492
0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
* Check for a restart marker & resynchronize decoder.
508
* Returns FALSE if must suspend.
509
*/
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
{
514
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
int ci;
516
517
/* Throw away any unused bits remaining in bit buffer; */
518
/* include any full bytes in next_marker's count of discarded bytes */
519
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
entropy->bitstate.bits_left = 0;
521
522
/* Advance past the RSTn marker */
523
if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
return FALSE;
525
526
/* Re-initialize DC predictions to 0 */
527
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
entropy->saved.last_dc_val[ci] = 0;
529
530
/* Reset restart counter */
531
entropy->restarts_to_go = cinfo->restart_interval;
532
533
/* Reset out-of-data flag, unless read_restart_marker left us smack up
534
* against a marker. In that case we will end up treating the next data
535
* segment as empty, and we can avoid producing bogus output pixels by
536
* leaving the flag set.
537
*/
538
if (cinfo->unread_marker == 0)
539
entropy->pub.insufficient_data = FALSE;
540
541
return TRUE;
542
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
{
554
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
BITREAD_STATE_VARS;
556
int blkn;
557
savable_state state;
558
/* Outer loop handles each block in the MCU */
559
560
/* Load up working state */
561
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
state = entropy->saved;
563
564
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
register int s, k, r;
569
570
/* Decode a single block's worth of coefficients */
571
572
/* Section F.2.2.1: decode the DC coefficient difference */
573
HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
if (s) {
575
CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
r = GET_BITS(s);
577
s = HUFF_EXTEND(r, s);
578
}
579
580
if (entropy->dc_needed[blkn]) {
581
/* Convert DC difference to actual value, update last_dc_val */
582
int ci = cinfo->MCU_membership[blkn];
583
/* Certain malformed JPEG images produce repeated DC coefficient
584
* differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
* grow until it overflows or underflows a 32-bit signed integer. This
586
* behavior is, to the best of our understanding, innocuous, and it is
587
* unclear how to work around it without potentially affecting
588
* performance. Thus, we (hopefully temporarily) suppress UBSan integer
589
* overflow errors for this function and decode_mcu_fast().
590
*/
591
s += state.last_dc_val[ci];
592
state.last_dc_val[ci] = s;
593
if (block) {
594
/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
(*block)[0] = (JCOEF)s;
596
}
597
}
598
599
if (entropy->ac_needed[blkn] && block) {
600
601
/* Section F.2.2.2: decode the AC coefficients */
602
/* Since zeroes are skipped, output area must be cleared beforehand */
603
for (k = 1; k < DCTSIZE2; k++) {
604
HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
r = s >> 4;
607
s &= 15;
608
609
if (s) {
610
k += r;
611
CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
r = GET_BITS(s);
613
s = HUFF_EXTEND(r, s);
614
/* Output coefficient in natural (dezigzagged) order.
615
* Note: the extra entries in jpeg_natural_order[] will save us
616
* if k >= DCTSIZE2, which could happen if the data is corrupted.
617
*/
618
(*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
} else {
620
if (r != 15)
621
break;
622
k += 15;
623
}
624
}
625
626
} else {
627
628
/* Section F.2.2.2: decode the AC coefficients */
629
/* In this path we just discard the values */
630
for (k = 1; k < DCTSIZE2; k++) {
631
HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
r = s >> 4;
634
s &= 15;
635
636
if (s) {
637
k += r;
638
CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
DROP_BITS(s);
640
} else {
641
if (r != 15)
642
break;
643
k += 15;
644
}
645
}
646
}
647
}
648
649
/* Completed MCU, so update state */
650
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
entropy->saved = state;
652
return TRUE;
653
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
{
665
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
BITREAD_STATE_VARS;
667
JOCTET *buffer;
668
int blkn;
669
savable_state state;
670
/* Outer loop handles each block in the MCU */
671
672
/* Load up working state */
673
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
buffer = (JOCTET *)br_state.next_input_byte;
675
state = entropy->saved;
676
677
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
register int s, k, r, l;
682
683
HUFF_DECODE_FAST(s, l, dctbl);
684
if (s) {
685
FILL_BIT_BUFFER_FAST
686
r = GET_BITS(s);
687
s = HUFF_EXTEND(r, s);
688
}
689
690
if (entropy->dc_needed[blkn]) {
691
int ci = cinfo->MCU_membership[blkn];
692
/* Refer to the comment in decode_mcu_slow() regarding the supression of
693
* a UBSan integer overflow error in this line of code.
694
*/
695
s += state.last_dc_val[ci];
696
state.last_dc_val[ci] = s;
697
if (block)
698
(*block)[0] = (JCOEF)s;
699
}
700
701
if (entropy->ac_needed[blkn] && block) {
702
703
for (k = 1; k < DCTSIZE2; k++) {
704
HUFF_DECODE_FAST(s, l, actbl);
705
r = s >> 4;
706
s &= 15;
707
708
if (s) {
709
k += r;
710
FILL_BIT_BUFFER_FAST
711
r = GET_BITS(s);
712
s = HUFF_EXTEND(r, s);
713
(*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
} else {
715
if (r != 15) break;
716
k += 15;
717
}
718
}
719
720
} else {
721
722
for (k = 1; k < DCTSIZE2; k++) {
723
HUFF_DECODE_FAST(s, l, actbl);
724
r = s >> 4;
725
s &= 15;
726
727
if (s) {
728
k += r;
729
FILL_BIT_BUFFER_FAST
730
DROP_BITS(s);
731
} else {
732
if (r != 15) break;
733
k += 15;
734
}
735
}
736
}
737
}
738
739
if (cinfo->unread_marker != 0) {
740
cinfo->unread_marker = 0;
741
return FALSE;
742
}
743
744
br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
br_state.next_input_byte = buffer;
746
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
entropy->saved = state;
748
return TRUE;
749
}
750
751
752
/*
753
* Decode and return one MCU's worth of Huffman-compressed coefficients.
754
* The coefficients are reordered from zigzag order into natural array order,
755
* but are not dequantized.
756
*
757
* The i'th block of the MCU is stored into the block pointed to by
758
* MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
* (Wholesale zeroing is usually a little faster than retail...)
760
*
761
* Returns FALSE if data source requested suspension. In that case no
762
* changes have been made to permanent state. (Exception: some output
763
* coefficients may already have been assigned. This is harmless for
764
* this module, since we'll just re-assign them on the next call.)
765
*/
766
767
#define BUFSIZE (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
{
772
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
int usefast = 1;
774
775
/* Process restart marker if needed; may have to suspend */
776
if (cinfo->restart_interval) {
777
if (entropy->restarts_to_go == 0)
778
if (!process_restart(cinfo))
779
return FALSE;
780
usefast = 0;
781
}
782
783
if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
cinfo->unread_marker != 0)
785
usefast = 0;
786
787
/* If we've run out of data, just leave the MCU set to zeroes.
788
* This way, we return uniform gray for the remainder of the segment.
789
*/
790
if (!entropy->pub.insufficient_data) {
791
792
if (usefast) {
793
if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
} else {
795
use_slow:
796
if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
}
798
799
}
800
801
/* Account for restart interval (no-op if not using restarts) */
802
if (cinfo->restart_interval)
803
entropy->restarts_to_go--;
804
805
return TRUE;
806
}
807
808
809
/*
810
* Module initialization routine for Huffman entropy decoding.
811
*/
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
{
816
huff_entropy_ptr entropy;
817
int i;
818
819
/* Motion JPEG frames typically do not include the Huffman tables if they
820
are the default tables. Thus, if the tables are not set by the time
821
the Huffman decoder is initialized (usually within the body of
822
jpeg_start_decompress()), we set them to default values. */
823
std_huff_tables((j_common_ptr)cinfo);
824
825
entropy = (huff_entropy_ptr)
826
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
sizeof(huff_entropy_decoder));
828
cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
entropy->pub.start_pass = start_pass_huff_decoder;
830
entropy->pub.decode_mcu = decode_mcu;
831
832
/* Mark tables unallocated */
833
for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
}
836
}
837
838