Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libjpeg-turbo/src/jdmainct.c
9904 views
1
/*
2
* jdmainct.c
3
*
4
* This file was part of the Independent JPEG Group's software:
5
* Copyright (C) 1994-1996, Thomas G. Lane.
6
* libjpeg-turbo Modifications:
7
* Copyright (C) 2010, 2016, 2022, 2024, D. R. Commander.
8
* For conditions of distribution and use, see the accompanying README.ijg
9
* file.
10
*
11
* This file contains the main buffer controller for decompression.
12
* The main buffer lies between the JPEG decompressor proper and the
13
* post-processor; it holds downsampled data in the JPEG colorspace.
14
*
15
* Note that this code is bypassed in raw-data mode, since the application
16
* supplies the equivalent of the main buffer in that case.
17
*/
18
19
#include "jinclude.h"
20
#include "jdmainct.h"
21
22
23
#if BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED)
24
25
/*
26
* In the current system design, the main buffer need never be a full-image
27
* buffer; any full-height buffers will be found inside the coefficient,
28
* difference, or postprocessing controllers. Nonetheless, the main controller
29
* is not trivial. Its responsibility is to provide context rows for
30
* upsampling/rescaling, and doing this in an efficient fashion is a bit
31
* tricky.
32
*
33
* Postprocessor input data is counted in "row groups". A row group
34
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
35
* sample rows of each component. (We require DCT_scaled_size values to be
36
* chosen such that these numbers are integers. In practice DCT_scaled_size
37
* values will likely be powers of two, so we actually have the stronger
38
* condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
39
* Upsampling will typically produce max_v_samp_factor pixel rows from each
40
* row group (times any additional scale factor that the upsampler is
41
* applying).
42
*
43
* The coefficient or difference controller will deliver data to us one iMCU
44
* row at a time; each iMCU row contains v_samp_factor * DCT_scaled_size sample
45
* rows, or exactly min_DCT_scaled_size row groups. (This amount of data
46
* corresponds to one row of MCUs when the image is fully interleaved.) Note
47
* that the number of sample rows varies across components, but the number of
48
* row groups does not. Some garbage sample rows may be included in the last
49
* iMCU row at the bottom of the image.
50
*
51
* Depending on the vertical scaling algorithm used, the upsampler may need
52
* access to the sample row(s) above and below its current input row group.
53
* The upsampler is required to set need_context_rows TRUE at global selection
54
* time if so. When need_context_rows is FALSE, this controller can simply
55
* obtain one iMCU row at a time from the coefficient or difference controller
56
* and dole it out as row groups to the postprocessor.
57
*
58
* When need_context_rows is TRUE, this controller guarantees that the buffer
59
* passed to postprocessing contains at least one row group's worth of samples
60
* above and below the row group(s) being processed. Note that the context
61
* rows "above" the first passed row group appear at negative row offsets in
62
* the passed buffer. At the top and bottom of the image, the required
63
* context rows are manufactured by duplicating the first or last real sample
64
* row; this avoids having special cases in the upsampling inner loops.
65
*
66
* The amount of context is fixed at one row group just because that's a
67
* convenient number for this controller to work with. The existing
68
* upsamplers really only need one sample row of context. An upsampler
69
* supporting arbitrary output rescaling might wish for more than one row
70
* group of context when shrinking the image; tough, we don't handle that.
71
* (This is justified by the assumption that downsizing will be handled mostly
72
* by adjusting the DCT_scaled_size values, so that the actual scale factor at
73
* the upsample step needn't be much less than one.)
74
*
75
* To provide the desired context, we have to retain the last two row groups
76
* of one iMCU row while reading in the next iMCU row. (The last row group
77
* can't be processed until we have another row group for its below-context,
78
* and so we have to save the next-to-last group too for its above-context.)
79
* We could do this most simply by copying data around in our buffer, but
80
* that'd be very slow. We can avoid copying any data by creating a rather
81
* strange pointer structure. Here's how it works. We allocate a workspace
82
* consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
83
* of row groups per iMCU row). We create two sets of redundant pointers to
84
* the workspace. Labeling the physical row groups 0 to M+1, the synthesized
85
* pointer lists look like this:
86
* M+1 M-1
87
* master pointer --> 0 master pointer --> 0
88
* 1 1
89
* ... ...
90
* M-3 M-3
91
* M-2 M
92
* M-1 M+1
93
* M M-2
94
* M+1 M-1
95
* 0 0
96
* We read alternate iMCU rows using each master pointer; thus the last two
97
* row groups of the previous iMCU row remain un-overwritten in the workspace.
98
* The pointer lists are set up so that the required context rows appear to
99
* be adjacent to the proper places when we pass the pointer lists to the
100
* upsampler.
101
*
102
* The above pictures describe the normal state of the pointer lists.
103
* At top and bottom of the image, we diddle the pointer lists to duplicate
104
* the first or last sample row as necessary (this is cheaper than copying
105
* sample rows around).
106
*
107
* This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
108
* situation each iMCU row provides only one row group so the buffering logic
109
* must be different (eg, we must read two iMCU rows before we can emit the
110
* first row group). For now, we simply do not support providing context
111
* rows when min_DCT_scaled_size is 1. That combination seems unlikely to
112
* be worth providing --- if someone wants a 1/8th-size preview, they probably
113
* want it quick and dirty, so a context-free upsampler is sufficient.
114
*/
115
116
117
/* Forward declarations */
118
METHODDEF(void) process_data_simple_main(j_decompress_ptr cinfo,
119
_JSAMPARRAY output_buf,
120
JDIMENSION *out_row_ctr,
121
JDIMENSION out_rows_avail);
122
METHODDEF(void) process_data_context_main(j_decompress_ptr cinfo,
123
_JSAMPARRAY output_buf,
124
JDIMENSION *out_row_ctr,
125
JDIMENSION out_rows_avail);
126
#ifdef QUANT_2PASS_SUPPORTED
127
METHODDEF(void) process_data_crank_post(j_decompress_ptr cinfo,
128
_JSAMPARRAY output_buf,
129
JDIMENSION *out_row_ctr,
130
JDIMENSION out_rows_avail);
131
#endif
132
133
134
LOCAL(void)
135
alloc_funny_pointers(j_decompress_ptr cinfo)
136
/* Allocate space for the funny pointer lists.
137
* This is done only once, not once per pass.
138
*/
139
{
140
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
141
int ci, rgroup;
142
int M = cinfo->_min_DCT_scaled_size;
143
jpeg_component_info *compptr;
144
_JSAMPARRAY xbuf;
145
146
/* Get top-level space for component array pointers.
147
* We alloc both arrays with one call to save a few cycles.
148
*/
149
main_ptr->xbuffer[0] = (_JSAMPIMAGE)
150
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
151
cinfo->num_components * 2 *
152
sizeof(_JSAMPARRAY));
153
main_ptr->xbuffer[1] = main_ptr->xbuffer[0] + cinfo->num_components;
154
155
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
156
ci++, compptr++) {
157
rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
158
cinfo->_min_DCT_scaled_size; /* height of a row group of component */
159
/* Get space for pointer lists --- M+4 row groups in each list.
160
* We alloc both pointer lists with one call to save a few cycles.
161
*/
162
xbuf = (_JSAMPARRAY)
163
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
164
2 * (rgroup * (M + 4)) * sizeof(_JSAMPROW));
165
xbuf += rgroup; /* want one row group at negative offsets */
166
main_ptr->xbuffer[0][ci] = xbuf;
167
xbuf += rgroup * (M + 4);
168
main_ptr->xbuffer[1][ci] = xbuf;
169
}
170
}
171
172
173
LOCAL(void)
174
make_funny_pointers(j_decompress_ptr cinfo)
175
/* Create the funny pointer lists discussed in the comments above.
176
* The actual workspace is already allocated (in main_ptr->buffer),
177
* and the space for the pointer lists is allocated too.
178
* This routine just fills in the curiously ordered lists.
179
* This will be repeated at the beginning of each pass.
180
*/
181
{
182
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
183
int ci, i, rgroup;
184
int M = cinfo->_min_DCT_scaled_size;
185
jpeg_component_info *compptr;
186
_JSAMPARRAY buf, xbuf0, xbuf1;
187
188
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
189
ci++, compptr++) {
190
rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
191
cinfo->_min_DCT_scaled_size; /* height of a row group of component */
192
xbuf0 = main_ptr->xbuffer[0][ci];
193
xbuf1 = main_ptr->xbuffer[1][ci];
194
/* First copy the workspace pointers as-is */
195
buf = main_ptr->buffer[ci];
196
for (i = 0; i < rgroup * (M + 2); i++) {
197
xbuf0[i] = xbuf1[i] = buf[i];
198
}
199
/* In the second list, put the last four row groups in swapped order */
200
for (i = 0; i < rgroup * 2; i++) {
201
xbuf1[rgroup * (M - 2) + i] = buf[rgroup * M + i];
202
xbuf1[rgroup * M + i] = buf[rgroup * (M - 2) + i];
203
}
204
/* The wraparound pointers at top and bottom will be filled later
205
* (see set_wraparound_pointers, below). Initially we want the "above"
206
* pointers to duplicate the first actual data line. This only needs
207
* to happen in xbuffer[0].
208
*/
209
for (i = 0; i < rgroup; i++) {
210
xbuf0[i - rgroup] = xbuf0[0];
211
}
212
}
213
}
214
215
216
LOCAL(void)
217
set_bottom_pointers(j_decompress_ptr cinfo)
218
/* Change the pointer lists to duplicate the last sample row at the bottom
219
* of the image. whichptr indicates which xbuffer holds the final iMCU row.
220
* Also sets rowgroups_avail to indicate number of nondummy row groups in row.
221
*/
222
{
223
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
224
int ci, i, rgroup, iMCUheight, rows_left;
225
jpeg_component_info *compptr;
226
_JSAMPARRAY xbuf;
227
228
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
229
ci++, compptr++) {
230
/* Count sample rows in one iMCU row and in one row group */
231
iMCUheight = compptr->v_samp_factor * compptr->_DCT_scaled_size;
232
rgroup = iMCUheight / cinfo->_min_DCT_scaled_size;
233
/* Count nondummy sample rows remaining for this component */
234
rows_left = (int)(compptr->downsampled_height % (JDIMENSION)iMCUheight);
235
if (rows_left == 0) rows_left = iMCUheight;
236
/* Count nondummy row groups. Should get same answer for each component,
237
* so we need only do it once.
238
*/
239
if (ci == 0) {
240
main_ptr->rowgroups_avail = (JDIMENSION)((rows_left - 1) / rgroup + 1);
241
}
242
/* Duplicate the last real sample row rgroup*2 times; this pads out the
243
* last partial rowgroup and ensures at least one full rowgroup of context.
244
*/
245
xbuf = main_ptr->xbuffer[main_ptr->whichptr][ci];
246
for (i = 0; i < rgroup * 2; i++) {
247
xbuf[rows_left + i] = xbuf[rows_left - 1];
248
}
249
}
250
}
251
252
253
/*
254
* Initialize for a processing pass.
255
*/
256
257
METHODDEF(void)
258
start_pass_main(j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
259
{
260
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
261
262
switch (pass_mode) {
263
case JBUF_PASS_THRU:
264
if (cinfo->upsample->need_context_rows) {
265
main_ptr->pub._process_data = process_data_context_main;
266
make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
267
main_ptr->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
268
main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
269
main_ptr->iMCU_row_ctr = 0;
270
} else {
271
/* Simple case with no context needed */
272
main_ptr->pub._process_data = process_data_simple_main;
273
}
274
main_ptr->buffer_full = FALSE; /* Mark buffer empty */
275
main_ptr->rowgroup_ctr = 0;
276
break;
277
#ifdef QUANT_2PASS_SUPPORTED
278
case JBUF_CRANK_DEST:
279
/* For last pass of 2-pass quantization, just crank the postprocessor */
280
main_ptr->pub._process_data = process_data_crank_post;
281
break;
282
#endif
283
default:
284
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
285
break;
286
}
287
}
288
289
290
/*
291
* Process some data.
292
* This handles the simple case where no context is required.
293
*/
294
295
METHODDEF(void)
296
process_data_simple_main(j_decompress_ptr cinfo, _JSAMPARRAY output_buf,
297
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
298
{
299
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
300
JDIMENSION rowgroups_avail;
301
302
/* Read input data if we haven't filled the main buffer yet */
303
if (!main_ptr->buffer_full) {
304
if (!(*cinfo->coef->_decompress_data) (cinfo, main_ptr->buffer))
305
return; /* suspension forced, can do nothing more */
306
main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
307
}
308
309
/* There are always min_DCT_scaled_size row groups in an iMCU row. */
310
rowgroups_avail = (JDIMENSION)cinfo->_min_DCT_scaled_size;
311
/* Note: at the bottom of the image, we may pass extra garbage row groups
312
* to the postprocessor. The postprocessor has to check for bottom
313
* of image anyway (at row resolution), so no point in us doing it too.
314
*/
315
316
/* Feed the postprocessor */
317
(*cinfo->post->_post_process_data) (cinfo, main_ptr->buffer,
318
&main_ptr->rowgroup_ctr, rowgroups_avail,
319
output_buf, out_row_ctr, out_rows_avail);
320
321
/* Has postprocessor consumed all the data yet? If so, mark buffer empty */
322
if (main_ptr->rowgroup_ctr >= rowgroups_avail) {
323
main_ptr->buffer_full = FALSE;
324
main_ptr->rowgroup_ctr = 0;
325
}
326
}
327
328
329
/*
330
* Process some data.
331
* This handles the case where context rows must be provided.
332
*/
333
334
METHODDEF(void)
335
process_data_context_main(j_decompress_ptr cinfo, _JSAMPARRAY output_buf,
336
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
337
{
338
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
339
340
/* Read input data if we haven't filled the main buffer yet */
341
if (!main_ptr->buffer_full) {
342
if (!(*cinfo->coef->_decompress_data) (cinfo,
343
main_ptr->xbuffer[main_ptr->whichptr]))
344
return; /* suspension forced, can do nothing more */
345
main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
346
main_ptr->iMCU_row_ctr++; /* count rows received */
347
}
348
349
/* Postprocessor typically will not swallow all the input data it is handed
350
* in one call (due to filling the output buffer first). Must be prepared
351
* to exit and restart. This switch lets us keep track of how far we got.
352
* Note that each case falls through to the next on successful completion.
353
*/
354
switch (main_ptr->context_state) {
355
case CTX_POSTPONED_ROW:
356
/* Call postprocessor using previously set pointers for postponed row */
357
(*cinfo->post->_post_process_data) (cinfo,
358
main_ptr->xbuffer[main_ptr->whichptr],
359
&main_ptr->rowgroup_ctr,
360
main_ptr->rowgroups_avail, output_buf,
361
out_row_ctr, out_rows_avail);
362
if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail)
363
return; /* Need to suspend */
364
main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
365
if (*out_row_ctr >= out_rows_avail)
366
return; /* Postprocessor exactly filled output buf */
367
FALLTHROUGH /*FALLTHROUGH*/
368
case CTX_PREPARE_FOR_IMCU:
369
/* Prepare to process first M-1 row groups of this iMCU row */
370
main_ptr->rowgroup_ctr = 0;
371
main_ptr->rowgroups_avail = (JDIMENSION)(cinfo->_min_DCT_scaled_size - 1);
372
/* Check for bottom of image: if so, tweak pointers to "duplicate"
373
* the last sample row, and adjust rowgroups_avail to ignore padding rows.
374
*/
375
if (main_ptr->iMCU_row_ctr == cinfo->total_iMCU_rows)
376
set_bottom_pointers(cinfo);
377
main_ptr->context_state = CTX_PROCESS_IMCU;
378
FALLTHROUGH /*FALLTHROUGH*/
379
case CTX_PROCESS_IMCU:
380
/* Call postprocessor using previously set pointers */
381
(*cinfo->post->_post_process_data) (cinfo,
382
main_ptr->xbuffer[main_ptr->whichptr],
383
&main_ptr->rowgroup_ctr,
384
main_ptr->rowgroups_avail, output_buf,
385
out_row_ctr, out_rows_avail);
386
if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail)
387
return; /* Need to suspend */
388
/* After the first iMCU, change wraparound pointers to normal state */
389
if (main_ptr->iMCU_row_ctr == 1)
390
set_wraparound_pointers(cinfo);
391
/* Prepare to load new iMCU row using other xbuffer list */
392
main_ptr->whichptr ^= 1; /* 0=>1 or 1=>0 */
393
main_ptr->buffer_full = FALSE;
394
/* Still need to process last row group of this iMCU row, */
395
/* which is saved at index M+1 of the other xbuffer */
396
main_ptr->rowgroup_ctr = (JDIMENSION)(cinfo->_min_DCT_scaled_size + 1);
397
main_ptr->rowgroups_avail = (JDIMENSION)(cinfo->_min_DCT_scaled_size + 2);
398
main_ptr->context_state = CTX_POSTPONED_ROW;
399
}
400
}
401
402
403
/*
404
* Process some data.
405
* Final pass of two-pass quantization: just call the postprocessor.
406
* Source data will be the postprocessor controller's internal buffer.
407
*/
408
409
#ifdef QUANT_2PASS_SUPPORTED
410
411
METHODDEF(void)
412
process_data_crank_post(j_decompress_ptr cinfo, _JSAMPARRAY output_buf,
413
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
414
{
415
(*cinfo->post->_post_process_data) (cinfo, (_JSAMPIMAGE)NULL,
416
(JDIMENSION *)NULL, (JDIMENSION)0,
417
output_buf, out_row_ctr, out_rows_avail);
418
}
419
420
#endif /* QUANT_2PASS_SUPPORTED */
421
422
423
/*
424
* Initialize main buffer controller.
425
*/
426
427
GLOBAL(void)
428
_jinit_d_main_controller(j_decompress_ptr cinfo, boolean need_full_buffer)
429
{
430
my_main_ptr main_ptr;
431
int ci, rgroup, ngroups;
432
jpeg_component_info *compptr;
433
434
#ifdef D_LOSSLESS_SUPPORTED
435
if (cinfo->master->lossless) {
436
#if BITS_IN_JSAMPLE == 8
437
if (cinfo->data_precision > BITS_IN_JSAMPLE || cinfo->data_precision < 2)
438
#else
439
if (cinfo->data_precision > BITS_IN_JSAMPLE ||
440
cinfo->data_precision < BITS_IN_JSAMPLE - 3)
441
#endif
442
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
443
} else
444
#endif
445
{
446
if (cinfo->data_precision != BITS_IN_JSAMPLE)
447
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
448
}
449
450
main_ptr = (my_main_ptr)
451
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
452
sizeof(my_main_controller));
453
cinfo->main = (struct jpeg_d_main_controller *)main_ptr;
454
main_ptr->pub.start_pass = start_pass_main;
455
456
if (need_full_buffer) /* shouldn't happen */
457
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
458
459
/* Allocate the workspace.
460
* ngroups is the number of row groups we need.
461
*/
462
if (cinfo->upsample->need_context_rows) {
463
if (cinfo->_min_DCT_scaled_size < 2) /* unsupported, see comments above */
464
ERREXIT(cinfo, JERR_NOTIMPL);
465
alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
466
ngroups = cinfo->_min_DCT_scaled_size + 2;
467
} else {
468
ngroups = cinfo->_min_DCT_scaled_size;
469
}
470
471
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
472
ci++, compptr++) {
473
rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
474
cinfo->_min_DCT_scaled_size; /* height of a row group of component */
475
main_ptr->buffer[ci] = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
476
((j_common_ptr)cinfo, JPOOL_IMAGE,
477
compptr->width_in_blocks * compptr->_DCT_scaled_size,
478
(JDIMENSION)(rgroup * ngroups));
479
}
480
}
481
482
#endif /* BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED) */
483
484