Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libpng/png.c
21746 views
1
/* png.c - location for general purpose libpng functions
2
*
3
* Copyright (c) 2018-2026 Cosmin Truta
4
* Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson
5
* Copyright (c) 1996-1997 Andreas Dilger
6
* Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.
7
*
8
* This code is released under the libpng license.
9
* For conditions of distribution and use, see the disclaimer
10
* and license in png.h
11
*/
12
13
#include "pngpriv.h"
14
15
/* Generate a compiler error if there is an old png.h in the search path. */
16
typedef png_libpng_version_1_6_54 Your_png_h_is_not_version_1_6_54;
17
18
/* Sanity check the chunks definitions - PNG_KNOWN_CHUNKS from pngpriv.h and the
19
* corresponding macro definitions. This causes a compile time failure if
20
* something is wrong but generates no code.
21
*
22
* (1) The first check is that the PNG_CHUNK(cHNK, index) 'index' values must
23
* increment from 0 to the last value.
24
*/
25
#define PNG_CHUNK(cHNK, index) != (index) || ((index)+1)
26
27
#if 0 PNG_KNOWN_CHUNKS < 0
28
# error PNG_KNOWN_CHUNKS chunk definitions are not in order
29
#endif
30
31
#undef PNG_CHUNK
32
33
/* (2) The chunk name macros, png_cHNK, must all be valid and defined. Since
34
* this is a preprocessor test undefined pp-tokens come out as zero and will
35
* fail this test.
36
*/
37
#define PNG_CHUNK(cHNK, index) !PNG_CHUNK_NAME_VALID(png_ ## cHNK) ||
38
39
#if PNG_KNOWN_CHUNKS 0
40
# error png_cHNK not defined for some known cHNK
41
#endif
42
43
#undef PNG_CHUNK
44
45
/* Tells libpng that we have already handled the first "num_bytes" bytes
46
* of the PNG file signature. If the PNG data is embedded into another
47
* stream we can set num_bytes = 8 so that libpng will not attempt to read
48
* or write any of the magic bytes before it starts on the IHDR.
49
*/
50
51
#ifdef PNG_READ_SUPPORTED
52
void PNGAPI
53
png_set_sig_bytes(png_structrp png_ptr, int num_bytes)
54
{
55
unsigned int nb = (unsigned int)num_bytes;
56
57
png_debug(1, "in png_set_sig_bytes");
58
59
if (png_ptr == NULL)
60
return;
61
62
if (num_bytes < 0)
63
nb = 0;
64
65
if (nb > 8)
66
png_error(png_ptr, "Too many bytes for PNG signature");
67
68
png_ptr->sig_bytes = (png_byte)nb;
69
}
70
71
/* Checks whether the supplied bytes match the PNG signature. We allow
72
* checking less than the full 8-byte signature so that those apps that
73
* already read the first few bytes of a file to determine the file type
74
* can simply check the remaining bytes for extra assurance. Returns
75
* an integer less than, equal to, or greater than zero if sig is found,
76
* respectively, to be less than, to match, or be greater than the correct
77
* PNG signature (this is the same behavior as strcmp, memcmp, etc).
78
*/
79
int PNGAPI
80
png_sig_cmp(png_const_bytep sig, size_t start, size_t num_to_check)
81
{
82
static const png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
83
84
if (num_to_check > 8)
85
num_to_check = 8;
86
87
else if (num_to_check < 1)
88
return -1;
89
90
if (start > 7)
91
return -1;
92
93
if (start + num_to_check > 8)
94
num_to_check = 8 - start;
95
96
return memcmp(&sig[start], &png_signature[start], num_to_check);
97
}
98
99
#endif /* READ */
100
101
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
102
/* Function to allocate memory for zlib */
103
PNG_FUNCTION(voidpf /* PRIVATE */,
104
png_zalloc,(voidpf png_ptr, uInt items, uInt size),
105
PNG_ALLOCATED)
106
{
107
png_alloc_size_t num_bytes = size;
108
109
if (png_ptr == NULL)
110
return NULL;
111
112
/* This check against overflow is vestigial, dating back from
113
* the old times when png_zalloc used to be an exported function.
114
* We're still keeping it here for now, as an extra-cautious
115
* prevention against programming errors inside zlib, although it
116
* should rather be a debug-time assertion instead.
117
*/
118
if (size != 0 && items >= (~(png_alloc_size_t)0) / size)
119
{
120
png_warning(png_voidcast(png_structrp, png_ptr),
121
"Potential overflow in png_zalloc()");
122
return NULL;
123
}
124
125
num_bytes *= items;
126
return png_malloc_warn(png_voidcast(png_structrp, png_ptr), num_bytes);
127
}
128
129
/* Function to free memory for zlib */
130
void /* PRIVATE */
131
png_zfree(voidpf png_ptr, voidpf ptr)
132
{
133
png_free(png_voidcast(png_const_structrp,png_ptr), ptr);
134
}
135
136
/* Reset the CRC variable to 32 bits of 1's. Care must be taken
137
* in case CRC is > 32 bits to leave the top bits 0.
138
*/
139
void /* PRIVATE */
140
png_reset_crc(png_structrp png_ptr)
141
{
142
/* The cast is safe because the crc is a 32-bit value. */
143
png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
144
}
145
146
/* Calculate the CRC over a section of data. We can only pass as
147
* much data to this routine as the largest single buffer size. We
148
* also check that this data will actually be used before going to the
149
* trouble of calculating it.
150
*/
151
void /* PRIVATE */
152
png_calculate_crc(png_structrp png_ptr, png_const_bytep ptr, size_t length)
153
{
154
int need_crc = 1;
155
156
if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name) != 0)
157
{
158
if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
159
(PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
160
need_crc = 0;
161
}
162
163
else /* critical */
164
{
165
if ((png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) != 0)
166
need_crc = 0;
167
}
168
169
/* 'uLong' is defined in zlib.h as unsigned long; this means that on some
170
* systems it is a 64-bit value. crc32, however, returns 32 bits so the
171
* following cast is safe. 'uInt' may be no more than 16 bits, so it is
172
* necessary to perform a loop here.
173
*/
174
if (need_crc != 0 && length > 0)
175
{
176
uLong crc = png_ptr->crc; /* Should never issue a warning */
177
178
do
179
{
180
uInt safe_length = (uInt)length;
181
#ifndef __COVERITY__
182
if (safe_length == 0)
183
safe_length = (uInt)-1; /* evil, but safe */
184
#endif
185
186
crc = crc32(crc, ptr, safe_length);
187
188
/* The following should never issue compiler warnings; if they do the
189
* target system has characteristics that will probably violate other
190
* assumptions within the libpng code.
191
*/
192
ptr += safe_length;
193
length -= safe_length;
194
}
195
while (length > 0);
196
197
/* And the following is always safe because the crc is only 32 bits. */
198
png_ptr->crc = (png_uint_32)crc;
199
}
200
}
201
202
/* Check a user supplied version number, called from both read and write
203
* functions that create a png_struct.
204
*/
205
int
206
png_user_version_check(png_structrp png_ptr, png_const_charp user_png_ver)
207
{
208
/* Libpng versions 1.0.0 and later are binary compatible if the version
209
* string matches through the second '.'; we must recompile any
210
* applications that use any older library version.
211
*/
212
213
if (user_png_ver != NULL)
214
{
215
int i = -1;
216
int found_dots = 0;
217
218
do
219
{
220
i++;
221
if (user_png_ver[i] != PNG_LIBPNG_VER_STRING[i])
222
png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
223
if (user_png_ver[i] == '.')
224
found_dots++;
225
} while (found_dots < 2 && user_png_ver[i] != 0 &&
226
PNG_LIBPNG_VER_STRING[i] != 0);
227
}
228
229
else
230
png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
231
232
if ((png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) != 0)
233
{
234
#ifdef PNG_WARNINGS_SUPPORTED
235
size_t pos = 0;
236
char m[128];
237
238
pos = png_safecat(m, (sizeof m), pos,
239
"Application built with libpng-");
240
pos = png_safecat(m, (sizeof m), pos, user_png_ver);
241
pos = png_safecat(m, (sizeof m), pos, " but running with ");
242
pos = png_safecat(m, (sizeof m), pos, PNG_LIBPNG_VER_STRING);
243
PNG_UNUSED(pos)
244
245
png_warning(png_ptr, m);
246
#endif
247
248
return 0;
249
}
250
251
/* Success return. */
252
return 1;
253
}
254
255
/* Generic function to create a png_struct for either read or write - this
256
* contains the common initialization.
257
*/
258
PNG_FUNCTION(png_structp /* PRIVATE */,
259
png_create_png_struct,(png_const_charp user_png_ver, png_voidp error_ptr,
260
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
261
png_malloc_ptr malloc_fn, png_free_ptr free_fn),
262
PNG_ALLOCATED)
263
{
264
png_struct create_struct;
265
# ifdef PNG_SETJMP_SUPPORTED
266
jmp_buf create_jmp_buf;
267
# endif
268
269
/* This temporary stack-allocated structure is used to provide a place to
270
* build enough context to allow the user provided memory allocator (if any)
271
* to be called.
272
*/
273
memset(&create_struct, 0, (sizeof create_struct));
274
275
# ifdef PNG_USER_LIMITS_SUPPORTED
276
create_struct.user_width_max = PNG_USER_WIDTH_MAX;
277
create_struct.user_height_max = PNG_USER_HEIGHT_MAX;
278
279
# ifdef PNG_USER_CHUNK_CACHE_MAX
280
create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX;
281
# endif
282
283
# if PNG_USER_CHUNK_MALLOC_MAX > 0 /* default to compile-time limit */
284
create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX;
285
286
/* No compile-time limit, so initialize to the system limit: */
287
# elif defined PNG_MAX_MALLOC_64K /* legacy system limit */
288
create_struct.user_chunk_malloc_max = 65536U;
289
290
# else /* modern system limit SIZE_MAX (C99) */
291
create_struct.user_chunk_malloc_max = PNG_SIZE_MAX;
292
# endif
293
# endif
294
295
/* The following two API calls simply set fields in png_struct, so it is safe
296
* to do them now even though error handling is not yet set up.
297
*/
298
# ifdef PNG_USER_MEM_SUPPORTED
299
png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn);
300
# else
301
PNG_UNUSED(mem_ptr)
302
PNG_UNUSED(malloc_fn)
303
PNG_UNUSED(free_fn)
304
# endif
305
306
/* (*error_fn) can return control to the caller after the error_ptr is set,
307
* this will result in a memory leak unless the error_fn does something
308
* extremely sophisticated. The design lacks merit but is implicit in the
309
* API.
310
*/
311
png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn);
312
313
# ifdef PNG_SETJMP_SUPPORTED
314
if (!setjmp(create_jmp_buf))
315
# endif
316
{
317
# ifdef PNG_SETJMP_SUPPORTED
318
/* Temporarily fake out the longjmp information until we have
319
* successfully completed this function. This only works if we have
320
* setjmp() support compiled in, but it is safe - this stuff should
321
* never happen.
322
*/
323
create_struct.jmp_buf_ptr = &create_jmp_buf;
324
create_struct.jmp_buf_size = 0; /*stack allocation*/
325
create_struct.longjmp_fn = longjmp;
326
# endif
327
/* Call the general version checker (shared with read and write code):
328
*/
329
if (png_user_version_check(&create_struct, user_png_ver) != 0)
330
{
331
png_structrp png_ptr = png_voidcast(png_structrp,
332
png_malloc_warn(&create_struct, (sizeof *png_ptr)));
333
334
if (png_ptr != NULL)
335
{
336
/* png_ptr->zstream holds a back-pointer to the png_struct, so
337
* this can only be done now:
338
*/
339
create_struct.zstream.zalloc = png_zalloc;
340
create_struct.zstream.zfree = png_zfree;
341
create_struct.zstream.opaque = png_ptr;
342
343
# ifdef PNG_SETJMP_SUPPORTED
344
/* Eliminate the local error handling: */
345
create_struct.jmp_buf_ptr = NULL;
346
create_struct.jmp_buf_size = 0;
347
create_struct.longjmp_fn = 0;
348
# endif
349
350
*png_ptr = create_struct;
351
352
/* This is the successful return point */
353
return png_ptr;
354
}
355
}
356
}
357
358
/* A longjmp because of a bug in the application storage allocator or a
359
* simple failure to allocate the png_struct.
360
*/
361
return NULL;
362
}
363
364
/* Allocate the memory for an info_struct for the application. */
365
PNG_FUNCTION(png_infop,PNGAPI
366
png_create_info_struct,(png_const_structrp png_ptr),
367
PNG_ALLOCATED)
368
{
369
png_inforp info_ptr;
370
371
png_debug(1, "in png_create_info_struct");
372
373
if (png_ptr == NULL)
374
return NULL;
375
376
/* Use the internal API that does not (or at least should not) error out, so
377
* that this call always returns ok. The application typically sets up the
378
* error handling *after* creating the info_struct because this is the way it
379
* has always been done in 'example.c'.
380
*/
381
info_ptr = png_voidcast(png_inforp, png_malloc_base(png_ptr,
382
(sizeof *info_ptr)));
383
384
if (info_ptr != NULL)
385
memset(info_ptr, 0, (sizeof *info_ptr));
386
387
return info_ptr;
388
}
389
390
/* This function frees the memory associated with a single info struct.
391
* Normally, one would use either png_destroy_read_struct() or
392
* png_destroy_write_struct() to free an info struct, but this may be
393
* useful for some applications. From libpng 1.6.0 this function is also used
394
* internally to implement the png_info release part of the 'struct' destroy
395
* APIs. This ensures that all possible approaches free the same data (all of
396
* it).
397
*/
398
void PNGAPI
399
png_destroy_info_struct(png_const_structrp png_ptr, png_infopp info_ptr_ptr)
400
{
401
png_inforp info_ptr = NULL;
402
403
png_debug(1, "in png_destroy_info_struct");
404
405
if (png_ptr == NULL)
406
return;
407
408
if (info_ptr_ptr != NULL)
409
info_ptr = *info_ptr_ptr;
410
411
if (info_ptr != NULL)
412
{
413
/* Do this first in case of an error below; if the app implements its own
414
* memory management this can lead to png_free calling png_error, which
415
* will abort this routine and return control to the app error handler.
416
* An infinite loop may result if it then tries to free the same info
417
* ptr.
418
*/
419
*info_ptr_ptr = NULL;
420
421
png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
422
memset(info_ptr, 0, (sizeof *info_ptr));
423
png_free(png_ptr, info_ptr);
424
}
425
}
426
427
/* Initialize the info structure. This is now an internal function (0.89)
428
* and applications using it are urged to use png_create_info_struct()
429
* instead. Use deprecated in 1.6.0, internal use removed (used internally it
430
* is just a memset).
431
*
432
* NOTE: it is almost inconceivable that this API is used because it bypasses
433
* the user-memory mechanism and the user error handling/warning mechanisms in
434
* those cases where it does anything other than a memset.
435
*/
436
PNG_FUNCTION(void,PNGAPI
437
png_info_init_3,(png_infopp ptr_ptr, size_t png_info_struct_size),
438
PNG_DEPRECATED)
439
{
440
png_inforp info_ptr = *ptr_ptr;
441
442
png_debug(1, "in png_info_init_3");
443
444
if (info_ptr == NULL)
445
return;
446
447
if ((sizeof (png_info)) > png_info_struct_size)
448
{
449
*ptr_ptr = NULL;
450
/* The following line is why this API should not be used: */
451
free(info_ptr);
452
info_ptr = png_voidcast(png_inforp, png_malloc_base(NULL,
453
(sizeof *info_ptr)));
454
if (info_ptr == NULL)
455
return;
456
*ptr_ptr = info_ptr;
457
}
458
459
/* Set everything to 0 */
460
memset(info_ptr, 0, (sizeof *info_ptr));
461
}
462
463
void PNGAPI
464
png_data_freer(png_const_structrp png_ptr, png_inforp info_ptr,
465
int freer, png_uint_32 mask)
466
{
467
png_debug(1, "in png_data_freer");
468
469
if (png_ptr == NULL || info_ptr == NULL)
470
return;
471
472
if (freer == PNG_DESTROY_WILL_FREE_DATA)
473
info_ptr->free_me |= mask;
474
475
else if (freer == PNG_USER_WILL_FREE_DATA)
476
info_ptr->free_me &= ~mask;
477
478
else
479
png_error(png_ptr, "Unknown freer parameter in png_data_freer");
480
}
481
482
void PNGAPI
483
png_free_data(png_const_structrp png_ptr, png_inforp info_ptr, png_uint_32 mask,
484
int num)
485
{
486
png_debug(1, "in png_free_data");
487
488
if (png_ptr == NULL || info_ptr == NULL)
489
return;
490
491
#ifdef PNG_TEXT_SUPPORTED
492
/* Free text item num or (if num == -1) all text items */
493
if (info_ptr->text != NULL &&
494
((mask & PNG_FREE_TEXT) & info_ptr->free_me) != 0)
495
{
496
if (num != -1)
497
{
498
png_free(png_ptr, info_ptr->text[num].key);
499
info_ptr->text[num].key = NULL;
500
}
501
502
else
503
{
504
int i;
505
506
for (i = 0; i < info_ptr->num_text; i++)
507
png_free(png_ptr, info_ptr->text[i].key);
508
509
png_free(png_ptr, info_ptr->text);
510
info_ptr->text = NULL;
511
info_ptr->num_text = 0;
512
info_ptr->max_text = 0;
513
}
514
}
515
#endif
516
517
#ifdef PNG_tRNS_SUPPORTED
518
/* Free any tRNS entry */
519
if (((mask & PNG_FREE_TRNS) & info_ptr->free_me) != 0)
520
{
521
info_ptr->valid &= ~PNG_INFO_tRNS;
522
png_free(png_ptr, info_ptr->trans_alpha);
523
info_ptr->trans_alpha = NULL;
524
info_ptr->num_trans = 0;
525
}
526
#endif
527
528
#ifdef PNG_sCAL_SUPPORTED
529
/* Free any sCAL entry */
530
if (((mask & PNG_FREE_SCAL) & info_ptr->free_me) != 0)
531
{
532
png_free(png_ptr, info_ptr->scal_s_width);
533
png_free(png_ptr, info_ptr->scal_s_height);
534
info_ptr->scal_s_width = NULL;
535
info_ptr->scal_s_height = NULL;
536
info_ptr->valid &= ~PNG_INFO_sCAL;
537
}
538
#endif
539
540
#ifdef PNG_pCAL_SUPPORTED
541
/* Free any pCAL entry */
542
if (((mask & PNG_FREE_PCAL) & info_ptr->free_me) != 0)
543
{
544
png_free(png_ptr, info_ptr->pcal_purpose);
545
png_free(png_ptr, info_ptr->pcal_units);
546
info_ptr->pcal_purpose = NULL;
547
info_ptr->pcal_units = NULL;
548
549
if (info_ptr->pcal_params != NULL)
550
{
551
int i;
552
553
for (i = 0; i < info_ptr->pcal_nparams; i++)
554
png_free(png_ptr, info_ptr->pcal_params[i]);
555
556
png_free(png_ptr, info_ptr->pcal_params);
557
info_ptr->pcal_params = NULL;
558
}
559
info_ptr->valid &= ~PNG_INFO_pCAL;
560
}
561
#endif
562
563
#ifdef PNG_iCCP_SUPPORTED
564
/* Free any profile entry */
565
if (((mask & PNG_FREE_ICCP) & info_ptr->free_me) != 0)
566
{
567
png_free(png_ptr, info_ptr->iccp_name);
568
png_free(png_ptr, info_ptr->iccp_profile);
569
info_ptr->iccp_name = NULL;
570
info_ptr->iccp_profile = NULL;
571
info_ptr->valid &= ~PNG_INFO_iCCP;
572
}
573
#endif
574
575
#ifdef PNG_sPLT_SUPPORTED
576
/* Free a given sPLT entry, or (if num == -1) all sPLT entries */
577
if (info_ptr->splt_palettes != NULL &&
578
((mask & PNG_FREE_SPLT) & info_ptr->free_me) != 0)
579
{
580
if (num != -1)
581
{
582
png_free(png_ptr, info_ptr->splt_palettes[num].name);
583
png_free(png_ptr, info_ptr->splt_palettes[num].entries);
584
info_ptr->splt_palettes[num].name = NULL;
585
info_ptr->splt_palettes[num].entries = NULL;
586
}
587
588
else
589
{
590
int i;
591
592
for (i = 0; i < info_ptr->splt_palettes_num; i++)
593
{
594
png_free(png_ptr, info_ptr->splt_palettes[i].name);
595
png_free(png_ptr, info_ptr->splt_palettes[i].entries);
596
}
597
598
png_free(png_ptr, info_ptr->splt_palettes);
599
info_ptr->splt_palettes = NULL;
600
info_ptr->splt_palettes_num = 0;
601
info_ptr->valid &= ~PNG_INFO_sPLT;
602
}
603
}
604
#endif
605
606
#ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED
607
if (info_ptr->unknown_chunks != NULL &&
608
((mask & PNG_FREE_UNKN) & info_ptr->free_me) != 0)
609
{
610
if (num != -1)
611
{
612
png_free(png_ptr, info_ptr->unknown_chunks[num].data);
613
info_ptr->unknown_chunks[num].data = NULL;
614
}
615
616
else
617
{
618
int i;
619
620
for (i = 0; i < info_ptr->unknown_chunks_num; i++)
621
png_free(png_ptr, info_ptr->unknown_chunks[i].data);
622
623
png_free(png_ptr, info_ptr->unknown_chunks);
624
info_ptr->unknown_chunks = NULL;
625
info_ptr->unknown_chunks_num = 0;
626
}
627
}
628
#endif
629
630
#ifdef PNG_eXIf_SUPPORTED
631
/* Free any eXIf entry */
632
if (((mask & PNG_FREE_EXIF) & info_ptr->free_me) != 0)
633
{
634
if (info_ptr->exif)
635
{
636
png_free(png_ptr, info_ptr->exif);
637
info_ptr->exif = NULL;
638
}
639
info_ptr->valid &= ~PNG_INFO_eXIf;
640
}
641
#endif
642
643
#ifdef PNG_hIST_SUPPORTED
644
/* Free any hIST entry */
645
if (((mask & PNG_FREE_HIST) & info_ptr->free_me) != 0)
646
{
647
png_free(png_ptr, info_ptr->hist);
648
info_ptr->hist = NULL;
649
info_ptr->valid &= ~PNG_INFO_hIST;
650
}
651
#endif
652
653
/* Free any PLTE entry that was internally allocated */
654
if (((mask & PNG_FREE_PLTE) & info_ptr->free_me) != 0)
655
{
656
png_free(png_ptr, info_ptr->palette);
657
info_ptr->palette = NULL;
658
info_ptr->valid &= ~PNG_INFO_PLTE;
659
info_ptr->num_palette = 0;
660
}
661
662
#ifdef PNG_INFO_IMAGE_SUPPORTED
663
/* Free any image bits attached to the info structure */
664
if (((mask & PNG_FREE_ROWS) & info_ptr->free_me) != 0)
665
{
666
if (info_ptr->row_pointers != NULL)
667
{
668
png_uint_32 row;
669
for (row = 0; row < info_ptr->height; row++)
670
png_free(png_ptr, info_ptr->row_pointers[row]);
671
672
png_free(png_ptr, info_ptr->row_pointers);
673
info_ptr->row_pointers = NULL;
674
}
675
info_ptr->valid &= ~PNG_INFO_IDAT;
676
}
677
#endif
678
679
if (num != -1)
680
mask &= ~PNG_FREE_MUL;
681
682
info_ptr->free_me &= ~mask;
683
}
684
#endif /* READ || WRITE */
685
686
/* This function returns a pointer to the io_ptr associated with the user
687
* functions. The application should free any memory associated with this
688
* pointer before png_write_destroy() or png_read_destroy() are called.
689
*/
690
png_voidp PNGAPI
691
png_get_io_ptr(png_const_structrp png_ptr)
692
{
693
if (png_ptr == NULL)
694
return NULL;
695
696
return png_ptr->io_ptr;
697
}
698
699
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
700
# ifdef PNG_STDIO_SUPPORTED
701
/* Initialize the default input/output functions for the PNG file. If you
702
* use your own read or write routines, you can call either png_set_read_fn()
703
* or png_set_write_fn() instead of png_init_io(). If you have defined
704
* PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
705
* function of your own because "FILE *" isn't necessarily available.
706
*/
707
void PNGAPI
708
png_init_io(png_structrp png_ptr, FILE *fp)
709
{
710
png_debug(1, "in png_init_io");
711
712
if (png_ptr == NULL)
713
return;
714
715
png_ptr->io_ptr = (png_voidp)fp;
716
}
717
# endif
718
719
# ifdef PNG_SAVE_INT_32_SUPPORTED
720
/* PNG signed integers are saved in 32-bit 2's complement format. ANSI C-90
721
* defines a cast of a signed integer to an unsigned integer either to preserve
722
* the value, if it is positive, or to calculate:
723
*
724
* (UNSIGNED_MAX+1) + integer
725
*
726
* Where UNSIGNED_MAX is the appropriate maximum unsigned value, so when the
727
* negative integral value is added the result will be an unsigned value
728
* corresponding to the 2's complement representation.
729
*/
730
void PNGAPI
731
png_save_int_32(png_bytep buf, png_int_32 i)
732
{
733
png_save_uint_32(buf, (png_uint_32)i);
734
}
735
# endif
736
737
# ifdef PNG_TIME_RFC1123_SUPPORTED
738
/* Convert the supplied time into an RFC 1123 string suitable for use in
739
* a "Creation Time" or other text-based time string.
740
*/
741
int PNGAPI
742
png_convert_to_rfc1123_buffer(char out[29], png_const_timep ptime)
743
{
744
static const char short_months[12][4] =
745
{"Jan", "Feb", "Mar", "Apr", "May", "Jun",
746
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
747
748
if (out == NULL)
749
return 0;
750
751
if (ptime->year > 9999 /* RFC1123 limitation */ ||
752
ptime->month == 0 || ptime->month > 12 ||
753
ptime->day == 0 || ptime->day > 31 ||
754
ptime->hour > 23 || ptime->minute > 59 ||
755
ptime->second > 60)
756
return 0;
757
758
{
759
size_t pos = 0;
760
char number_buf[5] = {0, 0, 0, 0, 0}; /* enough for a four-digit year */
761
762
# define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string))
763
# define APPEND_NUMBER(format, value)\
764
APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
765
# define APPEND(ch) if (pos < 28) out[pos++] = (ch)
766
767
APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
768
APPEND(' ');
769
APPEND_STRING(short_months[(ptime->month - 1)]);
770
APPEND(' ');
771
APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
772
APPEND(' ');
773
APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
774
APPEND(':');
775
APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
776
APPEND(':');
777
APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
778
APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
779
PNG_UNUSED (pos)
780
781
# undef APPEND
782
# undef APPEND_NUMBER
783
# undef APPEND_STRING
784
}
785
786
return 1;
787
}
788
789
# if PNG_LIBPNG_VER < 10700
790
/* To do: remove the following from libpng-1.7 */
791
/* Original API that uses a private buffer in png_struct.
792
* Deprecated because it causes png_struct to carry a spurious temporary
793
* buffer (png_struct::time_buffer), better to have the caller pass this in.
794
*/
795
png_const_charp PNGAPI
796
png_convert_to_rfc1123(png_structrp png_ptr, png_const_timep ptime)
797
{
798
if (png_ptr != NULL)
799
{
800
/* The only failure above if png_ptr != NULL is from an invalid ptime */
801
if (png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime) == 0)
802
png_warning(png_ptr, "Ignoring invalid time value");
803
804
else
805
return png_ptr->time_buffer;
806
}
807
808
return NULL;
809
}
810
# endif /* LIBPNG_VER < 10700 */
811
# endif /* TIME_RFC1123 */
812
813
#endif /* READ || WRITE */
814
815
png_const_charp PNGAPI
816
png_get_copyright(png_const_structrp png_ptr)
817
{
818
PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
819
#ifdef PNG_STRING_COPYRIGHT
820
return PNG_STRING_COPYRIGHT
821
#else
822
return PNG_STRING_NEWLINE \
823
"libpng version 1.6.54" PNG_STRING_NEWLINE \
824
"Copyright (c) 2018-2026 Cosmin Truta" PNG_STRING_NEWLINE \
825
"Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson" \
826
PNG_STRING_NEWLINE \
827
"Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
828
"Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
829
PNG_STRING_NEWLINE;
830
#endif
831
}
832
833
/* The following return the library version as a short string in the
834
* format 1.0.0 through 99.99.99zz. To get the version of *.h files
835
* used with your application, print out PNG_LIBPNG_VER_STRING, which
836
* is defined in png.h.
837
* Note: now there is no difference between png_get_libpng_ver() and
838
* png_get_header_ver(). Due to the version_nn_nn_nn typedef guard,
839
* it is guaranteed that png.c uses the correct version of png.h.
840
*/
841
png_const_charp PNGAPI
842
png_get_libpng_ver(png_const_structrp png_ptr)
843
{
844
/* Version of *.c files used when building libpng */
845
return png_get_header_ver(png_ptr);
846
}
847
848
png_const_charp PNGAPI
849
png_get_header_ver(png_const_structrp png_ptr)
850
{
851
/* Version of *.h files used when building libpng */
852
PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
853
return PNG_LIBPNG_VER_STRING;
854
}
855
856
png_const_charp PNGAPI
857
png_get_header_version(png_const_structrp png_ptr)
858
{
859
/* Returns longer string containing both version and date */
860
PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
861
#ifdef __STDC__
862
return PNG_HEADER_VERSION_STRING
863
# ifndef PNG_READ_SUPPORTED
864
" (NO READ SUPPORT)"
865
# endif
866
PNG_STRING_NEWLINE;
867
#else
868
return PNG_HEADER_VERSION_STRING;
869
#endif
870
}
871
872
#ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED
873
/* NOTE: this routine is not used internally! */
874
/* Build a grayscale palette. Palette is assumed to be 1 << bit_depth
875
* large of png_color. This lets grayscale images be treated as
876
* paletted. Most useful for gamma correction and simplification
877
* of code. This API is not used internally.
878
*/
879
void PNGAPI
880
png_build_grayscale_palette(int bit_depth, png_colorp palette)
881
{
882
int num_palette;
883
int color_inc;
884
int i;
885
int v;
886
887
png_debug(1, "in png_do_build_grayscale_palette");
888
889
if (palette == NULL)
890
return;
891
892
switch (bit_depth)
893
{
894
case 1:
895
num_palette = 2;
896
color_inc = 0xff;
897
break;
898
899
case 2:
900
num_palette = 4;
901
color_inc = 0x55;
902
break;
903
904
case 4:
905
num_palette = 16;
906
color_inc = 0x11;
907
break;
908
909
case 8:
910
num_palette = 256;
911
color_inc = 1;
912
break;
913
914
default:
915
num_palette = 0;
916
color_inc = 0;
917
break;
918
}
919
920
for (i = 0, v = 0; i < num_palette; i++, v += color_inc)
921
{
922
palette[i].red = (png_byte)(v & 0xff);
923
palette[i].green = (png_byte)(v & 0xff);
924
palette[i].blue = (png_byte)(v & 0xff);
925
}
926
}
927
#endif
928
929
#ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED
930
int PNGAPI
931
png_handle_as_unknown(png_const_structrp png_ptr, png_const_bytep chunk_name)
932
{
933
/* Check chunk_name and return "keep" value if it's on the list, else 0 */
934
png_const_bytep p, p_end;
935
936
if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0)
937
return PNG_HANDLE_CHUNK_AS_DEFAULT;
938
939
p_end = png_ptr->chunk_list;
940
p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
941
942
/* The code is the fifth byte after each four byte string. Historically this
943
* code was always searched from the end of the list, this is no longer
944
* necessary because the 'set' routine handles duplicate entries correctly.
945
*/
946
do /* num_chunk_list > 0, so at least one */
947
{
948
p -= 5;
949
950
if (memcmp(chunk_name, p, 4) == 0)
951
return p[4];
952
}
953
while (p > p_end);
954
955
/* This means that known chunks should be processed and unknown chunks should
956
* be handled according to the value of png_ptr->unknown_default; this can be
957
* confusing because, as a result, there are two levels of defaulting for
958
* unknown chunks.
959
*/
960
return PNG_HANDLE_CHUNK_AS_DEFAULT;
961
}
962
963
#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\
964
defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED)
965
int /* PRIVATE */
966
png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name)
967
{
968
png_byte chunk_string[5];
969
970
PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
971
return png_handle_as_unknown(png_ptr, chunk_string);
972
}
973
#endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */
974
#endif /* SET_UNKNOWN_CHUNKS */
975
976
#ifdef PNG_READ_SUPPORTED
977
/* This function, added to libpng-1.0.6g, is untested. */
978
int PNGAPI
979
png_reset_zstream(png_structrp png_ptr)
980
{
981
if (png_ptr == NULL)
982
return Z_STREAM_ERROR;
983
984
/* WARNING: this resets the window bits to the maximum! */
985
return inflateReset(&png_ptr->zstream);
986
}
987
#endif /* READ */
988
989
/* This function was added to libpng-1.0.7 */
990
png_uint_32 PNGAPI
991
png_access_version_number(void)
992
{
993
/* Version of *.c files used when building libpng */
994
return (png_uint_32)PNG_LIBPNG_VER;
995
}
996
997
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
998
/* Ensure that png_ptr->zstream.msg holds some appropriate error message string.
999
* If it doesn't 'ret' is used to set it to something appropriate, even in cases
1000
* like Z_OK or Z_STREAM_END where the error code is apparently a success code.
1001
*/
1002
void /* PRIVATE */
1003
png_zstream_error(png_structrp png_ptr, int ret)
1004
{
1005
/* Translate 'ret' into an appropriate error string, priority is given to the
1006
* one in zstream if set. This always returns a string, even in cases like
1007
* Z_OK or Z_STREAM_END where the error code is a success code.
1008
*/
1009
if (png_ptr->zstream.msg == NULL) switch (ret)
1010
{
1011
default:
1012
case Z_OK:
1013
png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code");
1014
break;
1015
1016
case Z_STREAM_END:
1017
/* Normal exit */
1018
png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream");
1019
break;
1020
1021
case Z_NEED_DICT:
1022
/* This means the deflate stream did not have a dictionary; this
1023
* indicates a bogus PNG.
1024
*/
1025
png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary");
1026
break;
1027
1028
case Z_ERRNO:
1029
/* gz APIs only: should not happen */
1030
png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error");
1031
break;
1032
1033
case Z_STREAM_ERROR:
1034
/* internal libpng error */
1035
png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib");
1036
break;
1037
1038
case Z_DATA_ERROR:
1039
png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream");
1040
break;
1041
1042
case Z_MEM_ERROR:
1043
png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory");
1044
break;
1045
1046
case Z_BUF_ERROR:
1047
/* End of input or output; not a problem if the caller is doing
1048
* incremental read or write.
1049
*/
1050
png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated");
1051
break;
1052
1053
case Z_VERSION_ERROR:
1054
png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version");
1055
break;
1056
1057
case PNG_UNEXPECTED_ZLIB_RETURN:
1058
/* Compile errors here mean that zlib now uses the value co-opted in
1059
* pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above
1060
* and change pngpriv.h. Note that this message is "... return",
1061
* whereas the default/Z_OK one is "... return code".
1062
*/
1063
png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return");
1064
break;
1065
}
1066
}
1067
1068
#ifdef PNG_COLORSPACE_SUPPORTED
1069
static png_int_32
1070
png_fp_add(png_int_32 addend0, png_int_32 addend1, int *error)
1071
{
1072
/* Safely add two fixed point values setting an error flag and returning 0.5
1073
* on overflow.
1074
* IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore
1075
* relying on addition of two positive values producing a negative one is not
1076
* safe.
1077
*/
1078
if (addend0 > 0)
1079
{
1080
if (0x7fffffff - addend0 >= addend1)
1081
return addend0+addend1;
1082
}
1083
else if (addend0 < 0)
1084
{
1085
if (-0x7fffffff - addend0 <= addend1)
1086
return addend0+addend1;
1087
}
1088
else
1089
return addend1;
1090
1091
*error = 1;
1092
return PNG_FP_1/2;
1093
}
1094
1095
static png_int_32
1096
png_fp_sub(png_int_32 addend0, png_int_32 addend1, int *error)
1097
{
1098
/* As above but calculate addend0-addend1. */
1099
if (addend1 > 0)
1100
{
1101
if (-0x7fffffff + addend1 <= addend0)
1102
return addend0-addend1;
1103
}
1104
else if (addend1 < 0)
1105
{
1106
if (0x7fffffff + addend1 >= addend0)
1107
return addend0-addend1;
1108
}
1109
else
1110
return addend0;
1111
1112
*error = 1;
1113
return PNG_FP_1/2;
1114
}
1115
1116
static int
1117
png_safe_add(png_int_32 *addend0_and_result, png_int_32 addend1,
1118
png_int_32 addend2)
1119
{
1120
/* Safely add three integers. Returns 0 on success, 1 on overflow. Does not
1121
* set the result on overflow.
1122
*/
1123
int error = 0;
1124
int result = png_fp_add(*addend0_and_result,
1125
png_fp_add(addend1, addend2, &error),
1126
&error);
1127
if (!error) *addend0_and_result = result;
1128
return error;
1129
}
1130
1131
/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
1132
* cHRM, as opposed to using chromaticities. These internal APIs return
1133
* non-zero on a parameter error. The X, Y and Z values are required to be
1134
* positive and less than 1.0.
1135
*/
1136
int /* PRIVATE */
1137
png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ)
1138
{
1139
/* NOTE: returns 0 on success, 1 means error. */
1140
png_int_32 d, dred, dgreen, dblue, dwhite, whiteX, whiteY;
1141
1142
/* 'd' in each of the blocks below is just X+Y+Z for each component,
1143
* x, y and z are X,Y,Z/(X+Y+Z).
1144
*/
1145
d = XYZ->red_X;
1146
if (png_safe_add(&d, XYZ->red_Y, XYZ->red_Z))
1147
return 1;
1148
dred = d;
1149
if (png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, dred) == 0)
1150
return 1;
1151
if (png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, dred) == 0)
1152
return 1;
1153
1154
d = XYZ->green_X;
1155
if (png_safe_add(&d, XYZ->green_Y, XYZ->green_Z))
1156
return 1;
1157
dgreen = d;
1158
if (png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, dgreen) == 0)
1159
return 1;
1160
if (png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, dgreen) == 0)
1161
return 1;
1162
1163
d = XYZ->blue_X;
1164
if (png_safe_add(&d, XYZ->blue_Y, XYZ->blue_Z))
1165
return 1;
1166
dblue = d;
1167
if (png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, dblue) == 0)
1168
return 1;
1169
if (png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, dblue) == 0)
1170
return 1;
1171
1172
/* The reference white is simply the sum of the end-point (X,Y,Z) vectors so
1173
* the fillowing calculates (X+Y+Z) of the reference white (media white,
1174
* encoding white) itself:
1175
*/
1176
d = dblue;
1177
if (png_safe_add(&d, dred, dgreen))
1178
return 1;
1179
dwhite = d;
1180
1181
/* Find the white X,Y values from the sum of the red, green and blue X,Y
1182
* values.
1183
*/
1184
d = XYZ->red_X;
1185
if (png_safe_add(&d, XYZ->green_X, XYZ->blue_X))
1186
return 1;
1187
whiteX = d;
1188
1189
d = XYZ->red_Y;
1190
if (png_safe_add(&d, XYZ->green_Y, XYZ->blue_Y))
1191
return 1;
1192
whiteY = d;
1193
1194
if (png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite) == 0)
1195
return 1;
1196
if (png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite) == 0)
1197
return 1;
1198
1199
return 0;
1200
}
1201
1202
int /* PRIVATE */
1203
png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy)
1204
{
1205
/* NOTE: returns 0 on success, 1 means error. */
1206
png_fixed_point red_inverse, green_inverse, blue_scale;
1207
png_fixed_point left, right, denominator;
1208
1209
/* Check xy and, implicitly, z. Note that wide gamut color spaces typically
1210
* have end points with 0 tristimulus values (these are impossible end
1211
* points, but they are used to cover the possible colors). We check
1212
* xy->whitey against 5, not 0, to avoid a possible integer overflow.
1213
*
1214
* The limits here will *not* accept ACES AP0, where bluey is -7700
1215
* (-0.0770) because the PNG spec itself requires the xy values to be
1216
* unsigned. whitey is also required to be 5 or more to avoid overflow.
1217
*
1218
* Instead the upper limits have been relaxed to accomodate ACES AP1 where
1219
* redz ends up as -600 (-0.006). ProPhotoRGB was already "in range."
1220
* The new limit accomodates the AP0 and AP1 ranges for z but not AP0 redy.
1221
*/
1222
const png_fixed_point fpLimit = PNG_FP_1+(PNG_FP_1/10);
1223
if (xy->redx < 0 || xy->redx > fpLimit) return 1;
1224
if (xy->redy < 0 || xy->redy > fpLimit-xy->redx) return 1;
1225
if (xy->greenx < 0 || xy->greenx > fpLimit) return 1;
1226
if (xy->greeny < 0 || xy->greeny > fpLimit-xy->greenx) return 1;
1227
if (xy->bluex < 0 || xy->bluex > fpLimit) return 1;
1228
if (xy->bluey < 0 || xy->bluey > fpLimit-xy->bluex) return 1;
1229
if (xy->whitex < 0 || xy->whitex > fpLimit) return 1;
1230
if (xy->whitey < 5 || xy->whitey > fpLimit-xy->whitex) return 1;
1231
1232
/* The reverse calculation is more difficult because the original tristimulus
1233
* value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
1234
* derived values were recorded in the cHRM chunk;
1235
* (red,green,blue,white)x(x,y). This loses one degree of freedom and
1236
* therefore an arbitrary ninth value has to be introduced to undo the
1237
* original transformations.
1238
*
1239
* Think of the original end-points as points in (X,Y,Z) space. The
1240
* chromaticity values (c) have the property:
1241
*
1242
* C
1243
* c = ---------
1244
* X + Y + Z
1245
*
1246
* For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the
1247
* three chromaticity values (x,y,z) for each end-point obey the
1248
* relationship:
1249
*
1250
* x + y + z = 1
1251
*
1252
* This describes the plane in (X,Y,Z) space that intersects each axis at the
1253
* value 1.0; call this the chromaticity plane. Thus the chromaticity
1254
* calculation has scaled each end-point so that it is on the x+y+z=1 plane
1255
* and chromaticity is the intersection of the vector from the origin to the
1256
* (X,Y,Z) value with the chromaticity plane.
1257
*
1258
* To fully invert the chromaticity calculation we would need the three
1259
* end-point scale factors, (red-scale, green-scale, blue-scale), but these
1260
* were not recorded. Instead we calculated the reference white (X,Y,Z) and
1261
* recorded the chromaticity of this. The reference white (X,Y,Z) would have
1262
* given all three of the scale factors since:
1263
*
1264
* color-C = color-c * color-scale
1265
* white-C = red-C + green-C + blue-C
1266
* = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1267
*
1268
* But cHRM records only white-x and white-y, so we have lost the white scale
1269
* factor:
1270
*
1271
* white-C = white-c*white-scale
1272
*
1273
* To handle this the inverse transformation makes an arbitrary assumption
1274
* about white-scale:
1275
*
1276
* Assume: white-Y = 1.0
1277
* Hence: white-scale = 1/white-y
1278
* Or: red-Y + green-Y + blue-Y = 1.0
1279
*
1280
* Notice the last statement of the assumption gives an equation in three of
1281
* the nine values we want to calculate. 8 more equations come from the
1282
* above routine as summarised at the top above (the chromaticity
1283
* calculation):
1284
*
1285
* Given: color-x = color-X / (color-X + color-Y + color-Z)
1286
* Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
1287
*
1288
* This is 9 simultaneous equations in the 9 variables "color-C" and can be
1289
* solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix
1290
* determinants, however this is not as bad as it seems because only 28 of
1291
* the total of 90 terms in the various matrices are non-zero. Nevertheless
1292
* Cramer's rule is notoriously numerically unstable because the determinant
1293
* calculation involves the difference of large, but similar, numbers. It is
1294
* difficult to be sure that the calculation is stable for real world values
1295
* and it is certain that it becomes unstable where the end points are close
1296
* together.
1297
*
1298
* So this code uses the perhaps slightly less optimal but more
1299
* understandable and totally obvious approach of calculating color-scale.
1300
*
1301
* This algorithm depends on the precision in white-scale and that is
1302
* (1/white-y), so we can immediately see that as white-y approaches 0 the
1303
* accuracy inherent in the cHRM chunk drops off substantially.
1304
*
1305
* libpng arithmetic: a simple inversion of the above equations
1306
* ------------------------------------------------------------
1307
*
1308
* white_scale = 1/white-y
1309
* white-X = white-x * white-scale
1310
* white-Y = 1.0
1311
* white-Z = (1 - white-x - white-y) * white_scale
1312
*
1313
* white-C = red-C + green-C + blue-C
1314
* = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1315
*
1316
* This gives us three equations in (red-scale,green-scale,blue-scale) where
1317
* all the coefficients are now known:
1318
*
1319
* red-x*red-scale + green-x*green-scale + blue-x*blue-scale
1320
* = white-x/white-y
1321
* red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
1322
* red-z*red-scale + green-z*green-scale + blue-z*blue-scale
1323
* = (1 - white-x - white-y)/white-y
1324
*
1325
* In the last equation color-z is (1 - color-x - color-y) so we can add all
1326
* three equations together to get an alternative third:
1327
*
1328
* red-scale + green-scale + blue-scale = 1/white-y = white-scale
1329
*
1330
* So now we have a Cramer's rule solution where the determinants are just
1331
* 3x3 - far more tractible. Unfortunately 3x3 determinants still involve
1332
* multiplication of three coefficients so we can't guarantee to avoid
1333
* overflow in the libpng fixed point representation. Using Cramer's rule in
1334
* floating point is probably a good choice here, but it's not an option for
1335
* fixed point. Instead proceed to simplify the first two equations by
1336
* eliminating what is likely to be the largest value, blue-scale:
1337
*
1338
* blue-scale = white-scale - red-scale - green-scale
1339
*
1340
* Hence:
1341
*
1342
* (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
1343
* (white-x - blue-x)*white-scale
1344
*
1345
* (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
1346
* 1 - blue-y*white-scale
1347
*
1348
* And now we can trivially solve for (red-scale,green-scale):
1349
*
1350
* green-scale =
1351
* (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
1352
* -----------------------------------------------------------
1353
* green-x - blue-x
1354
*
1355
* red-scale =
1356
* 1 - blue-y*white-scale - (green-y - blue-y) * green-scale
1357
* ---------------------------------------------------------
1358
* red-y - blue-y
1359
*
1360
* Hence:
1361
*
1362
* red-scale =
1363
* ( (green-x - blue-x) * (white-y - blue-y) -
1364
* (green-y - blue-y) * (white-x - blue-x) ) / white-y
1365
* -------------------------------------------------------------------------
1366
* (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1367
*
1368
* green-scale =
1369
* ( (red-y - blue-y) * (white-x - blue-x) -
1370
* (red-x - blue-x) * (white-y - blue-y) ) / white-y
1371
* -------------------------------------------------------------------------
1372
* (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1373
*
1374
* Accuracy:
1375
* The input values have 5 decimal digits of accuracy.
1376
*
1377
* In the previous implementation the values were all in the range 0 < value
1378
* < 1, so simple products are in the same range but may need up to 10
1379
* decimal digits to preserve the original precision and avoid underflow.
1380
* Because we are using a 32-bit signed representation we cannot match this;
1381
* the best is a little over 9 decimal digits, less than 10.
1382
*
1383
* This range has now been extended to allow values up to 1.1, or 110,000 in
1384
* fixed point.
1385
*
1386
* The approach used here is to preserve the maximum precision within the
1387
* signed representation. Because the red-scale calculation above uses the
1388
* difference between two products of values that must be in the range
1389
* -1.1..+1.1 it is sufficient to divide the product by 8;
1390
* ceil(121,000/32767*2). The factor is irrelevant in the calculation
1391
* because it is applied to both numerator and denominator.
1392
*
1393
* Note that the values of the differences of the products of the
1394
* chromaticities in the above equations tend to be small, for example for
1395
* the sRGB chromaticities they are:
1396
*
1397
* red numerator: -0.04751
1398
* green numerator: -0.08788
1399
* denominator: -0.2241 (without white-y multiplication)
1400
*
1401
* The resultant Y coefficients from the chromaticities of some widely used
1402
* color space definitions are (to 15 decimal places):
1403
*
1404
* sRGB
1405
* 0.212639005871510 0.715168678767756 0.072192315360734
1406
* Kodak ProPhoto
1407
* 0.288071128229293 0.711843217810102 0.000085653960605
1408
* Adobe RGB
1409
* 0.297344975250536 0.627363566255466 0.075291458493998
1410
* Adobe Wide Gamut RGB
1411
* 0.258728243040113 0.724682314948566 0.016589442011321
1412
*/
1413
{
1414
int error = 0;
1415
1416
/* By the argument above overflow should be impossible here, however the
1417
* code now simply returns a failure code. The xy subtracts in the
1418
* arguments to png_muldiv are *not* checked for overflow because the
1419
* checks at the start guarantee they are in the range 0..110000 and
1420
* png_fixed_point is a 32-bit signed number.
1421
*/
1422
if (png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 8) == 0)
1423
return 1;
1424
if (png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 8) ==
1425
0)
1426
return 1;
1427
denominator = png_fp_sub(left, right, &error);
1428
if (error) return 1;
1429
1430
/* Now find the red numerator. */
1431
if (png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 8) == 0)
1432
return 1;
1433
if (png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 8) ==
1434
0)
1435
return 1;
1436
1437
/* Overflow is possible here and it indicates an extreme set of PNG cHRM
1438
* chunk values. This calculation actually returns the reciprocal of the
1439
* scale value because this allows us to delay the multiplication of
1440
* white-y into the denominator, which tends to produce a small number.
1441
*/
1442
if (png_muldiv(&red_inverse, xy->whitey, denominator,
1443
png_fp_sub(left, right, &error)) == 0 || error ||
1444
red_inverse <= xy->whitey /* r+g+b scales = white scale */)
1445
return 1;
1446
1447
/* Similarly for green_inverse: */
1448
if (png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 8) == 0)
1449
return 1;
1450
if (png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 8) == 0)
1451
return 1;
1452
if (png_muldiv(&green_inverse, xy->whitey, denominator,
1453
png_fp_sub(left, right, &error)) == 0 || error ||
1454
green_inverse <= xy->whitey)
1455
return 1;
1456
1457
/* And the blue scale, the checks above guarantee this can't overflow but
1458
* it can still produce 0 for extreme cHRM values.
1459
*/
1460
blue_scale = png_fp_sub(png_fp_sub(png_reciprocal(xy->whitey),
1461
png_reciprocal(red_inverse), &error),
1462
png_reciprocal(green_inverse), &error);
1463
if (error || blue_scale <= 0)
1464
return 1;
1465
}
1466
1467
/* And fill in the png_XYZ. Again the subtracts are safe because of the
1468
* checks on the xy values at the start (the subtracts just calculate the
1469
* corresponding z values.)
1470
*/
1471
if (png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse) == 0)
1472
return 1;
1473
if (png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse) == 0)
1474
return 1;
1475
if (png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1,
1476
red_inverse) == 0)
1477
return 1;
1478
1479
if (png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse) == 0)
1480
return 1;
1481
if (png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse) == 0)
1482
return 1;
1483
if (png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1,
1484
green_inverse) == 0)
1485
return 1;
1486
1487
if (png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1) == 0)
1488
return 1;
1489
if (png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1) == 0)
1490
return 1;
1491
if (png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale,
1492
PNG_FP_1) == 0)
1493
return 1;
1494
1495
return 0; /*success*/
1496
}
1497
#endif /* COLORSPACE */
1498
1499
#ifdef PNG_READ_iCCP_SUPPORTED
1500
/* Error message generation */
1501
static char
1502
png_icc_tag_char(png_uint_32 byte)
1503
{
1504
byte &= 0xff;
1505
if (byte >= 32 && byte <= 126)
1506
return (char)byte;
1507
else
1508
return '?';
1509
}
1510
1511
static void
1512
png_icc_tag_name(char *name, png_uint_32 tag)
1513
{
1514
name[0] = '\'';
1515
name[1] = png_icc_tag_char(tag >> 24);
1516
name[2] = png_icc_tag_char(tag >> 16);
1517
name[3] = png_icc_tag_char(tag >> 8);
1518
name[4] = png_icc_tag_char(tag );
1519
name[5] = '\'';
1520
}
1521
1522
static int
1523
is_ICC_signature_char(png_alloc_size_t it)
1524
{
1525
return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) ||
1526
(it >= 97 && it <= 122);
1527
}
1528
1529
static int
1530
is_ICC_signature(png_alloc_size_t it)
1531
{
1532
return is_ICC_signature_char(it >> 24) /* checks all the top bits */ &&
1533
is_ICC_signature_char((it >> 16) & 0xff) &&
1534
is_ICC_signature_char((it >> 8) & 0xff) &&
1535
is_ICC_signature_char(it & 0xff);
1536
}
1537
1538
static int
1539
png_icc_profile_error(png_const_structrp png_ptr, png_const_charp name,
1540
png_alloc_size_t value, png_const_charp reason)
1541
{
1542
size_t pos;
1543
char message[196]; /* see below for calculation */
1544
1545
pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */
1546
pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */
1547
pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */
1548
if (is_ICC_signature(value) != 0)
1549
{
1550
/* So 'value' is at most 4 bytes and the following cast is safe */
1551
png_icc_tag_name(message+pos, (png_uint_32)value);
1552
pos += 6; /* total +8; less than the else clause */
1553
message[pos++] = ':';
1554
message[pos++] = ' ';
1555
}
1556
# ifdef PNG_WARNINGS_SUPPORTED
1557
else
1558
{
1559
char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114 */
1560
1561
pos = png_safecat(message, (sizeof message), pos,
1562
png_format_number(number, number+(sizeof number),
1563
PNG_NUMBER_FORMAT_x, value));
1564
pos = png_safecat(message, (sizeof message), pos, "h: "); /* +2 = 116 */
1565
}
1566
# endif
1567
/* The 'reason' is an arbitrary message, allow +79 maximum 195 */
1568
pos = png_safecat(message, (sizeof message), pos, reason);
1569
PNG_UNUSED(pos)
1570
1571
png_chunk_benign_error(png_ptr, message);
1572
1573
return 0;
1574
}
1575
1576
/* Encoded value of D50 as an ICC XYZNumber. From the ICC 2010 spec the value
1577
* is XYZ(0.9642,1.0,0.8249), which scales to:
1578
*
1579
* (63189.8112, 65536, 54060.6464)
1580
*/
1581
static const png_byte D50_nCIEXYZ[12] =
1582
{ 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d };
1583
1584
static int /* bool */
1585
icc_check_length(png_const_structrp png_ptr, png_const_charp name,
1586
png_uint_32 profile_length)
1587
{
1588
if (profile_length < 132)
1589
return png_icc_profile_error(png_ptr, name, profile_length, "too short");
1590
return 1;
1591
}
1592
1593
int /* PRIVATE */
1594
png_icc_check_length(png_const_structrp png_ptr, png_const_charp name,
1595
png_uint_32 profile_length)
1596
{
1597
if (!icc_check_length(png_ptr, name, profile_length))
1598
return 0;
1599
1600
/* This needs to be here because the 'normal' check is in
1601
* png_decompress_chunk, yet this happens after the attempt to
1602
* png_malloc_base the required data. We only need this on read; on write
1603
* the caller supplies the profile buffer so libpng doesn't allocate it. See
1604
* the call to icc_check_length below (the write case).
1605
*/
1606
if (profile_length > png_chunk_max(png_ptr))
1607
return png_icc_profile_error(png_ptr, name, profile_length,
1608
"profile too long");
1609
1610
return 1;
1611
}
1612
1613
int /* PRIVATE */
1614
png_icc_check_header(png_const_structrp png_ptr, png_const_charp name,
1615
png_uint_32 profile_length,
1616
png_const_bytep profile/* first 132 bytes only */, int color_type)
1617
{
1618
png_uint_32 temp;
1619
1620
/* Length check; this cannot be ignored in this code because profile_length
1621
* is used later to check the tag table, so even if the profile seems over
1622
* long profile_length from the caller must be correct. The caller can fix
1623
* this up on read or write by just passing in the profile header length.
1624
*/
1625
temp = png_get_uint_32(profile);
1626
if (temp != profile_length)
1627
return png_icc_profile_error(png_ptr, name, temp,
1628
"length does not match profile");
1629
1630
temp = (png_uint_32) (*(profile+8));
1631
if (temp > 3 && (profile_length & 3))
1632
return png_icc_profile_error(png_ptr, name, profile_length,
1633
"invalid length");
1634
1635
temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */
1636
if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */
1637
profile_length < 132+12*temp) /* truncated tag table */
1638
return png_icc_profile_error(png_ptr, name, temp,
1639
"tag count too large");
1640
1641
/* The 'intent' must be valid or we can't store it, ICC limits the intent to
1642
* 16 bits.
1643
*/
1644
temp = png_get_uint_32(profile+64);
1645
if (temp >= 0xffff) /* The ICC limit */
1646
return png_icc_profile_error(png_ptr, name, temp,
1647
"invalid rendering intent");
1648
1649
/* This is just a warning because the profile may be valid in future
1650
* versions.
1651
*/
1652
if (temp >= PNG_sRGB_INTENT_LAST)
1653
(void)png_icc_profile_error(png_ptr, name, temp,
1654
"intent outside defined range");
1655
1656
/* At this point the tag table can't be checked because it hasn't necessarily
1657
* been loaded; however, various header fields can be checked. These checks
1658
* are for values permitted by the PNG spec in an ICC profile; the PNG spec
1659
* restricts the profiles that can be passed in an iCCP chunk (they must be
1660
* appropriate to processing PNG data!)
1661
*/
1662
1663
/* Data checks (could be skipped). These checks must be independent of the
1664
* version number; however, the version number doesn't accommodate changes in
1665
* the header fields (just the known tags and the interpretation of the
1666
* data.)
1667
*/
1668
temp = png_get_uint_32(profile+36); /* signature 'ascp' */
1669
if (temp != 0x61637370)
1670
return png_icc_profile_error(png_ptr, name, temp,
1671
"invalid signature");
1672
1673
/* Currently the PCS illuminant/adopted white point (the computational
1674
* white point) are required to be D50,
1675
* however the profile contains a record of the illuminant so perhaps ICC
1676
* expects to be able to change this in the future (despite the rationale in
1677
* the introduction for using a fixed PCS adopted white.) Consequently the
1678
* following is just a warning.
1679
*/
1680
if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0)
1681
(void)png_icc_profile_error(png_ptr, name, 0/*no tag value*/,
1682
"PCS illuminant is not D50");
1683
1684
/* The PNG spec requires this:
1685
* "If the iCCP chunk is present, the image samples conform to the colour
1686
* space represented by the embedded ICC profile as defined by the
1687
* International Color Consortium [ICC]. The colour space of the ICC profile
1688
* shall be an RGB colour space for colour images (PNG colour types 2, 3, and
1689
* 6), or a greyscale colour space for greyscale images (PNG colour types 0
1690
* and 4)."
1691
*
1692
* This checking code ensures the embedded profile (on either read or write)
1693
* conforms to the specification requirements. Notice that an ICC 'gray'
1694
* color-space profile contains the information to transform the monochrome
1695
* data to XYZ or L*a*b (according to which PCS the profile uses) and this
1696
* should be used in preference to the standard libpng K channel replication
1697
* into R, G and B channels.
1698
*
1699
* Previously it was suggested that an RGB profile on grayscale data could be
1700
* handled. However it it is clear that using an RGB profile in this context
1701
* must be an error - there is no specification of what it means. Thus it is
1702
* almost certainly more correct to ignore the profile.
1703
*/
1704
temp = png_get_uint_32(profile+16); /* data colour space field */
1705
switch (temp)
1706
{
1707
case 0x52474220: /* 'RGB ' */
1708
if ((color_type & PNG_COLOR_MASK_COLOR) == 0)
1709
return png_icc_profile_error(png_ptr, name, temp,
1710
"RGB color space not permitted on grayscale PNG");
1711
break;
1712
1713
case 0x47524159: /* 'GRAY' */
1714
if ((color_type & PNG_COLOR_MASK_COLOR) != 0)
1715
return png_icc_profile_error(png_ptr, name, temp,
1716
"Gray color space not permitted on RGB PNG");
1717
break;
1718
1719
default:
1720
return png_icc_profile_error(png_ptr, name, temp,
1721
"invalid ICC profile color space");
1722
}
1723
1724
/* It is up to the application to check that the profile class matches the
1725
* application requirements; the spec provides no guidance, but it's pretty
1726
* weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer
1727
* ('prtr') or 'spac' (for generic color spaces). Issue a warning in these
1728
* cases. Issue an error for device link or abstract profiles - these don't
1729
* contain the records necessary to transform the color-space to anything
1730
* other than the target device (and not even that for an abstract profile).
1731
* Profiles of these classes may not be embedded in images.
1732
*/
1733
temp = png_get_uint_32(profile+12); /* profile/device class */
1734
switch (temp)
1735
{
1736
case 0x73636e72: /* 'scnr' */
1737
case 0x6d6e7472: /* 'mntr' */
1738
case 0x70727472: /* 'prtr' */
1739
case 0x73706163: /* 'spac' */
1740
/* All supported */
1741
break;
1742
1743
case 0x61627374: /* 'abst' */
1744
/* May not be embedded in an image */
1745
return png_icc_profile_error(png_ptr, name, temp,
1746
"invalid embedded Abstract ICC profile");
1747
1748
case 0x6c696e6b: /* 'link' */
1749
/* DeviceLink profiles cannot be interpreted in a non-device specific
1750
* fashion, if an app uses the AToB0Tag in the profile the results are
1751
* undefined unless the result is sent to the intended device,
1752
* therefore a DeviceLink profile should not be found embedded in a
1753
* PNG.
1754
*/
1755
return png_icc_profile_error(png_ptr, name, temp,
1756
"unexpected DeviceLink ICC profile class");
1757
1758
case 0x6e6d636c: /* 'nmcl' */
1759
/* A NamedColor profile is also device specific, however it doesn't
1760
* contain an AToB0 tag that is open to misinterpretation. Almost
1761
* certainly it will fail the tests below.
1762
*/
1763
(void)png_icc_profile_error(png_ptr, name, temp,
1764
"unexpected NamedColor ICC profile class");
1765
break;
1766
1767
default:
1768
/* To allow for future enhancements to the profile accept unrecognized
1769
* profile classes with a warning, these then hit the test below on the
1770
* tag content to ensure they are backward compatible with one of the
1771
* understood profiles.
1772
*/
1773
(void)png_icc_profile_error(png_ptr, name, temp,
1774
"unrecognized ICC profile class");
1775
break;
1776
}
1777
1778
/* For any profile other than a device link one the PCS must be encoded
1779
* either in XYZ or Lab.
1780
*/
1781
temp = png_get_uint_32(profile+20);
1782
switch (temp)
1783
{
1784
case 0x58595a20: /* 'XYZ ' */
1785
case 0x4c616220: /* 'Lab ' */
1786
break;
1787
1788
default:
1789
return png_icc_profile_error(png_ptr, name, temp,
1790
"unexpected ICC PCS encoding");
1791
}
1792
1793
return 1;
1794
}
1795
1796
int /* PRIVATE */
1797
png_icc_check_tag_table(png_const_structrp png_ptr, png_const_charp name,
1798
png_uint_32 profile_length,
1799
png_const_bytep profile /* header plus whole tag table */)
1800
{
1801
png_uint_32 tag_count = png_get_uint_32(profile+128);
1802
png_uint_32 itag;
1803
png_const_bytep tag = profile+132; /* The first tag */
1804
1805
/* First scan all the tags in the table and add bits to the icc_info value
1806
* (temporarily in 'tags').
1807
*/
1808
for (itag=0; itag < tag_count; ++itag, tag += 12)
1809
{
1810
png_uint_32 tag_id = png_get_uint_32(tag+0);
1811
png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */
1812
png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */
1813
1814
/* The ICC specification does not exclude zero length tags, therefore the
1815
* start might actually be anywhere if there is no data, but this would be
1816
* a clear abuse of the intent of the standard so the start is checked for
1817
* being in range. All defined tag types have an 8 byte header - a 4 byte
1818
* type signature then 0.
1819
*/
1820
1821
/* This is a hard error; potentially it can cause read outside the
1822
* profile.
1823
*/
1824
if (tag_start > profile_length || tag_length > profile_length - tag_start)
1825
return png_icc_profile_error(png_ptr, name, tag_id,
1826
"ICC profile tag outside profile");
1827
1828
if ((tag_start & 3) != 0)
1829
{
1830
/* CNHP730S.icc shipped with Microsoft Windows 64 violates this; it is
1831
* only a warning here because libpng does not care about the
1832
* alignment.
1833
*/
1834
(void)png_icc_profile_error(png_ptr, name, tag_id,
1835
"ICC profile tag start not a multiple of 4");
1836
}
1837
}
1838
1839
return 1; /* success, maybe with warnings */
1840
}
1841
#endif /* READ_iCCP */
1842
1843
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
1844
#if (defined PNG_READ_mDCV_SUPPORTED) || (defined PNG_READ_cHRM_SUPPORTED)
1845
static int
1846
have_chromaticities(png_const_structrp png_ptr)
1847
{
1848
/* Handle new PNGv3 chunks and the precedence rules to determine whether
1849
* png_struct::chromaticities must be processed. Only required for RGB to
1850
* gray.
1851
*
1852
* mDCV: this is the mastering colour space and it is independent of the
1853
* encoding so it needs to be used regardless of the encoded space.
1854
*
1855
* cICP: first in priority but not yet implemented - the chromaticities come
1856
* from the 'primaries'.
1857
*
1858
* iCCP: not supported by libpng (so ignored)
1859
*
1860
* sRGB: the defaults match sRGB
1861
*
1862
* cHRM: calculate the coefficients
1863
*/
1864
# ifdef PNG_READ_mDCV_SUPPORTED
1865
if (png_has_chunk(png_ptr, mDCV))
1866
return 1;
1867
# define check_chromaticities 1
1868
# endif /*mDCV*/
1869
1870
# ifdef PNG_READ_sRGB_SUPPORTED
1871
if (png_has_chunk(png_ptr, sRGB))
1872
return 0;
1873
# endif /*sRGB*/
1874
1875
# ifdef PNG_READ_cHRM_SUPPORTED
1876
if (png_has_chunk(png_ptr, cHRM))
1877
return 1;
1878
# define check_chromaticities 1
1879
# endif /*cHRM*/
1880
1881
return 0; /* sRGB defaults */
1882
}
1883
#endif /* READ_mDCV || READ_cHRM */
1884
1885
void /* PRIVATE */
1886
png_set_rgb_coefficients(png_structrp png_ptr)
1887
{
1888
/* Set the rgb_to_gray coefficients from the colorspace if available. Note
1889
* that '_set' means that png_rgb_to_gray was called **and** it successfully
1890
* set up the coefficients.
1891
*/
1892
if (png_ptr->rgb_to_gray_coefficients_set == 0)
1893
{
1894
# if check_chromaticities
1895
png_XYZ xyz;
1896
1897
if (have_chromaticities(png_ptr) &&
1898
png_XYZ_from_xy(&xyz, &png_ptr->chromaticities) == 0)
1899
{
1900
/* png_set_rgb_to_gray has not set the coefficients, get them from the
1901
* Y * values of the colorspace colorants.
1902
*/
1903
png_fixed_point r = xyz.red_Y;
1904
png_fixed_point g = xyz.green_Y;
1905
png_fixed_point b = xyz.blue_Y;
1906
png_fixed_point total = r+g+b;
1907
1908
if (total > 0 &&
1909
r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 &&
1910
g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 &&
1911
b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 &&
1912
r+g+b <= 32769)
1913
{
1914
/* We allow 0 coefficients here. r+g+b may be 32769 if two or
1915
* all of the coefficients were rounded up. Handle this by
1916
* reducing the *largest* coefficient by 1; this matches the
1917
* approach used for the default coefficients in pngrtran.c
1918
*/
1919
int add = 0;
1920
1921
if (r+g+b > 32768)
1922
add = -1;
1923
else if (r+g+b < 32768)
1924
add = 1;
1925
1926
if (add != 0)
1927
{
1928
if (g >= r && g >= b)
1929
g += add;
1930
else if (r >= g && r >= b)
1931
r += add;
1932
else
1933
b += add;
1934
}
1935
1936
/* Check for an internal error. */
1937
if (r+g+b != 32768)
1938
png_error(png_ptr,
1939
"internal error handling cHRM coefficients");
1940
1941
else
1942
{
1943
png_ptr->rgb_to_gray_red_coeff = (png_uint_16)r;
1944
png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g;
1945
}
1946
}
1947
}
1948
else
1949
# endif /* check_chromaticities */
1950
{
1951
/* Use the historical REC 709 (etc) values: */
1952
png_ptr->rgb_to_gray_red_coeff = 6968;
1953
png_ptr->rgb_to_gray_green_coeff = 23434;
1954
/* png_ptr->rgb_to_gray_blue_coeff = 2366; */
1955
}
1956
}
1957
}
1958
#endif /* READ_RGB_TO_GRAY */
1959
1960
void /* PRIVATE */
1961
png_check_IHDR(png_const_structrp png_ptr,
1962
png_uint_32 width, png_uint_32 height, int bit_depth,
1963
int color_type, int interlace_type, int compression_type,
1964
int filter_type)
1965
{
1966
int error = 0;
1967
1968
/* Check for width and height valid values */
1969
if (width == 0)
1970
{
1971
png_warning(png_ptr, "Image width is zero in IHDR");
1972
error = 1;
1973
}
1974
1975
if (width > PNG_UINT_31_MAX)
1976
{
1977
png_warning(png_ptr, "Invalid image width in IHDR");
1978
error = 1;
1979
}
1980
1981
/* The bit mask on the first line below must be at least as big as a
1982
* png_uint_32. "~7U" is not adequate on 16-bit systems because it will
1983
* be an unsigned 16-bit value. Casting to (png_alloc_size_t) makes the
1984
* type of the result at least as bit (in bits) as the RHS of the > operator
1985
* which also avoids a common warning on 64-bit systems that the comparison
1986
* of (png_uint_32) against the constant value on the RHS will always be
1987
* false.
1988
*/
1989
if (((width + 7) & ~(png_alloc_size_t)7) >
1990
(((PNG_SIZE_MAX
1991
- 48 /* big_row_buf hack */
1992
- 1) /* filter byte */
1993
/ 8) /* 8-byte RGBA pixels */
1994
- 1)) /* extra max_pixel_depth pad */
1995
{
1996
/* The size of the row must be within the limits of this architecture.
1997
* Because the read code can perform arbitrary transformations the
1998
* maximum size is checked here. Because the code in png_read_start_row
1999
* adds extra space "for safety's sake" in several places a conservative
2000
* limit is used here.
2001
*
2002
* NOTE: it would be far better to check the size that is actually used,
2003
* but the effect in the real world is minor and the changes are more
2004
* extensive, therefore much more dangerous and much more difficult to
2005
* write in a way that avoids compiler warnings.
2006
*/
2007
png_warning(png_ptr, "Image width is too large for this architecture");
2008
error = 1;
2009
}
2010
2011
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
2012
if (width > png_ptr->user_width_max)
2013
#else
2014
if (width > PNG_USER_WIDTH_MAX)
2015
#endif
2016
{
2017
png_warning(png_ptr, "Image width exceeds user limit in IHDR");
2018
error = 1;
2019
}
2020
2021
if (height == 0)
2022
{
2023
png_warning(png_ptr, "Image height is zero in IHDR");
2024
error = 1;
2025
}
2026
2027
if (height > PNG_UINT_31_MAX)
2028
{
2029
png_warning(png_ptr, "Invalid image height in IHDR");
2030
error = 1;
2031
}
2032
2033
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
2034
if (height > png_ptr->user_height_max)
2035
#else
2036
if (height > PNG_USER_HEIGHT_MAX)
2037
#endif
2038
{
2039
png_warning(png_ptr, "Image height exceeds user limit in IHDR");
2040
error = 1;
2041
}
2042
2043
/* Check other values */
2044
if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
2045
bit_depth != 8 && bit_depth != 16)
2046
{
2047
png_warning(png_ptr, "Invalid bit depth in IHDR");
2048
error = 1;
2049
}
2050
2051
if (color_type < 0 || color_type == 1 ||
2052
color_type == 5 || color_type > 6)
2053
{
2054
png_warning(png_ptr, "Invalid color type in IHDR");
2055
error = 1;
2056
}
2057
2058
if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
2059
((color_type == PNG_COLOR_TYPE_RGB ||
2060
color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
2061
color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
2062
{
2063
png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
2064
error = 1;
2065
}
2066
2067
if (interlace_type >= PNG_INTERLACE_LAST)
2068
{
2069
png_warning(png_ptr, "Unknown interlace method in IHDR");
2070
error = 1;
2071
}
2072
2073
if (compression_type != PNG_COMPRESSION_TYPE_BASE)
2074
{
2075
png_warning(png_ptr, "Unknown compression method in IHDR");
2076
error = 1;
2077
}
2078
2079
#ifdef PNG_MNG_FEATURES_SUPPORTED
2080
/* Accept filter_method 64 (intrapixel differencing) only if
2081
* 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
2082
* 2. Libpng did not read a PNG signature (this filter_method is only
2083
* used in PNG datastreams that are embedded in MNG datastreams) and
2084
* 3. The application called png_permit_mng_features with a mask that
2085
* included PNG_FLAG_MNG_FILTER_64 and
2086
* 4. The filter_method is 64 and
2087
* 5. The color_type is RGB or RGBA
2088
*/
2089
if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0 &&
2090
png_ptr->mng_features_permitted != 0)
2091
png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
2092
2093
if (filter_type != PNG_FILTER_TYPE_BASE)
2094
{
2095
if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) != 0 &&
2096
(filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
2097
((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
2098
(color_type == PNG_COLOR_TYPE_RGB ||
2099
color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
2100
{
2101
png_warning(png_ptr, "Unknown filter method in IHDR");
2102
error = 1;
2103
}
2104
2105
if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0)
2106
{
2107
png_warning(png_ptr, "Invalid filter method in IHDR");
2108
error = 1;
2109
}
2110
}
2111
2112
#else
2113
if (filter_type != PNG_FILTER_TYPE_BASE)
2114
{
2115
png_warning(png_ptr, "Unknown filter method in IHDR");
2116
error = 1;
2117
}
2118
#endif
2119
2120
if (error == 1)
2121
png_error(png_ptr, "Invalid IHDR data");
2122
}
2123
2124
#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
2125
/* ASCII to fp functions */
2126
/* Check an ASCII formatted floating point value, see the more detailed
2127
* comments in pngpriv.h
2128
*/
2129
/* The following is used internally to preserve the sticky flags */
2130
#define png_fp_add(state, flags) ((state) |= (flags))
2131
#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
2132
2133
int /* PRIVATE */
2134
png_check_fp_number(png_const_charp string, size_t size, int *statep,
2135
size_t *whereami)
2136
{
2137
int state = *statep;
2138
size_t i = *whereami;
2139
2140
while (i < size)
2141
{
2142
int type;
2143
/* First find the type of the next character */
2144
switch (string[i])
2145
{
2146
case 43: type = PNG_FP_SAW_SIGN; break;
2147
case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
2148
case 46: type = PNG_FP_SAW_DOT; break;
2149
case 48: type = PNG_FP_SAW_DIGIT; break;
2150
case 49: case 50: case 51: case 52:
2151
case 53: case 54: case 55: case 56:
2152
case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
2153
case 69:
2154
case 101: type = PNG_FP_SAW_E; break;
2155
default: goto PNG_FP_End;
2156
}
2157
2158
/* Now deal with this type according to the current
2159
* state, the type is arranged to not overlap the
2160
* bits of the PNG_FP_STATE.
2161
*/
2162
switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
2163
{
2164
case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
2165
if ((state & PNG_FP_SAW_ANY) != 0)
2166
goto PNG_FP_End; /* not a part of the number */
2167
2168
png_fp_add(state, type);
2169
break;
2170
2171
case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
2172
/* Ok as trailer, ok as lead of fraction. */
2173
if ((state & PNG_FP_SAW_DOT) != 0) /* two dots */
2174
goto PNG_FP_End;
2175
2176
else if ((state & PNG_FP_SAW_DIGIT) != 0) /* trailing dot? */
2177
png_fp_add(state, type);
2178
2179
else
2180
png_fp_set(state, PNG_FP_FRACTION | type);
2181
2182
break;
2183
2184
case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
2185
if ((state & PNG_FP_SAW_DOT) != 0) /* delayed fraction */
2186
png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
2187
2188
png_fp_add(state, type | PNG_FP_WAS_VALID);
2189
2190
break;
2191
2192
case PNG_FP_INTEGER + PNG_FP_SAW_E:
2193
if ((state & PNG_FP_SAW_DIGIT) == 0)
2194
goto PNG_FP_End;
2195
2196
png_fp_set(state, PNG_FP_EXPONENT);
2197
2198
break;
2199
2200
/* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
2201
goto PNG_FP_End; ** no sign in fraction */
2202
2203
/* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
2204
goto PNG_FP_End; ** Because SAW_DOT is always set */
2205
2206
case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
2207
png_fp_add(state, type | PNG_FP_WAS_VALID);
2208
break;
2209
2210
case PNG_FP_FRACTION + PNG_FP_SAW_E:
2211
/* This is correct because the trailing '.' on an
2212
* integer is handled above - so we can only get here
2213
* with the sequence ".E" (with no preceding digits).
2214
*/
2215
if ((state & PNG_FP_SAW_DIGIT) == 0)
2216
goto PNG_FP_End;
2217
2218
png_fp_set(state, PNG_FP_EXPONENT);
2219
2220
break;
2221
2222
case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
2223
if ((state & PNG_FP_SAW_ANY) != 0)
2224
goto PNG_FP_End; /* not a part of the number */
2225
2226
png_fp_add(state, PNG_FP_SAW_SIGN);
2227
2228
break;
2229
2230
/* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
2231
goto PNG_FP_End; */
2232
2233
case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
2234
png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
2235
2236
break;
2237
2238
/* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
2239
goto PNG_FP_End; */
2240
2241
default: goto PNG_FP_End; /* I.e. break 2 */
2242
}
2243
2244
/* The character seems ok, continue. */
2245
++i;
2246
}
2247
2248
PNG_FP_End:
2249
/* Here at the end, update the state and return the correct
2250
* return code.
2251
*/
2252
*statep = state;
2253
*whereami = i;
2254
2255
return (state & PNG_FP_SAW_DIGIT) != 0;
2256
}
2257
2258
2259
/* The same but for a complete string. */
2260
int
2261
png_check_fp_string(png_const_charp string, size_t size)
2262
{
2263
int state = 0;
2264
size_t char_index = 0;
2265
2266
if (png_check_fp_number(string, size, &state, &char_index) != 0 &&
2267
(char_index == size || string[char_index] == 0))
2268
return state /* must be non-zero - see above */;
2269
2270
return 0; /* i.e. fail */
2271
}
2272
#endif /* pCAL || sCAL */
2273
2274
#ifdef PNG_sCAL_SUPPORTED
2275
# ifdef PNG_FLOATING_POINT_SUPPORTED
2276
/* Utility used below - a simple accurate power of ten from an integral
2277
* exponent.
2278
*/
2279
static double
2280
png_pow10(int power)
2281
{
2282
int recip = 0;
2283
double d = 1;
2284
2285
/* Handle negative exponent with a reciprocal at the end because
2286
* 10 is exact whereas .1 is inexact in base 2
2287
*/
2288
if (power < 0)
2289
{
2290
if (power < DBL_MIN_10_EXP) return 0;
2291
recip = 1; power = -power;
2292
}
2293
2294
if (power > 0)
2295
{
2296
/* Decompose power bitwise. */
2297
double mult = 10;
2298
do
2299
{
2300
if (power & 1) d *= mult;
2301
mult *= mult;
2302
power >>= 1;
2303
}
2304
while (power > 0);
2305
2306
if (recip != 0) d = 1/d;
2307
}
2308
/* else power is 0 and d is 1 */
2309
2310
return d;
2311
}
2312
2313
/* Function to format a floating point value in ASCII with a given
2314
* precision.
2315
*/
2316
void /* PRIVATE */
2317
png_ascii_from_fp(png_const_structrp png_ptr, png_charp ascii, size_t size,
2318
double fp, unsigned int precision)
2319
{
2320
/* We use standard functions from math.h, but not printf because
2321
* that would require stdio. The caller must supply a buffer of
2322
* sufficient size or we will png_error. The tests on size and
2323
* the space in ascii[] consumed are indicated below.
2324
*/
2325
if (precision < 1)
2326
precision = DBL_DIG;
2327
2328
/* Enforce the limit of the implementation precision too. */
2329
if (precision > DBL_DIG+1)
2330
precision = DBL_DIG+1;
2331
2332
/* Basic sanity checks */
2333
if (size >= precision+5) /* See the requirements below. */
2334
{
2335
if (fp < 0)
2336
{
2337
fp = -fp;
2338
*ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */
2339
--size;
2340
}
2341
2342
if (fp >= DBL_MIN && fp <= DBL_MAX)
2343
{
2344
int exp_b10; /* A base 10 exponent */
2345
double base; /* 10^exp_b10 */
2346
2347
/* First extract a base 10 exponent of the number,
2348
* the calculation below rounds down when converting
2349
* from base 2 to base 10 (multiply by log10(2) -
2350
* 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
2351
* be increased. Note that the arithmetic shift
2352
* performs a floor() unlike C arithmetic - using a
2353
* C multiply would break the following for negative
2354
* exponents.
2355
*/
2356
(void)frexp(fp, &exp_b10); /* exponent to base 2 */
2357
2358
exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
2359
2360
/* Avoid underflow here. */
2361
base = png_pow10(exp_b10); /* May underflow */
2362
2363
while (base < DBL_MIN || base < fp)
2364
{
2365
/* And this may overflow. */
2366
double test = png_pow10(exp_b10+1);
2367
2368
if (test <= DBL_MAX)
2369
{
2370
++exp_b10; base = test;
2371
}
2372
2373
else
2374
break;
2375
}
2376
2377
/* Normalize fp and correct exp_b10, after this fp is in the
2378
* range [.1,1) and exp_b10 is both the exponent and the digit
2379
* *before* which the decimal point should be inserted
2380
* (starting with 0 for the first digit). Note that this
2381
* works even if 10^exp_b10 is out of range because of the
2382
* test on DBL_MAX above.
2383
*/
2384
fp /= base;
2385
while (fp >= 1)
2386
{
2387
fp /= 10; ++exp_b10;
2388
}
2389
2390
/* Because of the code above fp may, at this point, be
2391
* less than .1, this is ok because the code below can
2392
* handle the leading zeros this generates, so no attempt
2393
* is made to correct that here.
2394
*/
2395
2396
{
2397
unsigned int czero, clead, cdigits;
2398
char exponent[10];
2399
2400
/* Allow up to two leading zeros - this will not lengthen
2401
* the number compared to using E-n.
2402
*/
2403
if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
2404
{
2405
czero = 0U-exp_b10; /* PLUS 2 digits: TOTAL 3 */
2406
exp_b10 = 0; /* Dot added below before first output. */
2407
}
2408
else
2409
czero = 0; /* No zeros to add */
2410
2411
/* Generate the digit list, stripping trailing zeros and
2412
* inserting a '.' before a digit if the exponent is 0.
2413
*/
2414
clead = czero; /* Count of leading zeros */
2415
cdigits = 0; /* Count of digits in list. */
2416
2417
do
2418
{
2419
double d;
2420
2421
fp *= 10;
2422
/* Use modf here, not floor and subtract, so that
2423
* the separation is done in one step. At the end
2424
* of the loop don't break the number into parts so
2425
* that the final digit is rounded.
2426
*/
2427
if (cdigits+czero+1 < precision+clead)
2428
fp = modf(fp, &d);
2429
2430
else
2431
{
2432
d = floor(fp + .5);
2433
2434
if (d > 9)
2435
{
2436
/* Rounding up to 10, handle that here. */
2437
if (czero > 0)
2438
{
2439
--czero; d = 1;
2440
if (cdigits == 0) --clead;
2441
}
2442
else
2443
{
2444
while (cdigits > 0 && d > 9)
2445
{
2446
int ch = *--ascii;
2447
2448
if (exp_b10 != (-1))
2449
++exp_b10;
2450
2451
else if (ch == 46)
2452
{
2453
ch = *--ascii; ++size;
2454
/* Advance exp_b10 to '1', so that the
2455
* decimal point happens after the
2456
* previous digit.
2457
*/
2458
exp_b10 = 1;
2459
}
2460
2461
--cdigits;
2462
d = ch - 47; /* I.e. 1+(ch-48) */
2463
}
2464
2465
/* Did we reach the beginning? If so adjust the
2466
* exponent but take into account the leading
2467
* decimal point.
2468
*/
2469
if (d > 9) /* cdigits == 0 */
2470
{
2471
if (exp_b10 == (-1))
2472
{
2473
/* Leading decimal point (plus zeros?), if
2474
* we lose the decimal point here it must
2475
* be reentered below.
2476
*/
2477
int ch = *--ascii;
2478
2479
if (ch == 46)
2480
{
2481
++size; exp_b10 = 1;
2482
}
2483
2484
/* Else lost a leading zero, so 'exp_b10' is
2485
* still ok at (-1)
2486
*/
2487
}
2488
else
2489
++exp_b10;
2490
2491
/* In all cases we output a '1' */
2492
d = 1;
2493
}
2494
}
2495
}
2496
fp = 0; /* Guarantees termination below. */
2497
}
2498
2499
if (d == 0)
2500
{
2501
++czero;
2502
if (cdigits == 0) ++clead;
2503
}
2504
else
2505
{
2506
/* Included embedded zeros in the digit count. */
2507
cdigits += czero - clead;
2508
clead = 0;
2509
2510
while (czero > 0)
2511
{
2512
/* exp_b10 == (-1) means we just output the decimal
2513
* place - after the DP don't adjust 'exp_b10' any
2514
* more!
2515
*/
2516
if (exp_b10 != (-1))
2517
{
2518
if (exp_b10 == 0)
2519
{
2520
*ascii++ = 46; --size;
2521
}
2522
/* PLUS 1: TOTAL 4 */
2523
--exp_b10;
2524
}
2525
*ascii++ = 48; --czero;
2526
}
2527
2528
if (exp_b10 != (-1))
2529
{
2530
if (exp_b10 == 0)
2531
{
2532
*ascii++ = 46; --size; /* counted above */
2533
}
2534
2535
--exp_b10;
2536
}
2537
*ascii++ = (char)(48 + (int)d); ++cdigits;
2538
}
2539
}
2540
while (cdigits+czero < precision+clead && fp > DBL_MIN);
2541
2542
/* The total output count (max) is now 4+precision */
2543
2544
/* Check for an exponent, if we don't need one we are
2545
* done and just need to terminate the string. At this
2546
* point, exp_b10==(-1) is effectively a flag: it got
2547
* to '-1' because of the decrement, after outputting
2548
* the decimal point above. (The exponent required is
2549
* *not* -1.)
2550
*/
2551
if (exp_b10 >= (-1) && exp_b10 <= 2)
2552
{
2553
/* The following only happens if we didn't output the
2554
* leading zeros above for negative exponent, so this
2555
* doesn't add to the digit requirement. Note that the
2556
* two zeros here can only be output if the two leading
2557
* zeros were *not* output, so this doesn't increase
2558
* the output count.
2559
*/
2560
while (exp_b10-- > 0) *ascii++ = 48;
2561
2562
*ascii = 0;
2563
2564
/* Total buffer requirement (including the '\0') is
2565
* 5+precision - see check at the start.
2566
*/
2567
return;
2568
}
2569
2570
/* Here if an exponent is required, adjust size for
2571
* the digits we output but did not count. The total
2572
* digit output here so far is at most 1+precision - no
2573
* decimal point and no leading or trailing zeros have
2574
* been output.
2575
*/
2576
size -= cdigits;
2577
2578
*ascii++ = 69; --size; /* 'E': PLUS 1 TOTAL 2+precision */
2579
2580
/* The following use of an unsigned temporary avoids ambiguities in
2581
* the signed arithmetic on exp_b10 and permits GCC at least to do
2582
* better optimization.
2583
*/
2584
{
2585
unsigned int uexp_b10;
2586
2587
if (exp_b10 < 0)
2588
{
2589
*ascii++ = 45; --size; /* '-': PLUS 1 TOTAL 3+precision */
2590
uexp_b10 = 0U-exp_b10;
2591
}
2592
2593
else
2594
uexp_b10 = 0U+exp_b10;
2595
2596
cdigits = 0;
2597
2598
while (uexp_b10 > 0)
2599
{
2600
exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
2601
uexp_b10 /= 10;
2602
}
2603
}
2604
2605
/* Need another size check here for the exponent digits, so
2606
* this need not be considered above.
2607
*/
2608
if (size > cdigits)
2609
{
2610
while (cdigits > 0) *ascii++ = exponent[--cdigits];
2611
2612
*ascii = 0;
2613
2614
return;
2615
}
2616
}
2617
}
2618
else if (!(fp >= DBL_MIN))
2619
{
2620
*ascii++ = 48; /* '0' */
2621
*ascii = 0;
2622
return;
2623
}
2624
else
2625
{
2626
*ascii++ = 105; /* 'i' */
2627
*ascii++ = 110; /* 'n' */
2628
*ascii++ = 102; /* 'f' */
2629
*ascii = 0;
2630
return;
2631
}
2632
}
2633
2634
/* Here on buffer too small. */
2635
png_error(png_ptr, "ASCII conversion buffer too small");
2636
}
2637
# endif /* FLOATING_POINT */
2638
2639
# ifdef PNG_FIXED_POINT_SUPPORTED
2640
/* Function to format a fixed point value in ASCII.
2641
*/
2642
void /* PRIVATE */
2643
png_ascii_from_fixed(png_const_structrp png_ptr, png_charp ascii,
2644
size_t size, png_fixed_point fp)
2645
{
2646
/* Require space for 10 decimal digits, a decimal point, a minus sign and a
2647
* trailing \0, 13 characters:
2648
*/
2649
if (size > 12)
2650
{
2651
png_uint_32 num;
2652
2653
/* Avoid overflow here on the minimum integer. */
2654
if (fp < 0)
2655
{
2656
*ascii++ = 45; num = (png_uint_32)(-fp);
2657
}
2658
else
2659
num = (png_uint_32)fp;
2660
2661
if (num <= 0x80000000) /* else overflowed */
2662
{
2663
unsigned int ndigits = 0, first = 16 /* flag value */;
2664
char digits[10] = {0};
2665
2666
while (num)
2667
{
2668
/* Split the low digit off num: */
2669
unsigned int tmp = num/10;
2670
num -= tmp*10;
2671
digits[ndigits++] = (char)(48 + num);
2672
/* Record the first non-zero digit, note that this is a number
2673
* starting at 1, it's not actually the array index.
2674
*/
2675
if (first == 16 && num > 0)
2676
first = ndigits;
2677
num = tmp;
2678
}
2679
2680
if (ndigits > 0)
2681
{
2682
while (ndigits > 5) *ascii++ = digits[--ndigits];
2683
/* The remaining digits are fractional digits, ndigits is '5' or
2684
* smaller at this point. It is certainly not zero. Check for a
2685
* non-zero fractional digit:
2686
*/
2687
if (first <= 5)
2688
{
2689
unsigned int i;
2690
*ascii++ = 46; /* decimal point */
2691
/* ndigits may be <5 for small numbers, output leading zeros
2692
* then ndigits digits to first:
2693
*/
2694
i = 5;
2695
while (ndigits < i)
2696
{
2697
*ascii++ = 48; --i;
2698
}
2699
while (ndigits >= first) *ascii++ = digits[--ndigits];
2700
/* Don't output the trailing zeros! */
2701
}
2702
}
2703
else
2704
*ascii++ = 48;
2705
2706
/* And null terminate the string: */
2707
*ascii = 0;
2708
return;
2709
}
2710
}
2711
2712
/* Here on buffer too small. */
2713
png_error(png_ptr, "ASCII conversion buffer too small");
2714
}
2715
# endif /* FIXED_POINT */
2716
#endif /* SCAL */
2717
2718
#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
2719
!defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \
2720
(defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \
2721
defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2722
defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \
2723
(defined(PNG_sCAL_SUPPORTED) && \
2724
defined(PNG_FLOATING_ARITHMETIC_SUPPORTED))
2725
png_fixed_point
2726
png_fixed(png_const_structrp png_ptr, double fp, png_const_charp text)
2727
{
2728
double r = floor(100000 * fp + .5);
2729
2730
if (r > 2147483647. || r < -2147483648.)
2731
png_fixed_error(png_ptr, text);
2732
2733
# ifndef PNG_ERROR_TEXT_SUPPORTED
2734
PNG_UNUSED(text)
2735
# endif
2736
2737
return (png_fixed_point)r;
2738
}
2739
#endif
2740
2741
#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
2742
!defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \
2743
(defined(PNG_cLLI_SUPPORTED) || defined(PNG_mDCV_SUPPORTED))
2744
png_uint_32
2745
png_fixed_ITU(png_const_structrp png_ptr, double fp, png_const_charp text)
2746
{
2747
double r = floor(10000 * fp + .5);
2748
2749
if (r > 2147483647. || r < 0)
2750
png_fixed_error(png_ptr, text);
2751
2752
# ifndef PNG_ERROR_TEXT_SUPPORTED
2753
PNG_UNUSED(text)
2754
# endif
2755
2756
return (png_uint_32)r;
2757
}
2758
#endif
2759
2760
2761
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\
2762
defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED)
2763
/* muldiv functions */
2764
/* This API takes signed arguments and rounds the result to the nearest
2765
* integer (or, for a fixed point number - the standard argument - to
2766
* the nearest .00001). Overflow and divide by zero are signalled in
2767
* the result, a boolean - true on success, false on overflow.
2768
*/
2769
int /* PRIVATE */
2770
png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
2771
png_int_32 divisor)
2772
{
2773
/* Return a * times / divisor, rounded. */
2774
if (divisor != 0)
2775
{
2776
if (a == 0 || times == 0)
2777
{
2778
*res = 0;
2779
return 1;
2780
}
2781
else
2782
{
2783
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2784
double r = a;
2785
r *= times;
2786
r /= divisor;
2787
r = floor(r+.5);
2788
2789
/* A png_fixed_point is a 32-bit integer. */
2790
if (r <= 2147483647. && r >= -2147483648.)
2791
{
2792
*res = (png_fixed_point)r;
2793
return 1;
2794
}
2795
#else
2796
int negative = 0;
2797
png_uint_32 A, T, D;
2798
png_uint_32 s16, s32, s00;
2799
2800
if (a < 0)
2801
negative = 1, A = -a;
2802
else
2803
A = a;
2804
2805
if (times < 0)
2806
negative = !negative, T = -times;
2807
else
2808
T = times;
2809
2810
if (divisor < 0)
2811
negative = !negative, D = -divisor;
2812
else
2813
D = divisor;
2814
2815
/* Following can't overflow because the arguments only
2816
* have 31 bits each, however the result may be 32 bits.
2817
*/
2818
s16 = (A >> 16) * (T & 0xffff) +
2819
(A & 0xffff) * (T >> 16);
2820
/* Can't overflow because the a*times bit is only 30
2821
* bits at most.
2822
*/
2823
s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
2824
s00 = (A & 0xffff) * (T & 0xffff);
2825
2826
s16 = (s16 & 0xffff) << 16;
2827
s00 += s16;
2828
2829
if (s00 < s16)
2830
++s32; /* carry */
2831
2832
if (s32 < D) /* else overflow */
2833
{
2834
/* s32.s00 is now the 64-bit product, do a standard
2835
* division, we know that s32 < D, so the maximum
2836
* required shift is 31.
2837
*/
2838
int bitshift = 32;
2839
png_fixed_point result = 0; /* NOTE: signed */
2840
2841
while (--bitshift >= 0)
2842
{
2843
png_uint_32 d32, d00;
2844
2845
if (bitshift > 0)
2846
d32 = D >> (32-bitshift), d00 = D << bitshift;
2847
2848
else
2849
d32 = 0, d00 = D;
2850
2851
if (s32 > d32)
2852
{
2853
if (s00 < d00) --s32; /* carry */
2854
s32 -= d32, s00 -= d00, result += 1<<bitshift;
2855
}
2856
2857
else
2858
if (s32 == d32 && s00 >= d00)
2859
s32 = 0, s00 -= d00, result += 1<<bitshift;
2860
}
2861
2862
/* Handle the rounding. */
2863
if (s00 >= (D >> 1))
2864
++result;
2865
2866
if (negative != 0)
2867
result = -result;
2868
2869
/* Check for overflow. */
2870
if ((negative != 0 && result <= 0) ||
2871
(negative == 0 && result >= 0))
2872
{
2873
*res = result;
2874
return 1;
2875
}
2876
}
2877
#endif
2878
}
2879
}
2880
2881
return 0;
2882
}
2883
2884
/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
2885
png_fixed_point
2886
png_reciprocal(png_fixed_point a)
2887
{
2888
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2889
double r = floor(1E10/a+.5);
2890
2891
if (r <= 2147483647. && r >= -2147483648.)
2892
return (png_fixed_point)r;
2893
#else
2894
png_fixed_point res;
2895
2896
if (png_muldiv(&res, 100000, 100000, a) != 0)
2897
return res;
2898
#endif
2899
2900
return 0; /* error/overflow */
2901
}
2902
#endif /* READ_GAMMA || COLORSPACE || INCH_CONVERSIONS || READ_pHYS */
2903
2904
#ifdef PNG_READ_GAMMA_SUPPORTED
2905
/* This is the shared test on whether a gamma value is 'significant' - whether
2906
* it is worth doing gamma correction.
2907
*/
2908
int /* PRIVATE */
2909
png_gamma_significant(png_fixed_point gamma_val)
2910
{
2911
/* sRGB: 1/2.2 == 0.4545(45)
2912
* AdobeRGB: 1/(2+51/256) ~= 0.45471 5dp
2913
*
2914
* So the correction from AdobeRGB to sRGB (output) is:
2915
*
2916
* 2.2/(2+51/256) == 1.00035524
2917
*
2918
* I.e. vanishly small (<4E-4) but still detectable in 16-bit linear (+/-
2919
* 23). Note that the Adobe choice seems to be something intended to give an
2920
* exact number with 8 binary fractional digits - it is the closest to 2.2
2921
* that is possible a base 2 .8p representation.
2922
*/
2923
return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
2924
gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
2925
}
2926
2927
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
2928
/* A local convenience routine. */
2929
static png_fixed_point
2930
png_product2(png_fixed_point a, png_fixed_point b)
2931
{
2932
/* The required result is a * b; the following preserves accuracy. */
2933
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED /* Should now be unused */
2934
double r = a * 1E-5;
2935
r *= b;
2936
r = floor(r+.5);
2937
2938
if (r <= 2147483647. && r >= -2147483648.)
2939
return (png_fixed_point)r;
2940
#else
2941
png_fixed_point res;
2942
2943
if (png_muldiv(&res, a, b, 100000) != 0)
2944
return res;
2945
#endif
2946
2947
return 0; /* overflow */
2948
}
2949
#endif /* FLOATING_ARITHMETIC */
2950
2951
png_fixed_point
2952
png_reciprocal2(png_fixed_point a, png_fixed_point b)
2953
{
2954
/* The required result is 1/a * 1/b; the following preserves accuracy. */
2955
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2956
if (a != 0 && b != 0)
2957
{
2958
double r = 1E15/a;
2959
r /= b;
2960
r = floor(r+.5);
2961
2962
if (r <= 2147483647. && r >= -2147483648.)
2963
return (png_fixed_point)r;
2964
}
2965
#else
2966
/* This may overflow because the range of png_fixed_point isn't symmetric,
2967
* but this API is only used for the product of file and screen gamma so it
2968
* doesn't matter that the smallest number it can produce is 1/21474, not
2969
* 1/100000
2970
*/
2971
png_fixed_point res = png_product2(a, b);
2972
2973
if (res != 0)
2974
return png_reciprocal(res);
2975
#endif
2976
2977
return 0; /* overflow */
2978
}
2979
#endif /* READ_GAMMA */
2980
2981
#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
2982
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
2983
/* Fixed point gamma.
2984
*
2985
* The code to calculate the tables used below can be found in the shell script
2986
* contrib/tools/intgamma.sh
2987
*
2988
* To calculate gamma this code implements fast log() and exp() calls using only
2989
* fixed point arithmetic. This code has sufficient precision for either 8-bit
2990
* or 16-bit sample values.
2991
*
2992
* The tables used here were calculated using simple 'bc' programs, but C double
2993
* precision floating point arithmetic would work fine.
2994
*
2995
* 8-bit log table
2996
* This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
2997
* 255, so it's the base 2 logarithm of a normalized 8-bit floating point
2998
* mantissa. The numbers are 32-bit fractions.
2999
*/
3000
static const png_uint_32
3001
png_8bit_l2[128] =
3002
{
3003
4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
3004
3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
3005
3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
3006
3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
3007
3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
3008
2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
3009
2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
3010
2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
3011
2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
3012
2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
3013
1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
3014
1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
3015
1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
3016
1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
3017
1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
3018
971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
3019
803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
3020
639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
3021
479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
3022
324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
3023
172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
3024
24347096U, 0U
3025
3026
#if 0
3027
/* The following are the values for 16-bit tables - these work fine for the
3028
* 8-bit conversions but produce very slightly larger errors in the 16-bit
3029
* log (about 1.2 as opposed to 0.7 absolute error in the final value). To
3030
* use these all the shifts below must be adjusted appropriately.
3031
*/
3032
65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
3033
57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
3034
50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
3035
43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
3036
37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
3037
31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
3038
25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
3039
20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
3040
15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
3041
10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
3042
6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
3043
1119, 744, 372
3044
#endif
3045
};
3046
3047
static png_int_32
3048
png_log8bit(unsigned int x)
3049
{
3050
unsigned int lg2 = 0;
3051
/* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
3052
* because the log is actually negate that means adding 1. The final
3053
* returned value thus has the range 0 (for 255 input) to 7.994 (for 1
3054
* input), return -1 for the overflow (log 0) case, - so the result is
3055
* always at most 19 bits.
3056
*/
3057
if ((x &= 0xff) == 0)
3058
return -1;
3059
3060
if ((x & 0xf0) == 0)
3061
lg2 = 4, x <<= 4;
3062
3063
if ((x & 0xc0) == 0)
3064
lg2 += 2, x <<= 2;
3065
3066
if ((x & 0x80) == 0)
3067
lg2 += 1, x <<= 1;
3068
3069
/* result is at most 19 bits, so this cast is safe: */
3070
return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
3071
}
3072
3073
/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
3074
* for 16-bit images we use the most significant 8 bits of the 16-bit value to
3075
* get an approximation then multiply the approximation by a correction factor
3076
* determined by the remaining up to 8 bits. This requires an additional step
3077
* in the 16-bit case.
3078
*
3079
* We want log2(value/65535), we have log2(v'/255), where:
3080
*
3081
* value = v' * 256 + v''
3082
* = v' * f
3083
*
3084
* So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
3085
* to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
3086
* than 258. The final factor also needs to correct for the fact that our 8-bit
3087
* value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
3088
*
3089
* This gives a final formula using a calculated value 'x' which is value/v' and
3090
* scaling by 65536 to match the above table:
3091
*
3092
* log2(x/257) * 65536
3093
*
3094
* Since these numbers are so close to '1' we can use simple linear
3095
* interpolation between the two end values 256/257 (result -368.61) and 258/257
3096
* (result 367.179). The values used below are scaled by a further 64 to give
3097
* 16-bit precision in the interpolation:
3098
*
3099
* Start (256): -23591
3100
* Zero (257): 0
3101
* End (258): 23499
3102
*/
3103
#ifdef PNG_16BIT_SUPPORTED
3104
static png_int_32
3105
png_log16bit(png_uint_32 x)
3106
{
3107
unsigned int lg2 = 0;
3108
3109
/* As above, but now the input has 16 bits. */
3110
if ((x &= 0xffff) == 0)
3111
return -1;
3112
3113
if ((x & 0xff00) == 0)
3114
lg2 = 8, x <<= 8;
3115
3116
if ((x & 0xf000) == 0)
3117
lg2 += 4, x <<= 4;
3118
3119
if ((x & 0xc000) == 0)
3120
lg2 += 2, x <<= 2;
3121
3122
if ((x & 0x8000) == 0)
3123
lg2 += 1, x <<= 1;
3124
3125
/* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
3126
* value.
3127
*/
3128
lg2 <<= 28;
3129
lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
3130
3131
/* Now we need to interpolate the factor, this requires a division by the top
3132
* 8 bits. Do this with maximum precision.
3133
*/
3134
x = ((x << 16) + (x >> 9)) / (x >> 8);
3135
3136
/* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
3137
* the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
3138
* 16 bits to interpolate to get the low bits of the result. Round the
3139
* answer. Note that the end point values are scaled by 64 to retain overall
3140
* precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
3141
* the overall scaling by 6-12. Round at every step.
3142
*/
3143
x -= 1U << 24;
3144
3145
if (x <= 65536U) /* <= '257' */
3146
lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
3147
3148
else
3149
lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
3150
3151
/* Safe, because the result can't have more than 20 bits: */
3152
return (png_int_32)((lg2 + 2048) >> 12);
3153
}
3154
#endif /* 16BIT */
3155
3156
/* The 'exp()' case must invert the above, taking a 20-bit fixed point
3157
* logarithmic value and returning a 16 or 8-bit number as appropriate. In
3158
* each case only the low 16 bits are relevant - the fraction - since the
3159
* integer bits (the top 4) simply determine a shift.
3160
*
3161
* The worst case is the 16-bit distinction between 65535 and 65534. This
3162
* requires perhaps spurious accuracy in the decoding of the logarithm to
3163
* distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance
3164
* of getting this accuracy in practice.
3165
*
3166
* To deal with this the following exp() function works out the exponent of the
3167
* fractional part of the logarithm by using an accurate 32-bit value from the
3168
* top four fractional bits then multiplying in the remaining bits.
3169
*/
3170
static const png_uint_32
3171
png_32bit_exp[16] =
3172
{
3173
/* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
3174
4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
3175
3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
3176
2553802834U, 2445529972U, 2341847524U, 2242560872U
3177
};
3178
3179
/* Adjustment table; provided to explain the numbers in the code below. */
3180
#if 0
3181
for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
3182
11 44937.64284865548751208448
3183
10 45180.98734845585101160448
3184
9 45303.31936980687359311872
3185
8 45364.65110595323018870784
3186
7 45395.35850361789624614912
3187
6 45410.72259715102037508096
3188
5 45418.40724413220722311168
3189
4 45422.25021786898173001728
3190
3 45424.17186732298419044352
3191
2 45425.13273269940811464704
3192
1 45425.61317555035558641664
3193
0 45425.85339951654943850496
3194
#endif
3195
3196
static png_uint_32
3197
png_exp(png_fixed_point x)
3198
{
3199
if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
3200
{
3201
/* Obtain a 4-bit approximation */
3202
png_uint_32 e = png_32bit_exp[(x >> 12) & 0x0f];
3203
3204
/* Incorporate the low 12 bits - these decrease the returned value by
3205
* multiplying by a number less than 1 if the bit is set. The multiplier
3206
* is determined by the above table and the shift. Notice that the values
3207
* converge on 45426 and this is used to allow linear interpolation of the
3208
* low bits.
3209
*/
3210
if (x & 0x800)
3211
e -= (((e >> 16) * 44938U) + 16U) >> 5;
3212
3213
if (x & 0x400)
3214
e -= (((e >> 16) * 45181U) + 32U) >> 6;
3215
3216
if (x & 0x200)
3217
e -= (((e >> 16) * 45303U) + 64U) >> 7;
3218
3219
if (x & 0x100)
3220
e -= (((e >> 16) * 45365U) + 128U) >> 8;
3221
3222
if (x & 0x080)
3223
e -= (((e >> 16) * 45395U) + 256U) >> 9;
3224
3225
if (x & 0x040)
3226
e -= (((e >> 16) * 45410U) + 512U) >> 10;
3227
3228
/* And handle the low 6 bits in a single block. */
3229
e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
3230
3231
/* Handle the upper bits of x. */
3232
e >>= x >> 16;
3233
return e;
3234
}
3235
3236
/* Check for overflow */
3237
if (x <= 0)
3238
return png_32bit_exp[0];
3239
3240
/* Else underflow */
3241
return 0;
3242
}
3243
3244
static png_byte
3245
png_exp8bit(png_fixed_point lg2)
3246
{
3247
/* Get a 32-bit value: */
3248
png_uint_32 x = png_exp(lg2);
3249
3250
/* Convert the 32-bit value to 0..255 by multiplying by 256-1. Note that the
3251
* second, rounding, step can't overflow because of the first, subtraction,
3252
* step.
3253
*/
3254
x -= x >> 8;
3255
return (png_byte)(((x + 0x7fffffU) >> 24) & 0xff);
3256
}
3257
3258
#ifdef PNG_16BIT_SUPPORTED
3259
static png_uint_16
3260
png_exp16bit(png_fixed_point lg2)
3261
{
3262
/* Get a 32-bit value: */
3263
png_uint_32 x = png_exp(lg2);
3264
3265
/* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
3266
x -= x >> 16;
3267
return (png_uint_16)((x + 32767U) >> 16);
3268
}
3269
#endif /* 16BIT */
3270
#endif /* FLOATING_ARITHMETIC */
3271
3272
png_byte
3273
png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
3274
{
3275
if (value > 0 && value < 255)
3276
{
3277
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3278
/* 'value' is unsigned, ANSI-C90 requires the compiler to correctly
3279
* convert this to a floating point value. This includes values that
3280
* would overflow if 'value' were to be converted to 'int'.
3281
*
3282
* Apparently GCC, however, does an intermediate conversion to (int)
3283
* on some (ARM) but not all (x86) platforms, possibly because of
3284
* hardware FP limitations. (E.g. if the hardware conversion always
3285
* assumes the integer register contains a signed value.) This results
3286
* in ANSI-C undefined behavior for large values.
3287
*
3288
* Other implementations on the same machine might actually be ANSI-C90
3289
* conformant and therefore compile spurious extra code for the large
3290
* values.
3291
*
3292
* We can be reasonably sure that an unsigned to float conversion
3293
* won't be faster than an int to float one. Therefore this code
3294
* assumes responsibility for the undefined behavior, which it knows
3295
* can't happen because of the check above.
3296
*
3297
* Note the argument to this routine is an (unsigned int) because, on
3298
* 16-bit platforms, it is assigned a value which might be out of
3299
* range for an (int); that would result in undefined behavior in the
3300
* caller if the *argument* ('value') were to be declared (int).
3301
*/
3302
double r = floor(255*pow((int)/*SAFE*/value/255.,gamma_val*.00001)+.5);
3303
return (png_byte)r;
3304
# else
3305
png_int_32 lg2 = png_log8bit(value);
3306
png_fixed_point res;
3307
3308
if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3309
return png_exp8bit(res);
3310
3311
/* Overflow. */
3312
value = 0;
3313
# endif
3314
}
3315
3316
return (png_byte)(value & 0xff);
3317
}
3318
3319
#ifdef PNG_16BIT_SUPPORTED
3320
png_uint_16
3321
png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
3322
{
3323
if (value > 0 && value < 65535)
3324
{
3325
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3326
/* The same (unsigned int)->(double) constraints apply here as above,
3327
* however in this case the (unsigned int) to (int) conversion can
3328
* overflow on an ANSI-C90 compliant system so the cast needs to ensure
3329
* that this is not possible.
3330
*/
3331
double r = floor(65535*pow((png_int_32)value/65535.,
3332
gamma_val*.00001)+.5);
3333
return (png_uint_16)r;
3334
# else
3335
png_int_32 lg2 = png_log16bit(value);
3336
png_fixed_point res;
3337
3338
if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3339
return png_exp16bit(res);
3340
3341
/* Overflow. */
3342
value = 0;
3343
# endif
3344
}
3345
3346
return (png_uint_16)value;
3347
}
3348
#endif /* 16BIT */
3349
3350
/* This does the right thing based on the bit_depth field of the
3351
* png_struct, interpreting values as 8-bit or 16-bit. While the result
3352
* is nominally a 16-bit value if bit depth is 8 then the result is
3353
* 8-bit (as are the arguments.)
3354
*/
3355
png_uint_16 /* PRIVATE */
3356
png_gamma_correct(png_structrp png_ptr, unsigned int value,
3357
png_fixed_point gamma_val)
3358
{
3359
if (png_ptr->bit_depth == 8)
3360
return png_gamma_8bit_correct(value, gamma_val);
3361
3362
#ifdef PNG_16BIT_SUPPORTED
3363
else
3364
return png_gamma_16bit_correct(value, gamma_val);
3365
#else
3366
/* should not reach this */
3367
return 0;
3368
#endif /* 16BIT */
3369
}
3370
3371
#ifdef PNG_16BIT_SUPPORTED
3372
/* Internal function to build a single 16-bit table - the table consists of
3373
* 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
3374
* to shift the input values right (or 16-number_of_signifiant_bits).
3375
*
3376
* The caller is responsible for ensuring that the table gets cleaned up on
3377
* png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
3378
* should be somewhere that will be cleaned.
3379
*/
3380
static void
3381
png_build_16bit_table(png_structrp png_ptr, png_uint_16pp *ptable,
3382
unsigned int shift, png_fixed_point gamma_val)
3383
{
3384
/* Various values derived from 'shift': */
3385
unsigned int num = 1U << (8U - shift);
3386
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3387
/* CSE the division and work round wacky GCC warnings (see the comments
3388
* in png_gamma_8bit_correct for where these come from.)
3389
*/
3390
double fmax = 1.0 / (((png_int_32)1 << (16U - shift)) - 1);
3391
#endif
3392
unsigned int max = (1U << (16U - shift)) - 1U;
3393
unsigned int max_by_2 = 1U << (15U - shift);
3394
unsigned int i;
3395
3396
png_uint_16pp table = *ptable =
3397
(png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
3398
3399
for (i = 0; i < num; i++)
3400
{
3401
png_uint_16p sub_table = table[i] =
3402
(png_uint_16p)png_malloc(png_ptr, 256 * (sizeof (png_uint_16)));
3403
3404
/* The 'threshold' test is repeated here because it can arise for one of
3405
* the 16-bit tables even if the others don't hit it.
3406
*/
3407
if (png_gamma_significant(gamma_val) != 0)
3408
{
3409
/* The old code would overflow at the end and this would cause the
3410
* 'pow' function to return a result >1, resulting in an
3411
* arithmetic error. This code follows the spec exactly; ig is
3412
* the recovered input sample, it always has 8-16 bits.
3413
*
3414
* We want input * 65535/max, rounded, the arithmetic fits in 32
3415
* bits (unsigned) so long as max <= 32767.
3416
*/
3417
unsigned int j;
3418
for (j = 0; j < 256; j++)
3419
{
3420
png_uint_32 ig = (j << (8-shift)) + i;
3421
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3422
/* Inline the 'max' scaling operation: */
3423
/* See png_gamma_8bit_correct for why the cast to (int) is
3424
* required here.
3425
*/
3426
double d = floor(65535.*pow(ig*fmax, gamma_val*.00001)+.5);
3427
sub_table[j] = (png_uint_16)d;
3428
# else
3429
if (shift != 0)
3430
ig = (ig * 65535U + max_by_2)/max;
3431
3432
sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
3433
# endif
3434
}
3435
}
3436
else
3437
{
3438
/* We must still build a table, but do it the fast way. */
3439
unsigned int j;
3440
3441
for (j = 0; j < 256; j++)
3442
{
3443
png_uint_32 ig = (j << (8-shift)) + i;
3444
3445
if (shift != 0)
3446
ig = (ig * 65535U + max_by_2)/max;
3447
3448
sub_table[j] = (png_uint_16)ig;
3449
}
3450
}
3451
}
3452
}
3453
3454
/* NOTE: this function expects the *inverse* of the overall gamma transformation
3455
* required.
3456
*/
3457
static void
3458
png_build_16to8_table(png_structrp png_ptr, png_uint_16pp *ptable,
3459
unsigned int shift, png_fixed_point gamma_val)
3460
{
3461
unsigned int num = 1U << (8U - shift);
3462
unsigned int max = (1U << (16U - shift))-1U;
3463
unsigned int i;
3464
png_uint_32 last;
3465
3466
png_uint_16pp table = *ptable =
3467
(png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
3468
3469
/* 'num' is the number of tables and also the number of low bits of low
3470
* bits of the input 16-bit value used to select a table. Each table is
3471
* itself indexed by the high 8 bits of the value.
3472
*/
3473
for (i = 0; i < num; i++)
3474
table[i] = (png_uint_16p)png_malloc(png_ptr,
3475
256 * (sizeof (png_uint_16)));
3476
3477
/* 'gamma_val' is set to the reciprocal of the value calculated above, so
3478
* pow(out,g) is an *input* value. 'last' is the last input value set.
3479
*
3480
* In the loop 'i' is used to find output values. Since the output is
3481
* 8-bit there are only 256 possible values. The tables are set up to
3482
* select the closest possible output value for each input by finding
3483
* the input value at the boundary between each pair of output values
3484
* and filling the table up to that boundary with the lower output
3485
* value.
3486
*
3487
* The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit
3488
* values the code below uses a 16-bit value in i; the values start at
3489
* 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
3490
* entries are filled with 255). Start i at 128 and fill all 'last'
3491
* table entries <= 'max'
3492
*/
3493
last = 0;
3494
for (i = 0; i < 255; ++i) /* 8-bit output value */
3495
{
3496
/* Find the corresponding maximum input value */
3497
png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
3498
3499
/* Find the boundary value in 16 bits: */
3500
png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
3501
3502
/* Adjust (round) to (16-shift) bits: */
3503
bound = (bound * max + 32768U)/65535U + 1U;
3504
3505
while (last < bound)
3506
{
3507
table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
3508
last++;
3509
}
3510
}
3511
3512
/* And fill in the final entries. */
3513
while (last < (num << 8))
3514
{
3515
table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
3516
last++;
3517
}
3518
}
3519
#endif /* 16BIT */
3520
3521
/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
3522
* typically much faster). Note that libpng currently does no sBIT processing
3523
* (apparently contrary to the spec) so a 256-entry table is always generated.
3524
*/
3525
static void
3526
png_build_8bit_table(png_structrp png_ptr, png_bytepp ptable,
3527
png_fixed_point gamma_val)
3528
{
3529
unsigned int i;
3530
png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
3531
3532
if (png_gamma_significant(gamma_val) != 0)
3533
for (i=0; i<256; i++)
3534
table[i] = png_gamma_8bit_correct(i, gamma_val);
3535
3536
else
3537
for (i=0; i<256; ++i)
3538
table[i] = (png_byte)(i & 0xff);
3539
}
3540
3541
/* Used from png_read_destroy and below to release the memory used by the gamma
3542
* tables.
3543
*/
3544
void /* PRIVATE */
3545
png_destroy_gamma_table(png_structrp png_ptr)
3546
{
3547
png_free(png_ptr, png_ptr->gamma_table);
3548
png_ptr->gamma_table = NULL;
3549
3550
#ifdef PNG_16BIT_SUPPORTED
3551
if (png_ptr->gamma_16_table != NULL)
3552
{
3553
int i;
3554
int istop = (1 << (8 - png_ptr->gamma_shift));
3555
for (i = 0; i < istop; i++)
3556
{
3557
png_free(png_ptr, png_ptr->gamma_16_table[i]);
3558
}
3559
png_free(png_ptr, png_ptr->gamma_16_table);
3560
png_ptr->gamma_16_table = NULL;
3561
}
3562
#endif /* 16BIT */
3563
3564
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3565
defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
3566
defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
3567
png_free(png_ptr, png_ptr->gamma_from_1);
3568
png_ptr->gamma_from_1 = NULL;
3569
png_free(png_ptr, png_ptr->gamma_to_1);
3570
png_ptr->gamma_to_1 = NULL;
3571
3572
#ifdef PNG_16BIT_SUPPORTED
3573
if (png_ptr->gamma_16_from_1 != NULL)
3574
{
3575
int i;
3576
int istop = (1 << (8 - png_ptr->gamma_shift));
3577
for (i = 0; i < istop; i++)
3578
{
3579
png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
3580
}
3581
png_free(png_ptr, png_ptr->gamma_16_from_1);
3582
png_ptr->gamma_16_from_1 = NULL;
3583
}
3584
if (png_ptr->gamma_16_to_1 != NULL)
3585
{
3586
int i;
3587
int istop = (1 << (8 - png_ptr->gamma_shift));
3588
for (i = 0; i < istop; i++)
3589
{
3590
png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
3591
}
3592
png_free(png_ptr, png_ptr->gamma_16_to_1);
3593
png_ptr->gamma_16_to_1 = NULL;
3594
}
3595
#endif /* 16BIT */
3596
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
3597
}
3598
3599
/* We build the 8- or 16-bit gamma tables here. Note that for 16-bit
3600
* tables, we don't make a full table if we are reducing to 8-bit in
3601
* the future. Note also how the gamma_16 tables are segmented so that
3602
* we don't need to allocate > 64K chunks for a full 16-bit table.
3603
*
3604
* TODO: move this to pngrtran.c and make it static. Better yet create
3605
* pngcolor.c and put all the PNG_COLORSPACE stuff in there.
3606
*/
3607
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3608
defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
3609
defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
3610
# define GAMMA_TRANSFORMS 1 /* #ifdef CSE */
3611
#else
3612
# define GAMMA_TRANSFORMS 0
3613
#endif
3614
3615
void /* PRIVATE */
3616
png_build_gamma_table(png_structrp png_ptr, int bit_depth)
3617
{
3618
png_fixed_point file_gamma, screen_gamma;
3619
png_fixed_point correction;
3620
# if GAMMA_TRANSFORMS
3621
png_fixed_point file_to_linear, linear_to_screen;
3622
# endif
3623
3624
png_debug(1, "in png_build_gamma_table");
3625
3626
/* Remove any existing table; this copes with multiple calls to
3627
* png_read_update_info. The warning is because building the gamma tables
3628
* multiple times is a performance hit - it's harmless but the ability to
3629
* call png_read_update_info() multiple times is new in 1.5.6 so it seems
3630
* sensible to warn if the app introduces such a hit.
3631
*/
3632
if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
3633
{
3634
png_warning(png_ptr, "gamma table being rebuilt");
3635
png_destroy_gamma_table(png_ptr);
3636
}
3637
3638
/* The following fields are set, finally, in png_init_read_transformations.
3639
* If file_gamma is 0 (unset) nothing can be done otherwise if screen_gamma
3640
* is 0 (unset) there is no gamma correction but to/from linear is possible.
3641
*/
3642
file_gamma = png_ptr->file_gamma;
3643
screen_gamma = png_ptr->screen_gamma;
3644
# if GAMMA_TRANSFORMS
3645
file_to_linear = png_reciprocal(file_gamma);
3646
# endif
3647
3648
if (screen_gamma > 0)
3649
{
3650
# if GAMMA_TRANSFORMS
3651
linear_to_screen = png_reciprocal(screen_gamma);
3652
# endif
3653
correction = png_reciprocal2(screen_gamma, file_gamma);
3654
}
3655
else /* screen gamma unknown */
3656
{
3657
# if GAMMA_TRANSFORMS
3658
linear_to_screen = file_gamma;
3659
# endif
3660
correction = PNG_FP_1;
3661
}
3662
3663
if (bit_depth <= 8)
3664
{
3665
png_build_8bit_table(png_ptr, &png_ptr->gamma_table, correction);
3666
3667
#if GAMMA_TRANSFORMS
3668
if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
3669
{
3670
png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1, file_to_linear);
3671
3672
png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
3673
linear_to_screen);
3674
}
3675
#endif /* GAMMA_TRANSFORMS */
3676
}
3677
#ifdef PNG_16BIT_SUPPORTED
3678
else
3679
{
3680
png_byte shift, sig_bit;
3681
3682
if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0)
3683
{
3684
sig_bit = png_ptr->sig_bit.red;
3685
3686
if (png_ptr->sig_bit.green > sig_bit)
3687
sig_bit = png_ptr->sig_bit.green;
3688
3689
if (png_ptr->sig_bit.blue > sig_bit)
3690
sig_bit = png_ptr->sig_bit.blue;
3691
}
3692
else
3693
sig_bit = png_ptr->sig_bit.gray;
3694
3695
/* 16-bit gamma code uses this equation:
3696
*
3697
* ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
3698
*
3699
* Where 'iv' is the input color value and 'ov' is the output value -
3700
* pow(iv, gamma).
3701
*
3702
* Thus the gamma table consists of up to 256 256-entry tables. The table
3703
* is selected by the (8-gamma_shift) most significant of the low 8 bits
3704
* of the color value then indexed by the upper 8 bits:
3705
*
3706
* table[low bits][high 8 bits]
3707
*
3708
* So the table 'n' corresponds to all those 'iv' of:
3709
*
3710
* <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
3711
*
3712
*/
3713
if (sig_bit > 0 && sig_bit < 16U)
3714
/* shift == insignificant bits */
3715
shift = (png_byte)((16U - sig_bit) & 0xff);
3716
3717
else
3718
shift = 0; /* keep all 16 bits */
3719
3720
if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
3721
{
3722
/* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
3723
* the significant bits in the *input* when the output will
3724
* eventually be 8 bits. By default it is 11.
3725
*/
3726
if (shift < (16U - PNG_MAX_GAMMA_8))
3727
shift = (16U - PNG_MAX_GAMMA_8);
3728
}
3729
3730
if (shift > 8U)
3731
shift = 8U; /* Guarantees at least one table! */
3732
3733
png_ptr->gamma_shift = shift;
3734
3735
/* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
3736
* PNG_COMPOSE). This effectively smashed the background calculation for
3737
* 16-bit output because the 8-bit table assumes the result will be
3738
* reduced to 8 bits.
3739
*/
3740
if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
3741
png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
3742
png_reciprocal(correction));
3743
else
3744
png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
3745
correction);
3746
3747
# if GAMMA_TRANSFORMS
3748
if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
3749
{
3750
png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
3751
file_to_linear);
3752
3753
/* Notice that the '16 from 1' table should be full precision, however
3754
* the lookup on this table still uses gamma_shift, so it can't be.
3755
* TODO: fix this.
3756
*/
3757
png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
3758
linear_to_screen);
3759
}
3760
#endif /* GAMMA_TRANSFORMS */
3761
}
3762
#endif /* 16BIT */
3763
}
3764
#endif /* READ_GAMMA */
3765
3766
/* HARDWARE OR SOFTWARE OPTION SUPPORT */
3767
#ifdef PNG_SET_OPTION_SUPPORTED
3768
int PNGAPI
3769
png_set_option(png_structrp png_ptr, int option, int onoff)
3770
{
3771
if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT &&
3772
(option & 1) == 0)
3773
{
3774
png_uint_32 mask = 3U << option;
3775
png_uint_32 setting = (2U + (onoff != 0)) << option;
3776
png_uint_32 current = png_ptr->options;
3777
3778
png_ptr->options = (png_uint_32)((current & ~mask) | setting);
3779
3780
return (int)(current & mask) >> option;
3781
}
3782
3783
return PNG_OPTION_INVALID;
3784
}
3785
#endif
3786
3787
/* sRGB support */
3788
#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
3789
defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
3790
/* sRGB conversion tables; these are machine generated with the code in
3791
* contrib/tools/makesRGB.c. The actual sRGB transfer curve defined in the
3792
* specification (see the article at https://en.wikipedia.org/wiki/SRGB)
3793
* is used, not the gamma=1/2.2 approximation use elsewhere in libpng.
3794
* The sRGB to linear table is exact (to the nearest 16-bit linear fraction).
3795
* The inverse (linear to sRGB) table has accuracies as follows:
3796
*
3797
* For all possible (255*65535+1) input values:
3798
*
3799
* error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact
3800
*
3801
* For the input values corresponding to the 65536 16-bit values:
3802
*
3803
* error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact
3804
*
3805
* In all cases the inexact readings are only off by one.
3806
*/
3807
3808
#ifdef PNG_SIMPLIFIED_READ_SUPPORTED
3809
/* The convert-to-sRGB table is only currently required for read. */
3810
const png_uint_16 png_sRGB_table[256] =
3811
{
3812
0,20,40,60,80,99,119,139,
3813
159,179,199,219,241,264,288,313,
3814
340,367,396,427,458,491,526,562,
3815
599,637,677,718,761,805,851,898,
3816
947,997,1048,1101,1156,1212,1270,1330,
3817
1391,1453,1517,1583,1651,1720,1790,1863,
3818
1937,2013,2090,2170,2250,2333,2418,2504,
3819
2592,2681,2773,2866,2961,3058,3157,3258,
3820
3360,3464,3570,3678,3788,3900,4014,4129,
3821
4247,4366,4488,4611,4736,4864,4993,5124,
3822
5257,5392,5530,5669,5810,5953,6099,6246,
3823
6395,6547,6700,6856,7014,7174,7335,7500,
3824
7666,7834,8004,8177,8352,8528,8708,8889,
3825
9072,9258,9445,9635,9828,10022,10219,10417,
3826
10619,10822,11028,11235,11446,11658,11873,12090,
3827
12309,12530,12754,12980,13209,13440,13673,13909,
3828
14146,14387,14629,14874,15122,15371,15623,15878,
3829
16135,16394,16656,16920,17187,17456,17727,18001,
3830
18277,18556,18837,19121,19407,19696,19987,20281,
3831
20577,20876,21177,21481,21787,22096,22407,22721,
3832
23038,23357,23678,24002,24329,24658,24990,25325,
3833
25662,26001,26344,26688,27036,27386,27739,28094,
3834
28452,28813,29176,29542,29911,30282,30656,31033,
3835
31412,31794,32179,32567,32957,33350,33745,34143,
3836
34544,34948,35355,35764,36176,36591,37008,37429,
3837
37852,38278,38706,39138,39572,40009,40449,40891,
3838
41337,41785,42236,42690,43147,43606,44069,44534,
3839
45002,45473,45947,46423,46903,47385,47871,48359,
3840
48850,49344,49841,50341,50844,51349,51858,52369,
3841
52884,53401,53921,54445,54971,55500,56032,56567,
3842
57105,57646,58190,58737,59287,59840,60396,60955,
3843
61517,62082,62650,63221,63795,64372,64952,65535
3844
};
3845
#endif /* SIMPLIFIED_READ */
3846
3847
/* The base/delta tables are required for both read and write (but currently
3848
* only the simplified versions.)
3849
*/
3850
const png_uint_16 png_sRGB_base[512] =
3851
{
3852
128,1782,3383,4644,5675,6564,7357,8074,
3853
8732,9346,9921,10463,10977,11466,11935,12384,
3854
12816,13233,13634,14024,14402,14769,15125,15473,
3855
15812,16142,16466,16781,17090,17393,17690,17981,
3856
18266,18546,18822,19093,19359,19621,19879,20133,
3857
20383,20630,20873,21113,21349,21583,21813,22041,
3858
22265,22487,22707,22923,23138,23350,23559,23767,
3859
23972,24175,24376,24575,24772,24967,25160,25352,
3860
25542,25730,25916,26101,26284,26465,26645,26823,
3861
27000,27176,27350,27523,27695,27865,28034,28201,
3862
28368,28533,28697,28860,29021,29182,29341,29500,
3863
29657,29813,29969,30123,30276,30429,30580,30730,
3864
30880,31028,31176,31323,31469,31614,31758,31902,
3865
32045,32186,32327,32468,32607,32746,32884,33021,
3866
33158,33294,33429,33564,33697,33831,33963,34095,
3867
34226,34357,34486,34616,34744,34873,35000,35127,
3868
35253,35379,35504,35629,35753,35876,35999,36122,
3869
36244,36365,36486,36606,36726,36845,36964,37083,
3870
37201,37318,37435,37551,37668,37783,37898,38013,
3871
38127,38241,38354,38467,38580,38692,38803,38915,
3872
39026,39136,39246,39356,39465,39574,39682,39790,
3873
39898,40005,40112,40219,40325,40431,40537,40642,
3874
40747,40851,40955,41059,41163,41266,41369,41471,
3875
41573,41675,41777,41878,41979,42079,42179,42279,
3876
42379,42478,42577,42676,42775,42873,42971,43068,
3877
43165,43262,43359,43456,43552,43648,43743,43839,
3878
43934,44028,44123,44217,44311,44405,44499,44592,
3879
44685,44778,44870,44962,45054,45146,45238,45329,
3880
45420,45511,45601,45692,45782,45872,45961,46051,
3881
46140,46229,46318,46406,46494,46583,46670,46758,
3882
46846,46933,47020,47107,47193,47280,47366,47452,
3883
47538,47623,47709,47794,47879,47964,48048,48133,
3884
48217,48301,48385,48468,48552,48635,48718,48801,
3885
48884,48966,49048,49131,49213,49294,49376,49458,
3886
49539,49620,49701,49782,49862,49943,50023,50103,
3887
50183,50263,50342,50422,50501,50580,50659,50738,
3888
50816,50895,50973,51051,51129,51207,51285,51362,
3889
51439,51517,51594,51671,51747,51824,51900,51977,
3890
52053,52129,52205,52280,52356,52432,52507,52582,
3891
52657,52732,52807,52881,52956,53030,53104,53178,
3892
53252,53326,53400,53473,53546,53620,53693,53766,
3893
53839,53911,53984,54056,54129,54201,54273,54345,
3894
54417,54489,54560,54632,54703,54774,54845,54916,
3895
54987,55058,55129,55199,55269,55340,55410,55480,
3896
55550,55620,55689,55759,55828,55898,55967,56036,
3897
56105,56174,56243,56311,56380,56448,56517,56585,
3898
56653,56721,56789,56857,56924,56992,57059,57127,
3899
57194,57261,57328,57395,57462,57529,57595,57662,
3900
57728,57795,57861,57927,57993,58059,58125,58191,
3901
58256,58322,58387,58453,58518,58583,58648,58713,
3902
58778,58843,58908,58972,59037,59101,59165,59230,
3903
59294,59358,59422,59486,59549,59613,59677,59740,
3904
59804,59867,59930,59993,60056,60119,60182,60245,
3905
60308,60370,60433,60495,60558,60620,60682,60744,
3906
60806,60868,60930,60992,61054,61115,61177,61238,
3907
61300,61361,61422,61483,61544,61605,61666,61727,
3908
61788,61848,61909,61969,62030,62090,62150,62211,
3909
62271,62331,62391,62450,62510,62570,62630,62689,
3910
62749,62808,62867,62927,62986,63045,63104,63163,
3911
63222,63281,63340,63398,63457,63515,63574,63632,
3912
63691,63749,63807,63865,63923,63981,64039,64097,
3913
64155,64212,64270,64328,64385,64443,64500,64557,
3914
64614,64672,64729,64786,64843,64900,64956,65013,
3915
65070,65126,65183,65239,65296,65352,65409,65465
3916
};
3917
3918
const png_byte png_sRGB_delta[512] =
3919
{
3920
207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54,
3921
52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36,
3922
35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28,
3923
28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24,
3924
23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21,
3925
21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19,
3926
19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17,
3927
17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16,
3928
16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15,
3929
15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14,
3930
14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13,
3931
13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12,
3932
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
3933
12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11,
3934
11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
3935
11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
3936
11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
3937
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
3938
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
3939
10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3940
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3941
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3942
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3943
9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3944
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3945
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3946
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3947
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3948
8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7,
3949
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
3950
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
3951
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
3952
};
3953
#endif /* SIMPLIFIED READ/WRITE sRGB support */
3954
3955
/* SIMPLIFIED READ/WRITE SUPPORT */
3956
#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
3957
defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
3958
static int
3959
png_image_free_function(png_voidp argument)
3960
{
3961
png_imagep image = png_voidcast(png_imagep, argument);
3962
png_controlp cp = image->opaque;
3963
png_control c;
3964
3965
/* Double check that we have a png_ptr - it should be impossible to get here
3966
* without one.
3967
*/
3968
if (cp->png_ptr == NULL)
3969
return 0;
3970
3971
/* First free any data held in the control structure. */
3972
# ifdef PNG_STDIO_SUPPORTED
3973
if (cp->owned_file != 0)
3974
{
3975
FILE *fp = png_voidcast(FILE *, cp->png_ptr->io_ptr);
3976
cp->owned_file = 0;
3977
3978
/* Ignore errors here. */
3979
if (fp != NULL)
3980
{
3981
cp->png_ptr->io_ptr = NULL;
3982
(void)fclose(fp);
3983
}
3984
}
3985
# endif
3986
3987
/* Copy the control structure so that the original, allocated, version can be
3988
* safely freed. Notice that a png_error here stops the remainder of the
3989
* cleanup, but this is probably fine because that would indicate bad memory
3990
* problems anyway.
3991
*/
3992
c = *cp;
3993
image->opaque = &c;
3994
png_free(c.png_ptr, cp);
3995
3996
/* Then the structures, calling the correct API. */
3997
if (c.for_write != 0)
3998
{
3999
# ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED
4000
png_destroy_write_struct(&c.png_ptr, &c.info_ptr);
4001
# else
4002
png_error(c.png_ptr, "simplified write not supported");
4003
# endif
4004
}
4005
else
4006
{
4007
# ifdef PNG_SIMPLIFIED_READ_SUPPORTED
4008
png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL);
4009
# else
4010
png_error(c.png_ptr, "simplified read not supported");
4011
# endif
4012
}
4013
4014
/* Success. */
4015
return 1;
4016
}
4017
4018
void PNGAPI
4019
png_image_free(png_imagep image)
4020
{
4021
/* Safely call the real function, but only if doing so is safe at this point
4022
* (if not inside an error handling context). Otherwise assume
4023
* png_safe_execute will call this API after the return.
4024
*/
4025
if (image != NULL && image->opaque != NULL &&
4026
image->opaque->error_buf == NULL)
4027
{
4028
png_image_free_function(image);
4029
image->opaque = NULL;
4030
}
4031
}
4032
4033
int /* PRIVATE */
4034
png_image_error(png_imagep image, png_const_charp error_message)
4035
{
4036
/* Utility to log an error. */
4037
png_safecat(image->message, (sizeof image->message), 0, error_message);
4038
image->warning_or_error |= PNG_IMAGE_ERROR;
4039
png_image_free(image);
4040
return 0;
4041
}
4042
4043
#endif /* SIMPLIFIED READ/WRITE */
4044
#endif /* READ || WRITE */
4045
4046