Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libpng/png.c
9833 views
1
/* png.c - location for general purpose libpng functions
2
*
3
* Copyright (c) 2018-2025 Cosmin Truta
4
* Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson
5
* Copyright (c) 1996-1997 Andreas Dilger
6
* Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.
7
*
8
* This code is released under the libpng license.
9
* For conditions of distribution and use, see the disclaimer
10
* and license in png.h
11
*/
12
13
#include "pngpriv.h"
14
15
/* Generate a compiler error if there is an old png.h in the search path. */
16
typedef png_libpng_version_1_6_48 Your_png_h_is_not_version_1_6_48;
17
18
/* Sanity check the chunks definitions - PNG_KNOWN_CHUNKS from pngpriv.h and the
19
* corresponding macro definitions. This causes a compile time failure if
20
* something is wrong but generates no code.
21
*
22
* (1) The first check is that the PNG_CHUNK(cHNK, index) 'index' values must
23
* increment from 0 to the last value.
24
*/
25
#define PNG_CHUNK(cHNK, index) != (index) || ((index)+1)
26
27
#if 0 PNG_KNOWN_CHUNKS < 0
28
# error PNG_KNOWN_CHUNKS chunk definitions are not in order
29
#endif
30
31
#undef PNG_CHUNK
32
33
/* (2) The chunk name macros, png_cHNK, must all be valid and defined. Since
34
* this is a preprocessor test undefined pp-tokens come out as zero and will
35
* fail this test.
36
*/
37
#define PNG_CHUNK(cHNK, index) !PNG_CHUNK_NAME_VALID(png_ ## cHNK) ||
38
39
#if PNG_KNOWN_CHUNKS 0
40
# error png_cHNK not defined for some known cHNK
41
#endif
42
43
#undef PNG_CHUNK
44
45
/* Tells libpng that we have already handled the first "num_bytes" bytes
46
* of the PNG file signature. If the PNG data is embedded into another
47
* stream we can set num_bytes = 8 so that libpng will not attempt to read
48
* or write any of the magic bytes before it starts on the IHDR.
49
*/
50
51
#ifdef PNG_READ_SUPPORTED
52
void PNGAPI
53
png_set_sig_bytes(png_structrp png_ptr, int num_bytes)
54
{
55
unsigned int nb = (unsigned int)num_bytes;
56
57
png_debug(1, "in png_set_sig_bytes");
58
59
if (png_ptr == NULL)
60
return;
61
62
if (num_bytes < 0)
63
nb = 0;
64
65
if (nb > 8)
66
png_error(png_ptr, "Too many bytes for PNG signature");
67
68
png_ptr->sig_bytes = (png_byte)nb;
69
}
70
71
/* Checks whether the supplied bytes match the PNG signature. We allow
72
* checking less than the full 8-byte signature so that those apps that
73
* already read the first few bytes of a file to determine the file type
74
* can simply check the remaining bytes for extra assurance. Returns
75
* an integer less than, equal to, or greater than zero if sig is found,
76
* respectively, to be less than, to match, or be greater than the correct
77
* PNG signature (this is the same behavior as strcmp, memcmp, etc).
78
*/
79
int PNGAPI
80
png_sig_cmp(png_const_bytep sig, size_t start, size_t num_to_check)
81
{
82
static const png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
83
84
if (num_to_check > 8)
85
num_to_check = 8;
86
87
else if (num_to_check < 1)
88
return -1;
89
90
if (start > 7)
91
return -1;
92
93
if (start + num_to_check > 8)
94
num_to_check = 8 - start;
95
96
return memcmp(&sig[start], &png_signature[start], num_to_check);
97
}
98
99
#endif /* READ */
100
101
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
102
/* Function to allocate memory for zlib */
103
PNG_FUNCTION(voidpf /* PRIVATE */,
104
png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
105
{
106
png_alloc_size_t num_bytes = size;
107
108
if (png_ptr == NULL)
109
return NULL;
110
111
if (items >= (~(png_alloc_size_t)0)/size)
112
{
113
png_warning (png_voidcast(png_structrp, png_ptr),
114
"Potential overflow in png_zalloc()");
115
return NULL;
116
}
117
118
num_bytes *= items;
119
return png_malloc_warn(png_voidcast(png_structrp, png_ptr), num_bytes);
120
}
121
122
/* Function to free memory for zlib */
123
void /* PRIVATE */
124
png_zfree(voidpf png_ptr, voidpf ptr)
125
{
126
png_free(png_voidcast(png_const_structrp,png_ptr), ptr);
127
}
128
129
/* Reset the CRC variable to 32 bits of 1's. Care must be taken
130
* in case CRC is > 32 bits to leave the top bits 0.
131
*/
132
void /* PRIVATE */
133
png_reset_crc(png_structrp png_ptr)
134
{
135
/* The cast is safe because the crc is a 32-bit value. */
136
png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
137
}
138
139
/* Calculate the CRC over a section of data. We can only pass as
140
* much data to this routine as the largest single buffer size. We
141
* also check that this data will actually be used before going to the
142
* trouble of calculating it.
143
*/
144
void /* PRIVATE */
145
png_calculate_crc(png_structrp png_ptr, png_const_bytep ptr, size_t length)
146
{
147
int need_crc = 1;
148
149
if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name) != 0)
150
{
151
if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
152
(PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
153
need_crc = 0;
154
}
155
156
else /* critical */
157
{
158
if ((png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) != 0)
159
need_crc = 0;
160
}
161
162
/* 'uLong' is defined in zlib.h as unsigned long; this means that on some
163
* systems it is a 64-bit value. crc32, however, returns 32 bits so the
164
* following cast is safe. 'uInt' may be no more than 16 bits, so it is
165
* necessary to perform a loop here.
166
*/
167
if (need_crc != 0 && length > 0)
168
{
169
uLong crc = png_ptr->crc; /* Should never issue a warning */
170
171
do
172
{
173
uInt safe_length = (uInt)length;
174
#ifndef __COVERITY__
175
if (safe_length == 0)
176
safe_length = (uInt)-1; /* evil, but safe */
177
#endif
178
179
crc = crc32(crc, ptr, safe_length);
180
181
/* The following should never issue compiler warnings; if they do the
182
* target system has characteristics that will probably violate other
183
* assumptions within the libpng code.
184
*/
185
ptr += safe_length;
186
length -= safe_length;
187
}
188
while (length > 0);
189
190
/* And the following is always safe because the crc is only 32 bits. */
191
png_ptr->crc = (png_uint_32)crc;
192
}
193
}
194
195
/* Check a user supplied version number, called from both read and write
196
* functions that create a png_struct.
197
*/
198
int
199
png_user_version_check(png_structrp png_ptr, png_const_charp user_png_ver)
200
{
201
/* Libpng versions 1.0.0 and later are binary compatible if the version
202
* string matches through the second '.'; we must recompile any
203
* applications that use any older library version.
204
*/
205
206
if (user_png_ver != NULL)
207
{
208
int i = -1;
209
int found_dots = 0;
210
211
do
212
{
213
i++;
214
if (user_png_ver[i] != PNG_LIBPNG_VER_STRING[i])
215
png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
216
if (user_png_ver[i] == '.')
217
found_dots++;
218
} while (found_dots < 2 && user_png_ver[i] != 0 &&
219
PNG_LIBPNG_VER_STRING[i] != 0);
220
}
221
222
else
223
png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
224
225
if ((png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) != 0)
226
{
227
#ifdef PNG_WARNINGS_SUPPORTED
228
size_t pos = 0;
229
char m[128];
230
231
pos = png_safecat(m, (sizeof m), pos,
232
"Application built with libpng-");
233
pos = png_safecat(m, (sizeof m), pos, user_png_ver);
234
pos = png_safecat(m, (sizeof m), pos, " but running with ");
235
pos = png_safecat(m, (sizeof m), pos, PNG_LIBPNG_VER_STRING);
236
PNG_UNUSED(pos)
237
238
png_warning(png_ptr, m);
239
#endif
240
241
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
242
png_ptr->flags = 0;
243
#endif
244
245
return 0;
246
}
247
248
/* Success return. */
249
return 1;
250
}
251
252
/* Generic function to create a png_struct for either read or write - this
253
* contains the common initialization.
254
*/
255
PNG_FUNCTION(png_structp /* PRIVATE */,
256
png_create_png_struct,(png_const_charp user_png_ver, png_voidp error_ptr,
257
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
258
png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED)
259
{
260
png_struct create_struct;
261
# ifdef PNG_SETJMP_SUPPORTED
262
jmp_buf create_jmp_buf;
263
# endif
264
265
/* This temporary stack-allocated structure is used to provide a place to
266
* build enough context to allow the user provided memory allocator (if any)
267
* to be called.
268
*/
269
memset(&create_struct, 0, (sizeof create_struct));
270
271
# ifdef PNG_USER_LIMITS_SUPPORTED
272
create_struct.user_width_max = PNG_USER_WIDTH_MAX;
273
create_struct.user_height_max = PNG_USER_HEIGHT_MAX;
274
275
# ifdef PNG_USER_CHUNK_CACHE_MAX
276
create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX;
277
# endif
278
279
# if PNG_USER_CHUNK_MALLOC_MAX > 0 /* default to compile-time limit */
280
create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX;
281
282
/* No compile-time limit, so initialize to the system limit: */
283
# elif defined PNG_MAX_MALLOC_64K /* legacy system limit */
284
create_struct.user_chunk_malloc_max = 65536U;
285
286
# else /* modern system limit SIZE_MAX (C99) */
287
create_struct.user_chunk_malloc_max = PNG_SIZE_MAX;
288
# endif
289
# endif
290
291
/* The following two API calls simply set fields in png_struct, so it is safe
292
* to do them now even though error handling is not yet set up.
293
*/
294
# ifdef PNG_USER_MEM_SUPPORTED
295
png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn);
296
# else
297
PNG_UNUSED(mem_ptr)
298
PNG_UNUSED(malloc_fn)
299
PNG_UNUSED(free_fn)
300
# endif
301
302
/* (*error_fn) can return control to the caller after the error_ptr is set,
303
* this will result in a memory leak unless the error_fn does something
304
* extremely sophisticated. The design lacks merit but is implicit in the
305
* API.
306
*/
307
png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn);
308
309
# ifdef PNG_SETJMP_SUPPORTED
310
if (!setjmp(create_jmp_buf))
311
# endif
312
{
313
# ifdef PNG_SETJMP_SUPPORTED
314
/* Temporarily fake out the longjmp information until we have
315
* successfully completed this function. This only works if we have
316
* setjmp() support compiled in, but it is safe - this stuff should
317
* never happen.
318
*/
319
create_struct.jmp_buf_ptr = &create_jmp_buf;
320
create_struct.jmp_buf_size = 0; /*stack allocation*/
321
create_struct.longjmp_fn = longjmp;
322
# endif
323
/* Call the general version checker (shared with read and write code):
324
*/
325
if (png_user_version_check(&create_struct, user_png_ver) != 0)
326
{
327
png_structrp png_ptr = png_voidcast(png_structrp,
328
png_malloc_warn(&create_struct, (sizeof *png_ptr)));
329
330
if (png_ptr != NULL)
331
{
332
/* png_ptr->zstream holds a back-pointer to the png_struct, so
333
* this can only be done now:
334
*/
335
create_struct.zstream.zalloc = png_zalloc;
336
create_struct.zstream.zfree = png_zfree;
337
create_struct.zstream.opaque = png_ptr;
338
339
# ifdef PNG_SETJMP_SUPPORTED
340
/* Eliminate the local error handling: */
341
create_struct.jmp_buf_ptr = NULL;
342
create_struct.jmp_buf_size = 0;
343
create_struct.longjmp_fn = 0;
344
# endif
345
346
*png_ptr = create_struct;
347
348
/* This is the successful return point */
349
return png_ptr;
350
}
351
}
352
}
353
354
/* A longjmp because of a bug in the application storage allocator or a
355
* simple failure to allocate the png_struct.
356
*/
357
return NULL;
358
}
359
360
/* Allocate the memory for an info_struct for the application. */
361
PNG_FUNCTION(png_infop,PNGAPI
362
png_create_info_struct,(png_const_structrp png_ptr),PNG_ALLOCATED)
363
{
364
png_inforp info_ptr;
365
366
png_debug(1, "in png_create_info_struct");
367
368
if (png_ptr == NULL)
369
return NULL;
370
371
/* Use the internal API that does not (or at least should not) error out, so
372
* that this call always returns ok. The application typically sets up the
373
* error handling *after* creating the info_struct because this is the way it
374
* has always been done in 'example.c'.
375
*/
376
info_ptr = png_voidcast(png_inforp, png_malloc_base(png_ptr,
377
(sizeof *info_ptr)));
378
379
if (info_ptr != NULL)
380
memset(info_ptr, 0, (sizeof *info_ptr));
381
382
return info_ptr;
383
}
384
385
/* This function frees the memory associated with a single info struct.
386
* Normally, one would use either png_destroy_read_struct() or
387
* png_destroy_write_struct() to free an info struct, but this may be
388
* useful for some applications. From libpng 1.6.0 this function is also used
389
* internally to implement the png_info release part of the 'struct' destroy
390
* APIs. This ensures that all possible approaches free the same data (all of
391
* it).
392
*/
393
void PNGAPI
394
png_destroy_info_struct(png_const_structrp png_ptr, png_infopp info_ptr_ptr)
395
{
396
png_inforp info_ptr = NULL;
397
398
png_debug(1, "in png_destroy_info_struct");
399
400
if (png_ptr == NULL)
401
return;
402
403
if (info_ptr_ptr != NULL)
404
info_ptr = *info_ptr_ptr;
405
406
if (info_ptr != NULL)
407
{
408
/* Do this first in case of an error below; if the app implements its own
409
* memory management this can lead to png_free calling png_error, which
410
* will abort this routine and return control to the app error handler.
411
* An infinite loop may result if it then tries to free the same info
412
* ptr.
413
*/
414
*info_ptr_ptr = NULL;
415
416
png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
417
memset(info_ptr, 0, (sizeof *info_ptr));
418
png_free(png_ptr, info_ptr);
419
}
420
}
421
422
/* Initialize the info structure. This is now an internal function (0.89)
423
* and applications using it are urged to use png_create_info_struct()
424
* instead. Use deprecated in 1.6.0, internal use removed (used internally it
425
* is just a memset).
426
*
427
* NOTE: it is almost inconceivable that this API is used because it bypasses
428
* the user-memory mechanism and the user error handling/warning mechanisms in
429
* those cases where it does anything other than a memset.
430
*/
431
PNG_FUNCTION(void,PNGAPI
432
png_info_init_3,(png_infopp ptr_ptr, size_t png_info_struct_size),
433
PNG_DEPRECATED)
434
{
435
png_inforp info_ptr = *ptr_ptr;
436
437
png_debug(1, "in png_info_init_3");
438
439
if (info_ptr == NULL)
440
return;
441
442
if ((sizeof (png_info)) > png_info_struct_size)
443
{
444
*ptr_ptr = NULL;
445
/* The following line is why this API should not be used: */
446
free(info_ptr);
447
info_ptr = png_voidcast(png_inforp, png_malloc_base(NULL,
448
(sizeof *info_ptr)));
449
if (info_ptr == NULL)
450
return;
451
*ptr_ptr = info_ptr;
452
}
453
454
/* Set everything to 0 */
455
memset(info_ptr, 0, (sizeof *info_ptr));
456
}
457
458
void PNGAPI
459
png_data_freer(png_const_structrp png_ptr, png_inforp info_ptr,
460
int freer, png_uint_32 mask)
461
{
462
png_debug(1, "in png_data_freer");
463
464
if (png_ptr == NULL || info_ptr == NULL)
465
return;
466
467
if (freer == PNG_DESTROY_WILL_FREE_DATA)
468
info_ptr->free_me |= mask;
469
470
else if (freer == PNG_USER_WILL_FREE_DATA)
471
info_ptr->free_me &= ~mask;
472
473
else
474
png_error(png_ptr, "Unknown freer parameter in png_data_freer");
475
}
476
477
void PNGAPI
478
png_free_data(png_const_structrp png_ptr, png_inforp info_ptr, png_uint_32 mask,
479
int num)
480
{
481
png_debug(1, "in png_free_data");
482
483
if (png_ptr == NULL || info_ptr == NULL)
484
return;
485
486
#ifdef PNG_TEXT_SUPPORTED
487
/* Free text item num or (if num == -1) all text items */
488
if (info_ptr->text != NULL &&
489
((mask & PNG_FREE_TEXT) & info_ptr->free_me) != 0)
490
{
491
if (num != -1)
492
{
493
png_free(png_ptr, info_ptr->text[num].key);
494
info_ptr->text[num].key = NULL;
495
}
496
497
else
498
{
499
int i;
500
501
for (i = 0; i < info_ptr->num_text; i++)
502
png_free(png_ptr, info_ptr->text[i].key);
503
504
png_free(png_ptr, info_ptr->text);
505
info_ptr->text = NULL;
506
info_ptr->num_text = 0;
507
info_ptr->max_text = 0;
508
}
509
}
510
#endif
511
512
#ifdef PNG_tRNS_SUPPORTED
513
/* Free any tRNS entry */
514
if (((mask & PNG_FREE_TRNS) & info_ptr->free_me) != 0)
515
{
516
info_ptr->valid &= ~PNG_INFO_tRNS;
517
png_free(png_ptr, info_ptr->trans_alpha);
518
info_ptr->trans_alpha = NULL;
519
info_ptr->num_trans = 0;
520
}
521
#endif
522
523
#ifdef PNG_sCAL_SUPPORTED
524
/* Free any sCAL entry */
525
if (((mask & PNG_FREE_SCAL) & info_ptr->free_me) != 0)
526
{
527
png_free(png_ptr, info_ptr->scal_s_width);
528
png_free(png_ptr, info_ptr->scal_s_height);
529
info_ptr->scal_s_width = NULL;
530
info_ptr->scal_s_height = NULL;
531
info_ptr->valid &= ~PNG_INFO_sCAL;
532
}
533
#endif
534
535
#ifdef PNG_pCAL_SUPPORTED
536
/* Free any pCAL entry */
537
if (((mask & PNG_FREE_PCAL) & info_ptr->free_me) != 0)
538
{
539
png_free(png_ptr, info_ptr->pcal_purpose);
540
png_free(png_ptr, info_ptr->pcal_units);
541
info_ptr->pcal_purpose = NULL;
542
info_ptr->pcal_units = NULL;
543
544
if (info_ptr->pcal_params != NULL)
545
{
546
int i;
547
548
for (i = 0; i < info_ptr->pcal_nparams; i++)
549
png_free(png_ptr, info_ptr->pcal_params[i]);
550
551
png_free(png_ptr, info_ptr->pcal_params);
552
info_ptr->pcal_params = NULL;
553
}
554
info_ptr->valid &= ~PNG_INFO_pCAL;
555
}
556
#endif
557
558
#ifdef PNG_iCCP_SUPPORTED
559
/* Free any profile entry */
560
if (((mask & PNG_FREE_ICCP) & info_ptr->free_me) != 0)
561
{
562
png_free(png_ptr, info_ptr->iccp_name);
563
png_free(png_ptr, info_ptr->iccp_profile);
564
info_ptr->iccp_name = NULL;
565
info_ptr->iccp_profile = NULL;
566
info_ptr->valid &= ~PNG_INFO_iCCP;
567
}
568
#endif
569
570
#ifdef PNG_sPLT_SUPPORTED
571
/* Free a given sPLT entry, or (if num == -1) all sPLT entries */
572
if (info_ptr->splt_palettes != NULL &&
573
((mask & PNG_FREE_SPLT) & info_ptr->free_me) != 0)
574
{
575
if (num != -1)
576
{
577
png_free(png_ptr, info_ptr->splt_palettes[num].name);
578
png_free(png_ptr, info_ptr->splt_palettes[num].entries);
579
info_ptr->splt_palettes[num].name = NULL;
580
info_ptr->splt_palettes[num].entries = NULL;
581
}
582
583
else
584
{
585
int i;
586
587
for (i = 0; i < info_ptr->splt_palettes_num; i++)
588
{
589
png_free(png_ptr, info_ptr->splt_palettes[i].name);
590
png_free(png_ptr, info_ptr->splt_palettes[i].entries);
591
}
592
593
png_free(png_ptr, info_ptr->splt_palettes);
594
info_ptr->splt_palettes = NULL;
595
info_ptr->splt_palettes_num = 0;
596
info_ptr->valid &= ~PNG_INFO_sPLT;
597
}
598
}
599
#endif
600
601
#ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED
602
if (info_ptr->unknown_chunks != NULL &&
603
((mask & PNG_FREE_UNKN) & info_ptr->free_me) != 0)
604
{
605
if (num != -1)
606
{
607
png_free(png_ptr, info_ptr->unknown_chunks[num].data);
608
info_ptr->unknown_chunks[num].data = NULL;
609
}
610
611
else
612
{
613
int i;
614
615
for (i = 0; i < info_ptr->unknown_chunks_num; i++)
616
png_free(png_ptr, info_ptr->unknown_chunks[i].data);
617
618
png_free(png_ptr, info_ptr->unknown_chunks);
619
info_ptr->unknown_chunks = NULL;
620
info_ptr->unknown_chunks_num = 0;
621
}
622
}
623
#endif
624
625
#ifdef PNG_eXIf_SUPPORTED
626
/* Free any eXIf entry */
627
if (((mask & PNG_FREE_EXIF) & info_ptr->free_me) != 0)
628
{
629
if (info_ptr->exif)
630
{
631
png_free(png_ptr, info_ptr->exif);
632
info_ptr->exif = NULL;
633
}
634
info_ptr->valid &= ~PNG_INFO_eXIf;
635
}
636
#endif
637
638
#ifdef PNG_hIST_SUPPORTED
639
/* Free any hIST entry */
640
if (((mask & PNG_FREE_HIST) & info_ptr->free_me) != 0)
641
{
642
png_free(png_ptr, info_ptr->hist);
643
info_ptr->hist = NULL;
644
info_ptr->valid &= ~PNG_INFO_hIST;
645
}
646
#endif
647
648
/* Free any PLTE entry that was internally allocated */
649
if (((mask & PNG_FREE_PLTE) & info_ptr->free_me) != 0)
650
{
651
png_free(png_ptr, info_ptr->palette);
652
info_ptr->palette = NULL;
653
info_ptr->valid &= ~PNG_INFO_PLTE;
654
info_ptr->num_palette = 0;
655
}
656
657
#ifdef PNG_INFO_IMAGE_SUPPORTED
658
/* Free any image bits attached to the info structure */
659
if (((mask & PNG_FREE_ROWS) & info_ptr->free_me) != 0)
660
{
661
if (info_ptr->row_pointers != NULL)
662
{
663
png_uint_32 row;
664
for (row = 0; row < info_ptr->height; row++)
665
png_free(png_ptr, info_ptr->row_pointers[row]);
666
667
png_free(png_ptr, info_ptr->row_pointers);
668
info_ptr->row_pointers = NULL;
669
}
670
info_ptr->valid &= ~PNG_INFO_IDAT;
671
}
672
#endif
673
674
if (num != -1)
675
mask &= ~PNG_FREE_MUL;
676
677
info_ptr->free_me &= ~mask;
678
}
679
#endif /* READ || WRITE */
680
681
/* This function returns a pointer to the io_ptr associated with the user
682
* functions. The application should free any memory associated with this
683
* pointer before png_write_destroy() or png_read_destroy() are called.
684
*/
685
png_voidp PNGAPI
686
png_get_io_ptr(png_const_structrp png_ptr)
687
{
688
if (png_ptr == NULL)
689
return NULL;
690
691
return png_ptr->io_ptr;
692
}
693
694
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
695
# ifdef PNG_STDIO_SUPPORTED
696
/* Initialize the default input/output functions for the PNG file. If you
697
* use your own read or write routines, you can call either png_set_read_fn()
698
* or png_set_write_fn() instead of png_init_io(). If you have defined
699
* PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
700
* function of your own because "FILE *" isn't necessarily available.
701
*/
702
void PNGAPI
703
png_init_io(png_structrp png_ptr, FILE *fp)
704
{
705
png_debug(1, "in png_init_io");
706
707
if (png_ptr == NULL)
708
return;
709
710
png_ptr->io_ptr = (png_voidp)fp;
711
}
712
# endif
713
714
# ifdef PNG_SAVE_INT_32_SUPPORTED
715
/* PNG signed integers are saved in 32-bit 2's complement format. ANSI C-90
716
* defines a cast of a signed integer to an unsigned integer either to preserve
717
* the value, if it is positive, or to calculate:
718
*
719
* (UNSIGNED_MAX+1) + integer
720
*
721
* Where UNSIGNED_MAX is the appropriate maximum unsigned value, so when the
722
* negative integral value is added the result will be an unsigned value
723
* corresponding to the 2's complement representation.
724
*/
725
void PNGAPI
726
png_save_int_32(png_bytep buf, png_int_32 i)
727
{
728
png_save_uint_32(buf, (png_uint_32)i);
729
}
730
# endif
731
732
# ifdef PNG_TIME_RFC1123_SUPPORTED
733
/* Convert the supplied time into an RFC 1123 string suitable for use in
734
* a "Creation Time" or other text-based time string.
735
*/
736
int PNGAPI
737
png_convert_to_rfc1123_buffer(char out[29], png_const_timep ptime)
738
{
739
static const char short_months[12][4] =
740
{"Jan", "Feb", "Mar", "Apr", "May", "Jun",
741
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
742
743
if (out == NULL)
744
return 0;
745
746
if (ptime->year > 9999 /* RFC1123 limitation */ ||
747
ptime->month == 0 || ptime->month > 12 ||
748
ptime->day == 0 || ptime->day > 31 ||
749
ptime->hour > 23 || ptime->minute > 59 ||
750
ptime->second > 60)
751
return 0;
752
753
{
754
size_t pos = 0;
755
char number_buf[5] = {0, 0, 0, 0, 0}; /* enough for a four-digit year */
756
757
# define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string))
758
# define APPEND_NUMBER(format, value)\
759
APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
760
# define APPEND(ch) if (pos < 28) out[pos++] = (ch)
761
762
APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
763
APPEND(' ');
764
APPEND_STRING(short_months[(ptime->month - 1)]);
765
APPEND(' ');
766
APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
767
APPEND(' ');
768
APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
769
APPEND(':');
770
APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
771
APPEND(':');
772
APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
773
APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
774
PNG_UNUSED (pos)
775
776
# undef APPEND
777
# undef APPEND_NUMBER
778
# undef APPEND_STRING
779
}
780
781
return 1;
782
}
783
784
# if PNG_LIBPNG_VER < 10700
785
/* To do: remove the following from libpng-1.7 */
786
/* Original API that uses a private buffer in png_struct.
787
* Deprecated because it causes png_struct to carry a spurious temporary
788
* buffer (png_struct::time_buffer), better to have the caller pass this in.
789
*/
790
png_const_charp PNGAPI
791
png_convert_to_rfc1123(png_structrp png_ptr, png_const_timep ptime)
792
{
793
if (png_ptr != NULL)
794
{
795
/* The only failure above if png_ptr != NULL is from an invalid ptime */
796
if (png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime) == 0)
797
png_warning(png_ptr, "Ignoring invalid time value");
798
799
else
800
return png_ptr->time_buffer;
801
}
802
803
return NULL;
804
}
805
# endif /* LIBPNG_VER < 10700 */
806
# endif /* TIME_RFC1123 */
807
808
#endif /* READ || WRITE */
809
810
png_const_charp PNGAPI
811
png_get_copyright(png_const_structrp png_ptr)
812
{
813
PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
814
#ifdef PNG_STRING_COPYRIGHT
815
return PNG_STRING_COPYRIGHT
816
#else
817
return PNG_STRING_NEWLINE \
818
"libpng version 1.6.48" PNG_STRING_NEWLINE \
819
"Copyright (c) 2018-2025 Cosmin Truta" PNG_STRING_NEWLINE \
820
"Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson" \
821
PNG_STRING_NEWLINE \
822
"Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
823
"Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
824
PNG_STRING_NEWLINE;
825
#endif
826
}
827
828
/* The following return the library version as a short string in the
829
* format 1.0.0 through 99.99.99zz. To get the version of *.h files
830
* used with your application, print out PNG_LIBPNG_VER_STRING, which
831
* is defined in png.h.
832
* Note: now there is no difference between png_get_libpng_ver() and
833
* png_get_header_ver(). Due to the version_nn_nn_nn typedef guard,
834
* it is guaranteed that png.c uses the correct version of png.h.
835
*/
836
png_const_charp PNGAPI
837
png_get_libpng_ver(png_const_structrp png_ptr)
838
{
839
/* Version of *.c files used when building libpng */
840
return png_get_header_ver(png_ptr);
841
}
842
843
png_const_charp PNGAPI
844
png_get_header_ver(png_const_structrp png_ptr)
845
{
846
/* Version of *.h files used when building libpng */
847
PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
848
return PNG_LIBPNG_VER_STRING;
849
}
850
851
png_const_charp PNGAPI
852
png_get_header_version(png_const_structrp png_ptr)
853
{
854
/* Returns longer string containing both version and date */
855
PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
856
#ifdef __STDC__
857
return PNG_HEADER_VERSION_STRING
858
# ifndef PNG_READ_SUPPORTED
859
" (NO READ SUPPORT)"
860
# endif
861
PNG_STRING_NEWLINE;
862
#else
863
return PNG_HEADER_VERSION_STRING;
864
#endif
865
}
866
867
#ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED
868
/* NOTE: this routine is not used internally! */
869
/* Build a grayscale palette. Palette is assumed to be 1 << bit_depth
870
* large of png_color. This lets grayscale images be treated as
871
* paletted. Most useful for gamma correction and simplification
872
* of code. This API is not used internally.
873
*/
874
void PNGAPI
875
png_build_grayscale_palette(int bit_depth, png_colorp palette)
876
{
877
int num_palette;
878
int color_inc;
879
int i;
880
int v;
881
882
png_debug(1, "in png_do_build_grayscale_palette");
883
884
if (palette == NULL)
885
return;
886
887
switch (bit_depth)
888
{
889
case 1:
890
num_palette = 2;
891
color_inc = 0xff;
892
break;
893
894
case 2:
895
num_palette = 4;
896
color_inc = 0x55;
897
break;
898
899
case 4:
900
num_palette = 16;
901
color_inc = 0x11;
902
break;
903
904
case 8:
905
num_palette = 256;
906
color_inc = 1;
907
break;
908
909
default:
910
num_palette = 0;
911
color_inc = 0;
912
break;
913
}
914
915
for (i = 0, v = 0; i < num_palette; i++, v += color_inc)
916
{
917
palette[i].red = (png_byte)(v & 0xff);
918
palette[i].green = (png_byte)(v & 0xff);
919
palette[i].blue = (png_byte)(v & 0xff);
920
}
921
}
922
#endif
923
924
#ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED
925
int PNGAPI
926
png_handle_as_unknown(png_const_structrp png_ptr, png_const_bytep chunk_name)
927
{
928
/* Check chunk_name and return "keep" value if it's on the list, else 0 */
929
png_const_bytep p, p_end;
930
931
if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0)
932
return PNG_HANDLE_CHUNK_AS_DEFAULT;
933
934
p_end = png_ptr->chunk_list;
935
p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
936
937
/* The code is the fifth byte after each four byte string. Historically this
938
* code was always searched from the end of the list, this is no longer
939
* necessary because the 'set' routine handles duplicate entries correctly.
940
*/
941
do /* num_chunk_list > 0, so at least one */
942
{
943
p -= 5;
944
945
if (memcmp(chunk_name, p, 4) == 0)
946
return p[4];
947
}
948
while (p > p_end);
949
950
/* This means that known chunks should be processed and unknown chunks should
951
* be handled according to the value of png_ptr->unknown_default; this can be
952
* confusing because, as a result, there are two levels of defaulting for
953
* unknown chunks.
954
*/
955
return PNG_HANDLE_CHUNK_AS_DEFAULT;
956
}
957
958
#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\
959
defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED)
960
int /* PRIVATE */
961
png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name)
962
{
963
png_byte chunk_string[5];
964
965
PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
966
return png_handle_as_unknown(png_ptr, chunk_string);
967
}
968
#endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */
969
#endif /* SET_UNKNOWN_CHUNKS */
970
971
#ifdef PNG_READ_SUPPORTED
972
/* This function, added to libpng-1.0.6g, is untested. */
973
int PNGAPI
974
png_reset_zstream(png_structrp png_ptr)
975
{
976
if (png_ptr == NULL)
977
return Z_STREAM_ERROR;
978
979
/* WARNING: this resets the window bits to the maximum! */
980
return inflateReset(&png_ptr->zstream);
981
}
982
#endif /* READ */
983
984
/* This function was added to libpng-1.0.7 */
985
png_uint_32 PNGAPI
986
png_access_version_number(void)
987
{
988
/* Version of *.c files used when building libpng */
989
return (png_uint_32)PNG_LIBPNG_VER;
990
}
991
992
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
993
/* Ensure that png_ptr->zstream.msg holds some appropriate error message string.
994
* If it doesn't 'ret' is used to set it to something appropriate, even in cases
995
* like Z_OK or Z_STREAM_END where the error code is apparently a success code.
996
*/
997
void /* PRIVATE */
998
png_zstream_error(png_structrp png_ptr, int ret)
999
{
1000
/* Translate 'ret' into an appropriate error string, priority is given to the
1001
* one in zstream if set. This always returns a string, even in cases like
1002
* Z_OK or Z_STREAM_END where the error code is a success code.
1003
*/
1004
if (png_ptr->zstream.msg == NULL) switch (ret)
1005
{
1006
default:
1007
case Z_OK:
1008
png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code");
1009
break;
1010
1011
case Z_STREAM_END:
1012
/* Normal exit */
1013
png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream");
1014
break;
1015
1016
case Z_NEED_DICT:
1017
/* This means the deflate stream did not have a dictionary; this
1018
* indicates a bogus PNG.
1019
*/
1020
png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary");
1021
break;
1022
1023
case Z_ERRNO:
1024
/* gz APIs only: should not happen */
1025
png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error");
1026
break;
1027
1028
case Z_STREAM_ERROR:
1029
/* internal libpng error */
1030
png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib");
1031
break;
1032
1033
case Z_DATA_ERROR:
1034
png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream");
1035
break;
1036
1037
case Z_MEM_ERROR:
1038
png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory");
1039
break;
1040
1041
case Z_BUF_ERROR:
1042
/* End of input or output; not a problem if the caller is doing
1043
* incremental read or write.
1044
*/
1045
png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated");
1046
break;
1047
1048
case Z_VERSION_ERROR:
1049
png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version");
1050
break;
1051
1052
case PNG_UNEXPECTED_ZLIB_RETURN:
1053
/* Compile errors here mean that zlib now uses the value co-opted in
1054
* pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above
1055
* and change pngpriv.h. Note that this message is "... return",
1056
* whereas the default/Z_OK one is "... return code".
1057
*/
1058
png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return");
1059
break;
1060
}
1061
}
1062
1063
#ifdef PNG_COLORSPACE_SUPPORTED
1064
static png_int_32
1065
png_fp_add(png_int_32 addend0, png_int_32 addend1, int *error)
1066
{
1067
/* Safely add two fixed point values setting an error flag and returning 0.5
1068
* on overflow.
1069
* IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore
1070
* relying on addition of two positive values producing a negative one is not
1071
* safe.
1072
*/
1073
if (addend0 > 0)
1074
{
1075
if (0x7fffffff - addend0 >= addend1)
1076
return addend0+addend1;
1077
}
1078
else if (addend0 < 0)
1079
{
1080
if (-0x7fffffff - addend0 <= addend1)
1081
return addend0+addend1;
1082
}
1083
else
1084
return addend1;
1085
1086
*error = 1;
1087
return PNG_FP_1/2;
1088
}
1089
1090
static png_int_32
1091
png_fp_sub(png_int_32 addend0, png_int_32 addend1, int *error)
1092
{
1093
/* As above but calculate addend0-addend1. */
1094
if (addend1 > 0)
1095
{
1096
if (-0x7fffffff + addend1 <= addend0)
1097
return addend0-addend1;
1098
}
1099
else if (addend1 < 0)
1100
{
1101
if (0x7fffffff + addend1 >= addend0)
1102
return addend0-addend1;
1103
}
1104
else
1105
return addend0;
1106
1107
*error = 1;
1108
return PNG_FP_1/2;
1109
}
1110
1111
static int
1112
png_safe_add(png_int_32 *addend0_and_result, png_int_32 addend1,
1113
png_int_32 addend2)
1114
{
1115
/* Safely add three integers. Returns 0 on success, 1 on overflow. Does not
1116
* set the result on overflow.
1117
*/
1118
int error = 0;
1119
int result = png_fp_add(*addend0_and_result,
1120
png_fp_add(addend1, addend2, &error),
1121
&error);
1122
if (!error) *addend0_and_result = result;
1123
return error;
1124
}
1125
1126
/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
1127
* cHRM, as opposed to using chromaticities. These internal APIs return
1128
* non-zero on a parameter error. The X, Y and Z values are required to be
1129
* positive and less than 1.0.
1130
*/
1131
int /* PRIVATE */
1132
png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ)
1133
{
1134
/* NOTE: returns 0 on success, 1 means error. */
1135
png_int_32 d, dred, dgreen, dblue, dwhite, whiteX, whiteY;
1136
1137
/* 'd' in each of the blocks below is just X+Y+Z for each component,
1138
* x, y and z are X,Y,Z/(X+Y+Z).
1139
*/
1140
d = XYZ->red_X;
1141
if (png_safe_add(&d, XYZ->red_Y, XYZ->red_Z))
1142
return 1;
1143
dred = d;
1144
if (png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, dred) == 0)
1145
return 1;
1146
if (png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, dred) == 0)
1147
return 1;
1148
1149
d = XYZ->green_X;
1150
if (png_safe_add(&d, XYZ->green_Y, XYZ->green_Z))
1151
return 1;
1152
dgreen = d;
1153
if (png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, dgreen) == 0)
1154
return 1;
1155
if (png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, dgreen) == 0)
1156
return 1;
1157
1158
d = XYZ->blue_X;
1159
if (png_safe_add(&d, XYZ->blue_Y, XYZ->blue_Z))
1160
return 1;
1161
dblue = d;
1162
if (png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, dblue) == 0)
1163
return 1;
1164
if (png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, dblue) == 0)
1165
return 1;
1166
1167
/* The reference white is simply the sum of the end-point (X,Y,Z) vectors so
1168
* the fillowing calculates (X+Y+Z) of the reference white (media white,
1169
* encoding white) itself:
1170
*/
1171
d = dblue;
1172
if (png_safe_add(&d, dred, dgreen))
1173
return 1;
1174
dwhite = d;
1175
1176
/* Find the white X,Y values from the sum of the red, green and blue X,Y
1177
* values.
1178
*/
1179
d = XYZ->red_X;
1180
if (png_safe_add(&d, XYZ->green_X, XYZ->blue_X))
1181
return 1;
1182
whiteX = d;
1183
1184
d = XYZ->red_Y;
1185
if (png_safe_add(&d, XYZ->green_Y, XYZ->blue_Y))
1186
return 1;
1187
whiteY = d;
1188
1189
if (png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite) == 0)
1190
return 1;
1191
if (png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite) == 0)
1192
return 1;
1193
1194
return 0;
1195
}
1196
1197
int /* PRIVATE */
1198
png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy)
1199
{
1200
/* NOTE: returns 0 on success, 1 means error. */
1201
png_fixed_point red_inverse, green_inverse, blue_scale;
1202
png_fixed_point left, right, denominator;
1203
1204
/* Check xy and, implicitly, z. Note that wide gamut color spaces typically
1205
* have end points with 0 tristimulus values (these are impossible end
1206
* points, but they are used to cover the possible colors). We check
1207
* xy->whitey against 5, not 0, to avoid a possible integer overflow.
1208
*
1209
* The limits here will *not* accept ACES AP0, where bluey is -7700
1210
* (-0.0770) because the PNG spec itself requires the xy values to be
1211
* unsigned. whitey is also required to be 5 or more to avoid overflow.
1212
*
1213
* Instead the upper limits have been relaxed to accomodate ACES AP1 where
1214
* redz ends up as -600 (-0.006). ProPhotoRGB was already "in range."
1215
* The new limit accomodates the AP0 and AP1 ranges for z but not AP0 redy.
1216
*/
1217
const png_fixed_point fpLimit = PNG_FP_1+(PNG_FP_1/10);
1218
if (xy->redx < 0 || xy->redx > fpLimit) return 1;
1219
if (xy->redy < 0 || xy->redy > fpLimit-xy->redx) return 1;
1220
if (xy->greenx < 0 || xy->greenx > fpLimit) return 1;
1221
if (xy->greeny < 0 || xy->greeny > fpLimit-xy->greenx) return 1;
1222
if (xy->bluex < 0 || xy->bluex > fpLimit) return 1;
1223
if (xy->bluey < 0 || xy->bluey > fpLimit-xy->bluex) return 1;
1224
if (xy->whitex < 0 || xy->whitex > fpLimit) return 1;
1225
if (xy->whitey < 5 || xy->whitey > fpLimit-xy->whitex) return 1;
1226
1227
/* The reverse calculation is more difficult because the original tristimulus
1228
* value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
1229
* derived values were recorded in the cHRM chunk;
1230
* (red,green,blue,white)x(x,y). This loses one degree of freedom and
1231
* therefore an arbitrary ninth value has to be introduced to undo the
1232
* original transformations.
1233
*
1234
* Think of the original end-points as points in (X,Y,Z) space. The
1235
* chromaticity values (c) have the property:
1236
*
1237
* C
1238
* c = ---------
1239
* X + Y + Z
1240
*
1241
* For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the
1242
* three chromaticity values (x,y,z) for each end-point obey the
1243
* relationship:
1244
*
1245
* x + y + z = 1
1246
*
1247
* This describes the plane in (X,Y,Z) space that intersects each axis at the
1248
* value 1.0; call this the chromaticity plane. Thus the chromaticity
1249
* calculation has scaled each end-point so that it is on the x+y+z=1 plane
1250
* and chromaticity is the intersection of the vector from the origin to the
1251
* (X,Y,Z) value with the chromaticity plane.
1252
*
1253
* To fully invert the chromaticity calculation we would need the three
1254
* end-point scale factors, (red-scale, green-scale, blue-scale), but these
1255
* were not recorded. Instead we calculated the reference white (X,Y,Z) and
1256
* recorded the chromaticity of this. The reference white (X,Y,Z) would have
1257
* given all three of the scale factors since:
1258
*
1259
* color-C = color-c * color-scale
1260
* white-C = red-C + green-C + blue-C
1261
* = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1262
*
1263
* But cHRM records only white-x and white-y, so we have lost the white scale
1264
* factor:
1265
*
1266
* white-C = white-c*white-scale
1267
*
1268
* To handle this the inverse transformation makes an arbitrary assumption
1269
* about white-scale:
1270
*
1271
* Assume: white-Y = 1.0
1272
* Hence: white-scale = 1/white-y
1273
* Or: red-Y + green-Y + blue-Y = 1.0
1274
*
1275
* Notice the last statement of the assumption gives an equation in three of
1276
* the nine values we want to calculate. 8 more equations come from the
1277
* above routine as summarised at the top above (the chromaticity
1278
* calculation):
1279
*
1280
* Given: color-x = color-X / (color-X + color-Y + color-Z)
1281
* Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
1282
*
1283
* This is 9 simultaneous equations in the 9 variables "color-C" and can be
1284
* solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix
1285
* determinants, however this is not as bad as it seems because only 28 of
1286
* the total of 90 terms in the various matrices are non-zero. Nevertheless
1287
* Cramer's rule is notoriously numerically unstable because the determinant
1288
* calculation involves the difference of large, but similar, numbers. It is
1289
* difficult to be sure that the calculation is stable for real world values
1290
* and it is certain that it becomes unstable where the end points are close
1291
* together.
1292
*
1293
* So this code uses the perhaps slightly less optimal but more
1294
* understandable and totally obvious approach of calculating color-scale.
1295
*
1296
* This algorithm depends on the precision in white-scale and that is
1297
* (1/white-y), so we can immediately see that as white-y approaches 0 the
1298
* accuracy inherent in the cHRM chunk drops off substantially.
1299
*
1300
* libpng arithmetic: a simple inversion of the above equations
1301
* ------------------------------------------------------------
1302
*
1303
* white_scale = 1/white-y
1304
* white-X = white-x * white-scale
1305
* white-Y = 1.0
1306
* white-Z = (1 - white-x - white-y) * white_scale
1307
*
1308
* white-C = red-C + green-C + blue-C
1309
* = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1310
*
1311
* This gives us three equations in (red-scale,green-scale,blue-scale) where
1312
* all the coefficients are now known:
1313
*
1314
* red-x*red-scale + green-x*green-scale + blue-x*blue-scale
1315
* = white-x/white-y
1316
* red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
1317
* red-z*red-scale + green-z*green-scale + blue-z*blue-scale
1318
* = (1 - white-x - white-y)/white-y
1319
*
1320
* In the last equation color-z is (1 - color-x - color-y) so we can add all
1321
* three equations together to get an alternative third:
1322
*
1323
* red-scale + green-scale + blue-scale = 1/white-y = white-scale
1324
*
1325
* So now we have a Cramer's rule solution where the determinants are just
1326
* 3x3 - far more tractible. Unfortunately 3x3 determinants still involve
1327
* multiplication of three coefficients so we can't guarantee to avoid
1328
* overflow in the libpng fixed point representation. Using Cramer's rule in
1329
* floating point is probably a good choice here, but it's not an option for
1330
* fixed point. Instead proceed to simplify the first two equations by
1331
* eliminating what is likely to be the largest value, blue-scale:
1332
*
1333
* blue-scale = white-scale - red-scale - green-scale
1334
*
1335
* Hence:
1336
*
1337
* (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
1338
* (white-x - blue-x)*white-scale
1339
*
1340
* (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
1341
* 1 - blue-y*white-scale
1342
*
1343
* And now we can trivially solve for (red-scale,green-scale):
1344
*
1345
* green-scale =
1346
* (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
1347
* -----------------------------------------------------------
1348
* green-x - blue-x
1349
*
1350
* red-scale =
1351
* 1 - blue-y*white-scale - (green-y - blue-y) * green-scale
1352
* ---------------------------------------------------------
1353
* red-y - blue-y
1354
*
1355
* Hence:
1356
*
1357
* red-scale =
1358
* ( (green-x - blue-x) * (white-y - blue-y) -
1359
* (green-y - blue-y) * (white-x - blue-x) ) / white-y
1360
* -------------------------------------------------------------------------
1361
* (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1362
*
1363
* green-scale =
1364
* ( (red-y - blue-y) * (white-x - blue-x) -
1365
* (red-x - blue-x) * (white-y - blue-y) ) / white-y
1366
* -------------------------------------------------------------------------
1367
* (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1368
*
1369
* Accuracy:
1370
* The input values have 5 decimal digits of accuracy.
1371
*
1372
* In the previous implementation the values were all in the range 0 < value
1373
* < 1, so simple products are in the same range but may need up to 10
1374
* decimal digits to preserve the original precision and avoid underflow.
1375
* Because we are using a 32-bit signed representation we cannot match this;
1376
* the best is a little over 9 decimal digits, less than 10.
1377
*
1378
* This range has now been extended to allow values up to 1.1, or 110,000 in
1379
* fixed point.
1380
*
1381
* The approach used here is to preserve the maximum precision within the
1382
* signed representation. Because the red-scale calculation above uses the
1383
* difference between two products of values that must be in the range
1384
* -1.1..+1.1 it is sufficient to divide the product by 8;
1385
* ceil(121,000/32767*2). The factor is irrelevant in the calculation
1386
* because it is applied to both numerator and denominator.
1387
*
1388
* Note that the values of the differences of the products of the
1389
* chromaticities in the above equations tend to be small, for example for
1390
* the sRGB chromaticities they are:
1391
*
1392
* red numerator: -0.04751
1393
* green numerator: -0.08788
1394
* denominator: -0.2241 (without white-y multiplication)
1395
*
1396
* The resultant Y coefficients from the chromaticities of some widely used
1397
* color space definitions are (to 15 decimal places):
1398
*
1399
* sRGB
1400
* 0.212639005871510 0.715168678767756 0.072192315360734
1401
* Kodak ProPhoto
1402
* 0.288071128229293 0.711843217810102 0.000085653960605
1403
* Adobe RGB
1404
* 0.297344975250536 0.627363566255466 0.075291458493998
1405
* Adobe Wide Gamut RGB
1406
* 0.258728243040113 0.724682314948566 0.016589442011321
1407
*/
1408
{
1409
int error = 0;
1410
1411
/* By the argument above overflow should be impossible here, however the
1412
* code now simply returns a failure code. The xy subtracts in the
1413
* arguments to png_muldiv are *not* checked for overflow because the
1414
* checks at the start guarantee they are in the range 0..110000 and
1415
* png_fixed_point is a 32-bit signed number.
1416
*/
1417
if (png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 8) == 0)
1418
return 1;
1419
if (png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 8) ==
1420
0)
1421
return 1;
1422
denominator = png_fp_sub(left, right, &error);
1423
if (error) return 1;
1424
1425
/* Now find the red numerator. */
1426
if (png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 8) == 0)
1427
return 1;
1428
if (png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 8) ==
1429
0)
1430
return 1;
1431
1432
/* Overflow is possible here and it indicates an extreme set of PNG cHRM
1433
* chunk values. This calculation actually returns the reciprocal of the
1434
* scale value because this allows us to delay the multiplication of
1435
* white-y into the denominator, which tends to produce a small number.
1436
*/
1437
if (png_muldiv(&red_inverse, xy->whitey, denominator,
1438
png_fp_sub(left, right, &error)) == 0 || error ||
1439
red_inverse <= xy->whitey /* r+g+b scales = white scale */)
1440
return 1;
1441
1442
/* Similarly for green_inverse: */
1443
if (png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 8) == 0)
1444
return 1;
1445
if (png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 8) == 0)
1446
return 1;
1447
if (png_muldiv(&green_inverse, xy->whitey, denominator,
1448
png_fp_sub(left, right, &error)) == 0 || error ||
1449
green_inverse <= xy->whitey)
1450
return 1;
1451
1452
/* And the blue scale, the checks above guarantee this can't overflow but
1453
* it can still produce 0 for extreme cHRM values.
1454
*/
1455
blue_scale = png_fp_sub(png_fp_sub(png_reciprocal(xy->whitey),
1456
png_reciprocal(red_inverse), &error),
1457
png_reciprocal(green_inverse), &error);
1458
if (error || blue_scale <= 0)
1459
return 1;
1460
}
1461
1462
/* And fill in the png_XYZ. Again the subtracts are safe because of the
1463
* checks on the xy values at the start (the subtracts just calculate the
1464
* corresponding z values.)
1465
*/
1466
if (png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse) == 0)
1467
return 1;
1468
if (png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse) == 0)
1469
return 1;
1470
if (png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1,
1471
red_inverse) == 0)
1472
return 1;
1473
1474
if (png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse) == 0)
1475
return 1;
1476
if (png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse) == 0)
1477
return 1;
1478
if (png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1,
1479
green_inverse) == 0)
1480
return 1;
1481
1482
if (png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1) == 0)
1483
return 1;
1484
if (png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1) == 0)
1485
return 1;
1486
if (png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale,
1487
PNG_FP_1) == 0)
1488
return 1;
1489
1490
return 0; /*success*/
1491
}
1492
#endif /* COLORSPACE */
1493
1494
#ifdef PNG_READ_iCCP_SUPPORTED
1495
/* Error message generation */
1496
static char
1497
png_icc_tag_char(png_uint_32 byte)
1498
{
1499
byte &= 0xff;
1500
if (byte >= 32 && byte <= 126)
1501
return (char)byte;
1502
else
1503
return '?';
1504
}
1505
1506
static void
1507
png_icc_tag_name(char *name, png_uint_32 tag)
1508
{
1509
name[0] = '\'';
1510
name[1] = png_icc_tag_char(tag >> 24);
1511
name[2] = png_icc_tag_char(tag >> 16);
1512
name[3] = png_icc_tag_char(tag >> 8);
1513
name[4] = png_icc_tag_char(tag );
1514
name[5] = '\'';
1515
}
1516
1517
static int
1518
is_ICC_signature_char(png_alloc_size_t it)
1519
{
1520
return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) ||
1521
(it >= 97 && it <= 122);
1522
}
1523
1524
static int
1525
is_ICC_signature(png_alloc_size_t it)
1526
{
1527
return is_ICC_signature_char(it >> 24) /* checks all the top bits */ &&
1528
is_ICC_signature_char((it >> 16) & 0xff) &&
1529
is_ICC_signature_char((it >> 8) & 0xff) &&
1530
is_ICC_signature_char(it & 0xff);
1531
}
1532
1533
static int
1534
png_icc_profile_error(png_const_structrp png_ptr, png_const_charp name,
1535
png_alloc_size_t value, png_const_charp reason)
1536
{
1537
size_t pos;
1538
char message[196]; /* see below for calculation */
1539
1540
pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */
1541
pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */
1542
pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */
1543
if (is_ICC_signature(value) != 0)
1544
{
1545
/* So 'value' is at most 4 bytes and the following cast is safe */
1546
png_icc_tag_name(message+pos, (png_uint_32)value);
1547
pos += 6; /* total +8; less than the else clause */
1548
message[pos++] = ':';
1549
message[pos++] = ' ';
1550
}
1551
# ifdef PNG_WARNINGS_SUPPORTED
1552
else
1553
{
1554
char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114 */
1555
1556
pos = png_safecat(message, (sizeof message), pos,
1557
png_format_number(number, number+(sizeof number),
1558
PNG_NUMBER_FORMAT_x, value));
1559
pos = png_safecat(message, (sizeof message), pos, "h: "); /* +2 = 116 */
1560
}
1561
# endif
1562
/* The 'reason' is an arbitrary message, allow +79 maximum 195 */
1563
pos = png_safecat(message, (sizeof message), pos, reason);
1564
PNG_UNUSED(pos)
1565
1566
png_chunk_benign_error(png_ptr, message);
1567
1568
return 0;
1569
}
1570
1571
/* Encoded value of D50 as an ICC XYZNumber. From the ICC 2010 spec the value
1572
* is XYZ(0.9642,1.0,0.8249), which scales to:
1573
*
1574
* (63189.8112, 65536, 54060.6464)
1575
*/
1576
static const png_byte D50_nCIEXYZ[12] =
1577
{ 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d };
1578
1579
static int /* bool */
1580
icc_check_length(png_const_structrp png_ptr, png_const_charp name,
1581
png_uint_32 profile_length)
1582
{
1583
if (profile_length < 132)
1584
return png_icc_profile_error(png_ptr, name, profile_length, "too short");
1585
return 1;
1586
}
1587
1588
int /* PRIVATE */
1589
png_icc_check_length(png_const_structrp png_ptr, png_const_charp name,
1590
png_uint_32 profile_length)
1591
{
1592
if (!icc_check_length(png_ptr, name, profile_length))
1593
return 0;
1594
1595
/* This needs to be here because the 'normal' check is in
1596
* png_decompress_chunk, yet this happens after the attempt to
1597
* png_malloc_base the required data. We only need this on read; on write
1598
* the caller supplies the profile buffer so libpng doesn't allocate it. See
1599
* the call to icc_check_length below (the write case).
1600
*/
1601
if (profile_length > png_chunk_max(png_ptr))
1602
return png_icc_profile_error(png_ptr, name, profile_length,
1603
"profile too long");
1604
1605
return 1;
1606
}
1607
1608
int /* PRIVATE */
1609
png_icc_check_header(png_const_structrp png_ptr, png_const_charp name,
1610
png_uint_32 profile_length,
1611
png_const_bytep profile/* first 132 bytes only */, int color_type)
1612
{
1613
png_uint_32 temp;
1614
1615
/* Length check; this cannot be ignored in this code because profile_length
1616
* is used later to check the tag table, so even if the profile seems over
1617
* long profile_length from the caller must be correct. The caller can fix
1618
* this up on read or write by just passing in the profile header length.
1619
*/
1620
temp = png_get_uint_32(profile);
1621
if (temp != profile_length)
1622
return png_icc_profile_error(png_ptr, name, temp,
1623
"length does not match profile");
1624
1625
temp = (png_uint_32) (*(profile+8));
1626
if (temp > 3 && (profile_length & 3))
1627
return png_icc_profile_error(png_ptr, name, profile_length,
1628
"invalid length");
1629
1630
temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */
1631
if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */
1632
profile_length < 132+12*temp) /* truncated tag table */
1633
return png_icc_profile_error(png_ptr, name, temp,
1634
"tag count too large");
1635
1636
/* The 'intent' must be valid or we can't store it, ICC limits the intent to
1637
* 16 bits.
1638
*/
1639
temp = png_get_uint_32(profile+64);
1640
if (temp >= 0xffff) /* The ICC limit */
1641
return png_icc_profile_error(png_ptr, name, temp,
1642
"invalid rendering intent");
1643
1644
/* This is just a warning because the profile may be valid in future
1645
* versions.
1646
*/
1647
if (temp >= PNG_sRGB_INTENT_LAST)
1648
(void)png_icc_profile_error(png_ptr, name, temp,
1649
"intent outside defined range");
1650
1651
/* At this point the tag table can't be checked because it hasn't necessarily
1652
* been loaded; however, various header fields can be checked. These checks
1653
* are for values permitted by the PNG spec in an ICC profile; the PNG spec
1654
* restricts the profiles that can be passed in an iCCP chunk (they must be
1655
* appropriate to processing PNG data!)
1656
*/
1657
1658
/* Data checks (could be skipped). These checks must be independent of the
1659
* version number; however, the version number doesn't accommodate changes in
1660
* the header fields (just the known tags and the interpretation of the
1661
* data.)
1662
*/
1663
temp = png_get_uint_32(profile+36); /* signature 'ascp' */
1664
if (temp != 0x61637370)
1665
return png_icc_profile_error(png_ptr, name, temp,
1666
"invalid signature");
1667
1668
/* Currently the PCS illuminant/adopted white point (the computational
1669
* white point) are required to be D50,
1670
* however the profile contains a record of the illuminant so perhaps ICC
1671
* expects to be able to change this in the future (despite the rationale in
1672
* the introduction for using a fixed PCS adopted white.) Consequently the
1673
* following is just a warning.
1674
*/
1675
if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0)
1676
(void)png_icc_profile_error(png_ptr, name, 0/*no tag value*/,
1677
"PCS illuminant is not D50");
1678
1679
/* The PNG spec requires this:
1680
* "If the iCCP chunk is present, the image samples conform to the colour
1681
* space represented by the embedded ICC profile as defined by the
1682
* International Color Consortium [ICC]. The colour space of the ICC profile
1683
* shall be an RGB colour space for colour images (PNG colour types 2, 3, and
1684
* 6), or a greyscale colour space for greyscale images (PNG colour types 0
1685
* and 4)."
1686
*
1687
* This checking code ensures the embedded profile (on either read or write)
1688
* conforms to the specification requirements. Notice that an ICC 'gray'
1689
* color-space profile contains the information to transform the monochrome
1690
* data to XYZ or L*a*b (according to which PCS the profile uses) and this
1691
* should be used in preference to the standard libpng K channel replication
1692
* into R, G and B channels.
1693
*
1694
* Previously it was suggested that an RGB profile on grayscale data could be
1695
* handled. However it it is clear that using an RGB profile in this context
1696
* must be an error - there is no specification of what it means. Thus it is
1697
* almost certainly more correct to ignore the profile.
1698
*/
1699
temp = png_get_uint_32(profile+16); /* data colour space field */
1700
switch (temp)
1701
{
1702
case 0x52474220: /* 'RGB ' */
1703
if ((color_type & PNG_COLOR_MASK_COLOR) == 0)
1704
return png_icc_profile_error(png_ptr, name, temp,
1705
"RGB color space not permitted on grayscale PNG");
1706
break;
1707
1708
case 0x47524159: /* 'GRAY' */
1709
if ((color_type & PNG_COLOR_MASK_COLOR) != 0)
1710
return png_icc_profile_error(png_ptr, name, temp,
1711
"Gray color space not permitted on RGB PNG");
1712
break;
1713
1714
default:
1715
return png_icc_profile_error(png_ptr, name, temp,
1716
"invalid ICC profile color space");
1717
}
1718
1719
/* It is up to the application to check that the profile class matches the
1720
* application requirements; the spec provides no guidance, but it's pretty
1721
* weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer
1722
* ('prtr') or 'spac' (for generic color spaces). Issue a warning in these
1723
* cases. Issue an error for device link or abstract profiles - these don't
1724
* contain the records necessary to transform the color-space to anything
1725
* other than the target device (and not even that for an abstract profile).
1726
* Profiles of these classes may not be embedded in images.
1727
*/
1728
temp = png_get_uint_32(profile+12); /* profile/device class */
1729
switch (temp)
1730
{
1731
case 0x73636e72: /* 'scnr' */
1732
case 0x6d6e7472: /* 'mntr' */
1733
case 0x70727472: /* 'prtr' */
1734
case 0x73706163: /* 'spac' */
1735
/* All supported */
1736
break;
1737
1738
case 0x61627374: /* 'abst' */
1739
/* May not be embedded in an image */
1740
return png_icc_profile_error(png_ptr, name, temp,
1741
"invalid embedded Abstract ICC profile");
1742
1743
case 0x6c696e6b: /* 'link' */
1744
/* DeviceLink profiles cannot be interpreted in a non-device specific
1745
* fashion, if an app uses the AToB0Tag in the profile the results are
1746
* undefined unless the result is sent to the intended device,
1747
* therefore a DeviceLink profile should not be found embedded in a
1748
* PNG.
1749
*/
1750
return png_icc_profile_error(png_ptr, name, temp,
1751
"unexpected DeviceLink ICC profile class");
1752
1753
case 0x6e6d636c: /* 'nmcl' */
1754
/* A NamedColor profile is also device specific, however it doesn't
1755
* contain an AToB0 tag that is open to misinterpretation. Almost
1756
* certainly it will fail the tests below.
1757
*/
1758
(void)png_icc_profile_error(png_ptr, name, temp,
1759
"unexpected NamedColor ICC profile class");
1760
break;
1761
1762
default:
1763
/* To allow for future enhancements to the profile accept unrecognized
1764
* profile classes with a warning, these then hit the test below on the
1765
* tag content to ensure they are backward compatible with one of the
1766
* understood profiles.
1767
*/
1768
(void)png_icc_profile_error(png_ptr, name, temp,
1769
"unrecognized ICC profile class");
1770
break;
1771
}
1772
1773
/* For any profile other than a device link one the PCS must be encoded
1774
* either in XYZ or Lab.
1775
*/
1776
temp = png_get_uint_32(profile+20);
1777
switch (temp)
1778
{
1779
case 0x58595a20: /* 'XYZ ' */
1780
case 0x4c616220: /* 'Lab ' */
1781
break;
1782
1783
default:
1784
return png_icc_profile_error(png_ptr, name, temp,
1785
"unexpected ICC PCS encoding");
1786
}
1787
1788
return 1;
1789
}
1790
1791
int /* PRIVATE */
1792
png_icc_check_tag_table(png_const_structrp png_ptr, png_const_charp name,
1793
png_uint_32 profile_length,
1794
png_const_bytep profile /* header plus whole tag table */)
1795
{
1796
png_uint_32 tag_count = png_get_uint_32(profile+128);
1797
png_uint_32 itag;
1798
png_const_bytep tag = profile+132; /* The first tag */
1799
1800
/* First scan all the tags in the table and add bits to the icc_info value
1801
* (temporarily in 'tags').
1802
*/
1803
for (itag=0; itag < tag_count; ++itag, tag += 12)
1804
{
1805
png_uint_32 tag_id = png_get_uint_32(tag+0);
1806
png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */
1807
png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */
1808
1809
/* The ICC specification does not exclude zero length tags, therefore the
1810
* start might actually be anywhere if there is no data, but this would be
1811
* a clear abuse of the intent of the standard so the start is checked for
1812
* being in range. All defined tag types have an 8 byte header - a 4 byte
1813
* type signature then 0.
1814
*/
1815
1816
/* This is a hard error; potentially it can cause read outside the
1817
* profile.
1818
*/
1819
if (tag_start > profile_length || tag_length > profile_length - tag_start)
1820
return png_icc_profile_error(png_ptr, name, tag_id,
1821
"ICC profile tag outside profile");
1822
1823
if ((tag_start & 3) != 0)
1824
{
1825
/* CNHP730S.icc shipped with Microsoft Windows 64 violates this; it is
1826
* only a warning here because libpng does not care about the
1827
* alignment.
1828
*/
1829
(void)png_icc_profile_error(png_ptr, name, tag_id,
1830
"ICC profile tag start not a multiple of 4");
1831
}
1832
}
1833
1834
return 1; /* success, maybe with warnings */
1835
}
1836
#endif /* READ_iCCP */
1837
1838
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
1839
#if (defined PNG_READ_mDCV_SUPPORTED) || (defined PNG_READ_cHRM_SUPPORTED)
1840
static int
1841
have_chromaticities(png_const_structrp png_ptr)
1842
{
1843
/* Handle new PNGv3 chunks and the precedence rules to determine whether
1844
* png_struct::chromaticities must be processed. Only required for RGB to
1845
* gray.
1846
*
1847
* mDCV: this is the mastering colour space and it is independent of the
1848
* encoding so it needs to be used regardless of the encoded space.
1849
*
1850
* cICP: first in priority but not yet implemented - the chromaticities come
1851
* from the 'primaries'.
1852
*
1853
* iCCP: not supported by libpng (so ignored)
1854
*
1855
* sRGB: the defaults match sRGB
1856
*
1857
* cHRM: calculate the coefficients
1858
*/
1859
# ifdef PNG_READ_mDCV_SUPPORTED
1860
if (png_has_chunk(png_ptr, mDCV))
1861
return 1;
1862
# define check_chromaticities 1
1863
# endif /*mDCV*/
1864
1865
# ifdef PNG_READ_sRGB_SUPPORTED
1866
if (png_has_chunk(png_ptr, sRGB))
1867
return 0;
1868
# endif /*sRGB*/
1869
1870
# ifdef PNG_READ_cHRM_SUPPORTED
1871
if (png_has_chunk(png_ptr, cHRM))
1872
return 1;
1873
# define check_chromaticities 1
1874
# endif /*cHRM*/
1875
1876
return 0; /* sRGB defaults */
1877
}
1878
#endif /* READ_mDCV || READ_cHRM */
1879
1880
void /* PRIVATE */
1881
png_set_rgb_coefficients(png_structrp png_ptr)
1882
{
1883
/* Set the rgb_to_gray coefficients from the colorspace if available. Note
1884
* that '_set' means that png_rgb_to_gray was called **and** it successfully
1885
* set up the coefficients.
1886
*/
1887
if (png_ptr->rgb_to_gray_coefficients_set == 0)
1888
{
1889
# if check_chromaticities
1890
png_XYZ xyz;
1891
1892
if (have_chromaticities(png_ptr) &&
1893
png_XYZ_from_xy(&xyz, &png_ptr->chromaticities) == 0)
1894
{
1895
/* png_set_rgb_to_gray has not set the coefficients, get them from the
1896
* Y * values of the colorspace colorants.
1897
*/
1898
png_fixed_point r = xyz.red_Y;
1899
png_fixed_point g = xyz.green_Y;
1900
png_fixed_point b = xyz.blue_Y;
1901
png_fixed_point total = r+g+b;
1902
1903
if (total > 0 &&
1904
r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 &&
1905
g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 &&
1906
b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 &&
1907
r+g+b <= 32769)
1908
{
1909
/* We allow 0 coefficients here. r+g+b may be 32769 if two or
1910
* all of the coefficients were rounded up. Handle this by
1911
* reducing the *largest* coefficient by 1; this matches the
1912
* approach used for the default coefficients in pngrtran.c
1913
*/
1914
int add = 0;
1915
1916
if (r+g+b > 32768)
1917
add = -1;
1918
else if (r+g+b < 32768)
1919
add = 1;
1920
1921
if (add != 0)
1922
{
1923
if (g >= r && g >= b)
1924
g += add;
1925
else if (r >= g && r >= b)
1926
r += add;
1927
else
1928
b += add;
1929
}
1930
1931
/* Check for an internal error. */
1932
if (r+g+b != 32768)
1933
png_error(png_ptr,
1934
"internal error handling cHRM coefficients");
1935
1936
else
1937
{
1938
png_ptr->rgb_to_gray_red_coeff = (png_uint_16)r;
1939
png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g;
1940
}
1941
}
1942
}
1943
else
1944
# endif /* check_chromaticities */
1945
{
1946
/* Use the historical REC 709 (etc) values: */
1947
png_ptr->rgb_to_gray_red_coeff = 6968;
1948
png_ptr->rgb_to_gray_green_coeff = 23434;
1949
/* png_ptr->rgb_to_gray_blue_coeff = 2366; */
1950
}
1951
}
1952
}
1953
#endif /* READ_RGB_TO_GRAY */
1954
1955
void /* PRIVATE */
1956
png_check_IHDR(png_const_structrp png_ptr,
1957
png_uint_32 width, png_uint_32 height, int bit_depth,
1958
int color_type, int interlace_type, int compression_type,
1959
int filter_type)
1960
{
1961
int error = 0;
1962
1963
/* Check for width and height valid values */
1964
if (width == 0)
1965
{
1966
png_warning(png_ptr, "Image width is zero in IHDR");
1967
error = 1;
1968
}
1969
1970
if (width > PNG_UINT_31_MAX)
1971
{
1972
png_warning(png_ptr, "Invalid image width in IHDR");
1973
error = 1;
1974
}
1975
1976
/* The bit mask on the first line below must be at least as big as a
1977
* png_uint_32. "~7U" is not adequate on 16-bit systems because it will
1978
* be an unsigned 16-bit value. Casting to (png_alloc_size_t) makes the
1979
* type of the result at least as bit (in bits) as the RHS of the > operator
1980
* which also avoids a common warning on 64-bit systems that the comparison
1981
* of (png_uint_32) against the constant value on the RHS will always be
1982
* false.
1983
*/
1984
if (((width + 7) & ~(png_alloc_size_t)7) >
1985
(((PNG_SIZE_MAX
1986
- 48 /* big_row_buf hack */
1987
- 1) /* filter byte */
1988
/ 8) /* 8-byte RGBA pixels */
1989
- 1)) /* extra max_pixel_depth pad */
1990
{
1991
/* The size of the row must be within the limits of this architecture.
1992
* Because the read code can perform arbitrary transformations the
1993
* maximum size is checked here. Because the code in png_read_start_row
1994
* adds extra space "for safety's sake" in several places a conservative
1995
* limit is used here.
1996
*
1997
* NOTE: it would be far better to check the size that is actually used,
1998
* but the effect in the real world is minor and the changes are more
1999
* extensive, therefore much more dangerous and much more difficult to
2000
* write in a way that avoids compiler warnings.
2001
*/
2002
png_warning(png_ptr, "Image width is too large for this architecture");
2003
error = 1;
2004
}
2005
2006
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
2007
if (width > png_ptr->user_width_max)
2008
#else
2009
if (width > PNG_USER_WIDTH_MAX)
2010
#endif
2011
{
2012
png_warning(png_ptr, "Image width exceeds user limit in IHDR");
2013
error = 1;
2014
}
2015
2016
if (height == 0)
2017
{
2018
png_warning(png_ptr, "Image height is zero in IHDR");
2019
error = 1;
2020
}
2021
2022
if (height > PNG_UINT_31_MAX)
2023
{
2024
png_warning(png_ptr, "Invalid image height in IHDR");
2025
error = 1;
2026
}
2027
2028
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
2029
if (height > png_ptr->user_height_max)
2030
#else
2031
if (height > PNG_USER_HEIGHT_MAX)
2032
#endif
2033
{
2034
png_warning(png_ptr, "Image height exceeds user limit in IHDR");
2035
error = 1;
2036
}
2037
2038
/* Check other values */
2039
if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
2040
bit_depth != 8 && bit_depth != 16)
2041
{
2042
png_warning(png_ptr, "Invalid bit depth in IHDR");
2043
error = 1;
2044
}
2045
2046
if (color_type < 0 || color_type == 1 ||
2047
color_type == 5 || color_type > 6)
2048
{
2049
png_warning(png_ptr, "Invalid color type in IHDR");
2050
error = 1;
2051
}
2052
2053
if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
2054
((color_type == PNG_COLOR_TYPE_RGB ||
2055
color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
2056
color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
2057
{
2058
png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
2059
error = 1;
2060
}
2061
2062
if (interlace_type >= PNG_INTERLACE_LAST)
2063
{
2064
png_warning(png_ptr, "Unknown interlace method in IHDR");
2065
error = 1;
2066
}
2067
2068
if (compression_type != PNG_COMPRESSION_TYPE_BASE)
2069
{
2070
png_warning(png_ptr, "Unknown compression method in IHDR");
2071
error = 1;
2072
}
2073
2074
#ifdef PNG_MNG_FEATURES_SUPPORTED
2075
/* Accept filter_method 64 (intrapixel differencing) only if
2076
* 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
2077
* 2. Libpng did not read a PNG signature (this filter_method is only
2078
* used in PNG datastreams that are embedded in MNG datastreams) and
2079
* 3. The application called png_permit_mng_features with a mask that
2080
* included PNG_FLAG_MNG_FILTER_64 and
2081
* 4. The filter_method is 64 and
2082
* 5. The color_type is RGB or RGBA
2083
*/
2084
if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0 &&
2085
png_ptr->mng_features_permitted != 0)
2086
png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
2087
2088
if (filter_type != PNG_FILTER_TYPE_BASE)
2089
{
2090
if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) != 0 &&
2091
(filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
2092
((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
2093
(color_type == PNG_COLOR_TYPE_RGB ||
2094
color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
2095
{
2096
png_warning(png_ptr, "Unknown filter method in IHDR");
2097
error = 1;
2098
}
2099
2100
if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0)
2101
{
2102
png_warning(png_ptr, "Invalid filter method in IHDR");
2103
error = 1;
2104
}
2105
}
2106
2107
#else
2108
if (filter_type != PNG_FILTER_TYPE_BASE)
2109
{
2110
png_warning(png_ptr, "Unknown filter method in IHDR");
2111
error = 1;
2112
}
2113
#endif
2114
2115
if (error == 1)
2116
png_error(png_ptr, "Invalid IHDR data");
2117
}
2118
2119
#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
2120
/* ASCII to fp functions */
2121
/* Check an ASCII formatted floating point value, see the more detailed
2122
* comments in pngpriv.h
2123
*/
2124
/* The following is used internally to preserve the sticky flags */
2125
#define png_fp_add(state, flags) ((state) |= (flags))
2126
#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
2127
2128
int /* PRIVATE */
2129
png_check_fp_number(png_const_charp string, size_t size, int *statep,
2130
size_t *whereami)
2131
{
2132
int state = *statep;
2133
size_t i = *whereami;
2134
2135
while (i < size)
2136
{
2137
int type;
2138
/* First find the type of the next character */
2139
switch (string[i])
2140
{
2141
case 43: type = PNG_FP_SAW_SIGN; break;
2142
case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
2143
case 46: type = PNG_FP_SAW_DOT; break;
2144
case 48: type = PNG_FP_SAW_DIGIT; break;
2145
case 49: case 50: case 51: case 52:
2146
case 53: case 54: case 55: case 56:
2147
case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
2148
case 69:
2149
case 101: type = PNG_FP_SAW_E; break;
2150
default: goto PNG_FP_End;
2151
}
2152
2153
/* Now deal with this type according to the current
2154
* state, the type is arranged to not overlap the
2155
* bits of the PNG_FP_STATE.
2156
*/
2157
switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
2158
{
2159
case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
2160
if ((state & PNG_FP_SAW_ANY) != 0)
2161
goto PNG_FP_End; /* not a part of the number */
2162
2163
png_fp_add(state, type);
2164
break;
2165
2166
case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
2167
/* Ok as trailer, ok as lead of fraction. */
2168
if ((state & PNG_FP_SAW_DOT) != 0) /* two dots */
2169
goto PNG_FP_End;
2170
2171
else if ((state & PNG_FP_SAW_DIGIT) != 0) /* trailing dot? */
2172
png_fp_add(state, type);
2173
2174
else
2175
png_fp_set(state, PNG_FP_FRACTION | type);
2176
2177
break;
2178
2179
case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
2180
if ((state & PNG_FP_SAW_DOT) != 0) /* delayed fraction */
2181
png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
2182
2183
png_fp_add(state, type | PNG_FP_WAS_VALID);
2184
2185
break;
2186
2187
case PNG_FP_INTEGER + PNG_FP_SAW_E:
2188
if ((state & PNG_FP_SAW_DIGIT) == 0)
2189
goto PNG_FP_End;
2190
2191
png_fp_set(state, PNG_FP_EXPONENT);
2192
2193
break;
2194
2195
/* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
2196
goto PNG_FP_End; ** no sign in fraction */
2197
2198
/* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
2199
goto PNG_FP_End; ** Because SAW_DOT is always set */
2200
2201
case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
2202
png_fp_add(state, type | PNG_FP_WAS_VALID);
2203
break;
2204
2205
case PNG_FP_FRACTION + PNG_FP_SAW_E:
2206
/* This is correct because the trailing '.' on an
2207
* integer is handled above - so we can only get here
2208
* with the sequence ".E" (with no preceding digits).
2209
*/
2210
if ((state & PNG_FP_SAW_DIGIT) == 0)
2211
goto PNG_FP_End;
2212
2213
png_fp_set(state, PNG_FP_EXPONENT);
2214
2215
break;
2216
2217
case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
2218
if ((state & PNG_FP_SAW_ANY) != 0)
2219
goto PNG_FP_End; /* not a part of the number */
2220
2221
png_fp_add(state, PNG_FP_SAW_SIGN);
2222
2223
break;
2224
2225
/* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
2226
goto PNG_FP_End; */
2227
2228
case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
2229
png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
2230
2231
break;
2232
2233
/* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
2234
goto PNG_FP_End; */
2235
2236
default: goto PNG_FP_End; /* I.e. break 2 */
2237
}
2238
2239
/* The character seems ok, continue. */
2240
++i;
2241
}
2242
2243
PNG_FP_End:
2244
/* Here at the end, update the state and return the correct
2245
* return code.
2246
*/
2247
*statep = state;
2248
*whereami = i;
2249
2250
return (state & PNG_FP_SAW_DIGIT) != 0;
2251
}
2252
2253
2254
/* The same but for a complete string. */
2255
int
2256
png_check_fp_string(png_const_charp string, size_t size)
2257
{
2258
int state=0;
2259
size_t char_index=0;
2260
2261
if (png_check_fp_number(string, size, &state, &char_index) != 0 &&
2262
(char_index == size || string[char_index] == 0))
2263
return state /* must be non-zero - see above */;
2264
2265
return 0; /* i.e. fail */
2266
}
2267
#endif /* pCAL || sCAL */
2268
2269
#ifdef PNG_sCAL_SUPPORTED
2270
# ifdef PNG_FLOATING_POINT_SUPPORTED
2271
/* Utility used below - a simple accurate power of ten from an integral
2272
* exponent.
2273
*/
2274
static double
2275
png_pow10(int power)
2276
{
2277
int recip = 0;
2278
double d = 1;
2279
2280
/* Handle negative exponent with a reciprocal at the end because
2281
* 10 is exact whereas .1 is inexact in base 2
2282
*/
2283
if (power < 0)
2284
{
2285
if (power < DBL_MIN_10_EXP) return 0;
2286
recip = 1; power = -power;
2287
}
2288
2289
if (power > 0)
2290
{
2291
/* Decompose power bitwise. */
2292
double mult = 10;
2293
do
2294
{
2295
if (power & 1) d *= mult;
2296
mult *= mult;
2297
power >>= 1;
2298
}
2299
while (power > 0);
2300
2301
if (recip != 0) d = 1/d;
2302
}
2303
/* else power is 0 and d is 1 */
2304
2305
return d;
2306
}
2307
2308
/* Function to format a floating point value in ASCII with a given
2309
* precision.
2310
*/
2311
void /* PRIVATE */
2312
png_ascii_from_fp(png_const_structrp png_ptr, png_charp ascii, size_t size,
2313
double fp, unsigned int precision)
2314
{
2315
/* We use standard functions from math.h, but not printf because
2316
* that would require stdio. The caller must supply a buffer of
2317
* sufficient size or we will png_error. The tests on size and
2318
* the space in ascii[] consumed are indicated below.
2319
*/
2320
if (precision < 1)
2321
precision = DBL_DIG;
2322
2323
/* Enforce the limit of the implementation precision too. */
2324
if (precision > DBL_DIG+1)
2325
precision = DBL_DIG+1;
2326
2327
/* Basic sanity checks */
2328
if (size >= precision+5) /* See the requirements below. */
2329
{
2330
if (fp < 0)
2331
{
2332
fp = -fp;
2333
*ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */
2334
--size;
2335
}
2336
2337
if (fp >= DBL_MIN && fp <= DBL_MAX)
2338
{
2339
int exp_b10; /* A base 10 exponent */
2340
double base; /* 10^exp_b10 */
2341
2342
/* First extract a base 10 exponent of the number,
2343
* the calculation below rounds down when converting
2344
* from base 2 to base 10 (multiply by log10(2) -
2345
* 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
2346
* be increased. Note that the arithmetic shift
2347
* performs a floor() unlike C arithmetic - using a
2348
* C multiply would break the following for negative
2349
* exponents.
2350
*/
2351
(void)frexp(fp, &exp_b10); /* exponent to base 2 */
2352
2353
exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
2354
2355
/* Avoid underflow here. */
2356
base = png_pow10(exp_b10); /* May underflow */
2357
2358
while (base < DBL_MIN || base < fp)
2359
{
2360
/* And this may overflow. */
2361
double test = png_pow10(exp_b10+1);
2362
2363
if (test <= DBL_MAX)
2364
{
2365
++exp_b10; base = test;
2366
}
2367
2368
else
2369
break;
2370
}
2371
2372
/* Normalize fp and correct exp_b10, after this fp is in the
2373
* range [.1,1) and exp_b10 is both the exponent and the digit
2374
* *before* which the decimal point should be inserted
2375
* (starting with 0 for the first digit). Note that this
2376
* works even if 10^exp_b10 is out of range because of the
2377
* test on DBL_MAX above.
2378
*/
2379
fp /= base;
2380
while (fp >= 1)
2381
{
2382
fp /= 10; ++exp_b10;
2383
}
2384
2385
/* Because of the code above fp may, at this point, be
2386
* less than .1, this is ok because the code below can
2387
* handle the leading zeros this generates, so no attempt
2388
* is made to correct that here.
2389
*/
2390
2391
{
2392
unsigned int czero, clead, cdigits;
2393
char exponent[10];
2394
2395
/* Allow up to two leading zeros - this will not lengthen
2396
* the number compared to using E-n.
2397
*/
2398
if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
2399
{
2400
czero = 0U-exp_b10; /* PLUS 2 digits: TOTAL 3 */
2401
exp_b10 = 0; /* Dot added below before first output. */
2402
}
2403
else
2404
czero = 0; /* No zeros to add */
2405
2406
/* Generate the digit list, stripping trailing zeros and
2407
* inserting a '.' before a digit if the exponent is 0.
2408
*/
2409
clead = czero; /* Count of leading zeros */
2410
cdigits = 0; /* Count of digits in list. */
2411
2412
do
2413
{
2414
double d;
2415
2416
fp *= 10;
2417
/* Use modf here, not floor and subtract, so that
2418
* the separation is done in one step. At the end
2419
* of the loop don't break the number into parts so
2420
* that the final digit is rounded.
2421
*/
2422
if (cdigits+czero+1 < precision+clead)
2423
fp = modf(fp, &d);
2424
2425
else
2426
{
2427
d = floor(fp + .5);
2428
2429
if (d > 9)
2430
{
2431
/* Rounding up to 10, handle that here. */
2432
if (czero > 0)
2433
{
2434
--czero; d = 1;
2435
if (cdigits == 0) --clead;
2436
}
2437
else
2438
{
2439
while (cdigits > 0 && d > 9)
2440
{
2441
int ch = *--ascii;
2442
2443
if (exp_b10 != (-1))
2444
++exp_b10;
2445
2446
else if (ch == 46)
2447
{
2448
ch = *--ascii; ++size;
2449
/* Advance exp_b10 to '1', so that the
2450
* decimal point happens after the
2451
* previous digit.
2452
*/
2453
exp_b10 = 1;
2454
}
2455
2456
--cdigits;
2457
d = ch - 47; /* I.e. 1+(ch-48) */
2458
}
2459
2460
/* Did we reach the beginning? If so adjust the
2461
* exponent but take into account the leading
2462
* decimal point.
2463
*/
2464
if (d > 9) /* cdigits == 0 */
2465
{
2466
if (exp_b10 == (-1))
2467
{
2468
/* Leading decimal point (plus zeros?), if
2469
* we lose the decimal point here it must
2470
* be reentered below.
2471
*/
2472
int ch = *--ascii;
2473
2474
if (ch == 46)
2475
{
2476
++size; exp_b10 = 1;
2477
}
2478
2479
/* Else lost a leading zero, so 'exp_b10' is
2480
* still ok at (-1)
2481
*/
2482
}
2483
else
2484
++exp_b10;
2485
2486
/* In all cases we output a '1' */
2487
d = 1;
2488
}
2489
}
2490
}
2491
fp = 0; /* Guarantees termination below. */
2492
}
2493
2494
if (d == 0)
2495
{
2496
++czero;
2497
if (cdigits == 0) ++clead;
2498
}
2499
else
2500
{
2501
/* Included embedded zeros in the digit count. */
2502
cdigits += czero - clead;
2503
clead = 0;
2504
2505
while (czero > 0)
2506
{
2507
/* exp_b10 == (-1) means we just output the decimal
2508
* place - after the DP don't adjust 'exp_b10' any
2509
* more!
2510
*/
2511
if (exp_b10 != (-1))
2512
{
2513
if (exp_b10 == 0)
2514
{
2515
*ascii++ = 46; --size;
2516
}
2517
/* PLUS 1: TOTAL 4 */
2518
--exp_b10;
2519
}
2520
*ascii++ = 48; --czero;
2521
}
2522
2523
if (exp_b10 != (-1))
2524
{
2525
if (exp_b10 == 0)
2526
{
2527
*ascii++ = 46; --size; /* counted above */
2528
}
2529
2530
--exp_b10;
2531
}
2532
*ascii++ = (char)(48 + (int)d); ++cdigits;
2533
}
2534
}
2535
while (cdigits+czero < precision+clead && fp > DBL_MIN);
2536
2537
/* The total output count (max) is now 4+precision */
2538
2539
/* Check for an exponent, if we don't need one we are
2540
* done and just need to terminate the string. At this
2541
* point, exp_b10==(-1) is effectively a flag: it got
2542
* to '-1' because of the decrement, after outputting
2543
* the decimal point above. (The exponent required is
2544
* *not* -1.)
2545
*/
2546
if (exp_b10 >= (-1) && exp_b10 <= 2)
2547
{
2548
/* The following only happens if we didn't output the
2549
* leading zeros above for negative exponent, so this
2550
* doesn't add to the digit requirement. Note that the
2551
* two zeros here can only be output if the two leading
2552
* zeros were *not* output, so this doesn't increase
2553
* the output count.
2554
*/
2555
while (exp_b10-- > 0) *ascii++ = 48;
2556
2557
*ascii = 0;
2558
2559
/* Total buffer requirement (including the '\0') is
2560
* 5+precision - see check at the start.
2561
*/
2562
return;
2563
}
2564
2565
/* Here if an exponent is required, adjust size for
2566
* the digits we output but did not count. The total
2567
* digit output here so far is at most 1+precision - no
2568
* decimal point and no leading or trailing zeros have
2569
* been output.
2570
*/
2571
size -= cdigits;
2572
2573
*ascii++ = 69; --size; /* 'E': PLUS 1 TOTAL 2+precision */
2574
2575
/* The following use of an unsigned temporary avoids ambiguities in
2576
* the signed arithmetic on exp_b10 and permits GCC at least to do
2577
* better optimization.
2578
*/
2579
{
2580
unsigned int uexp_b10;
2581
2582
if (exp_b10 < 0)
2583
{
2584
*ascii++ = 45; --size; /* '-': PLUS 1 TOTAL 3+precision */
2585
uexp_b10 = 0U-exp_b10;
2586
}
2587
2588
else
2589
uexp_b10 = 0U+exp_b10;
2590
2591
cdigits = 0;
2592
2593
while (uexp_b10 > 0)
2594
{
2595
exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
2596
uexp_b10 /= 10;
2597
}
2598
}
2599
2600
/* Need another size check here for the exponent digits, so
2601
* this need not be considered above.
2602
*/
2603
if (size > cdigits)
2604
{
2605
while (cdigits > 0) *ascii++ = exponent[--cdigits];
2606
2607
*ascii = 0;
2608
2609
return;
2610
}
2611
}
2612
}
2613
else if (!(fp >= DBL_MIN))
2614
{
2615
*ascii++ = 48; /* '0' */
2616
*ascii = 0;
2617
return;
2618
}
2619
else
2620
{
2621
*ascii++ = 105; /* 'i' */
2622
*ascii++ = 110; /* 'n' */
2623
*ascii++ = 102; /* 'f' */
2624
*ascii = 0;
2625
return;
2626
}
2627
}
2628
2629
/* Here on buffer too small. */
2630
png_error(png_ptr, "ASCII conversion buffer too small");
2631
}
2632
# endif /* FLOATING_POINT */
2633
2634
# ifdef PNG_FIXED_POINT_SUPPORTED
2635
/* Function to format a fixed point value in ASCII.
2636
*/
2637
void /* PRIVATE */
2638
png_ascii_from_fixed(png_const_structrp png_ptr, png_charp ascii,
2639
size_t size, png_fixed_point fp)
2640
{
2641
/* Require space for 10 decimal digits, a decimal point, a minus sign and a
2642
* trailing \0, 13 characters:
2643
*/
2644
if (size > 12)
2645
{
2646
png_uint_32 num;
2647
2648
/* Avoid overflow here on the minimum integer. */
2649
if (fp < 0)
2650
{
2651
*ascii++ = 45; num = (png_uint_32)(-fp);
2652
}
2653
else
2654
num = (png_uint_32)fp;
2655
2656
if (num <= 0x80000000) /* else overflowed */
2657
{
2658
unsigned int ndigits = 0, first = 16 /* flag value */;
2659
char digits[10] = {0};
2660
2661
while (num)
2662
{
2663
/* Split the low digit off num: */
2664
unsigned int tmp = num/10;
2665
num -= tmp*10;
2666
digits[ndigits++] = (char)(48 + num);
2667
/* Record the first non-zero digit, note that this is a number
2668
* starting at 1, it's not actually the array index.
2669
*/
2670
if (first == 16 && num > 0)
2671
first = ndigits;
2672
num = tmp;
2673
}
2674
2675
if (ndigits > 0)
2676
{
2677
while (ndigits > 5) *ascii++ = digits[--ndigits];
2678
/* The remaining digits are fractional digits, ndigits is '5' or
2679
* smaller at this point. It is certainly not zero. Check for a
2680
* non-zero fractional digit:
2681
*/
2682
if (first <= 5)
2683
{
2684
unsigned int i;
2685
*ascii++ = 46; /* decimal point */
2686
/* ndigits may be <5 for small numbers, output leading zeros
2687
* then ndigits digits to first:
2688
*/
2689
i = 5;
2690
while (ndigits < i)
2691
{
2692
*ascii++ = 48; --i;
2693
}
2694
while (ndigits >= first) *ascii++ = digits[--ndigits];
2695
/* Don't output the trailing zeros! */
2696
}
2697
}
2698
else
2699
*ascii++ = 48;
2700
2701
/* And null terminate the string: */
2702
*ascii = 0;
2703
return;
2704
}
2705
}
2706
2707
/* Here on buffer too small. */
2708
png_error(png_ptr, "ASCII conversion buffer too small");
2709
}
2710
# endif /* FIXED_POINT */
2711
#endif /* SCAL */
2712
2713
#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
2714
!defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \
2715
(defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \
2716
defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2717
defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \
2718
(defined(PNG_sCAL_SUPPORTED) && \
2719
defined(PNG_FLOATING_ARITHMETIC_SUPPORTED))
2720
png_fixed_point
2721
png_fixed(png_const_structrp png_ptr, double fp, png_const_charp text)
2722
{
2723
double r = floor(100000 * fp + .5);
2724
2725
if (r > 2147483647. || r < -2147483648.)
2726
png_fixed_error(png_ptr, text);
2727
2728
# ifndef PNG_ERROR_TEXT_SUPPORTED
2729
PNG_UNUSED(text)
2730
# endif
2731
2732
return (png_fixed_point)r;
2733
}
2734
#endif
2735
2736
#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
2737
!defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \
2738
(defined(PNG_cLLI_SUPPORTED) || defined(PNG_mDCV_SUPPORTED))
2739
png_uint_32
2740
png_fixed_ITU(png_const_structrp png_ptr, double fp, png_const_charp text)
2741
{
2742
double r = floor(10000 * fp + .5);
2743
2744
if (r > 2147483647. || r < 0)
2745
png_fixed_error(png_ptr, text);
2746
2747
# ifndef PNG_ERROR_TEXT_SUPPORTED
2748
PNG_UNUSED(text)
2749
# endif
2750
2751
return (png_uint_32)r;
2752
}
2753
#endif
2754
2755
2756
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\
2757
defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED)
2758
/* muldiv functions */
2759
/* This API takes signed arguments and rounds the result to the nearest
2760
* integer (or, for a fixed point number - the standard argument - to
2761
* the nearest .00001). Overflow and divide by zero are signalled in
2762
* the result, a boolean - true on success, false on overflow.
2763
*/
2764
int /* PRIVATE */
2765
png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
2766
png_int_32 divisor)
2767
{
2768
/* Return a * times / divisor, rounded. */
2769
if (divisor != 0)
2770
{
2771
if (a == 0 || times == 0)
2772
{
2773
*res = 0;
2774
return 1;
2775
}
2776
else
2777
{
2778
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2779
double r = a;
2780
r *= times;
2781
r /= divisor;
2782
r = floor(r+.5);
2783
2784
/* A png_fixed_point is a 32-bit integer. */
2785
if (r <= 2147483647. && r >= -2147483648.)
2786
{
2787
*res = (png_fixed_point)r;
2788
return 1;
2789
}
2790
#else
2791
int negative = 0;
2792
png_uint_32 A, T, D;
2793
png_uint_32 s16, s32, s00;
2794
2795
if (a < 0)
2796
negative = 1, A = -a;
2797
else
2798
A = a;
2799
2800
if (times < 0)
2801
negative = !negative, T = -times;
2802
else
2803
T = times;
2804
2805
if (divisor < 0)
2806
negative = !negative, D = -divisor;
2807
else
2808
D = divisor;
2809
2810
/* Following can't overflow because the arguments only
2811
* have 31 bits each, however the result may be 32 bits.
2812
*/
2813
s16 = (A >> 16) * (T & 0xffff) +
2814
(A & 0xffff) * (T >> 16);
2815
/* Can't overflow because the a*times bit is only 30
2816
* bits at most.
2817
*/
2818
s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
2819
s00 = (A & 0xffff) * (T & 0xffff);
2820
2821
s16 = (s16 & 0xffff) << 16;
2822
s00 += s16;
2823
2824
if (s00 < s16)
2825
++s32; /* carry */
2826
2827
if (s32 < D) /* else overflow */
2828
{
2829
/* s32.s00 is now the 64-bit product, do a standard
2830
* division, we know that s32 < D, so the maximum
2831
* required shift is 31.
2832
*/
2833
int bitshift = 32;
2834
png_fixed_point result = 0; /* NOTE: signed */
2835
2836
while (--bitshift >= 0)
2837
{
2838
png_uint_32 d32, d00;
2839
2840
if (bitshift > 0)
2841
d32 = D >> (32-bitshift), d00 = D << bitshift;
2842
2843
else
2844
d32 = 0, d00 = D;
2845
2846
if (s32 > d32)
2847
{
2848
if (s00 < d00) --s32; /* carry */
2849
s32 -= d32, s00 -= d00, result += 1<<bitshift;
2850
}
2851
2852
else
2853
if (s32 == d32 && s00 >= d00)
2854
s32 = 0, s00 -= d00, result += 1<<bitshift;
2855
}
2856
2857
/* Handle the rounding. */
2858
if (s00 >= (D >> 1))
2859
++result;
2860
2861
if (negative != 0)
2862
result = -result;
2863
2864
/* Check for overflow. */
2865
if ((negative != 0 && result <= 0) ||
2866
(negative == 0 && result >= 0))
2867
{
2868
*res = result;
2869
return 1;
2870
}
2871
}
2872
#endif
2873
}
2874
}
2875
2876
return 0;
2877
}
2878
2879
/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
2880
png_fixed_point
2881
png_reciprocal(png_fixed_point a)
2882
{
2883
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2884
double r = floor(1E10/a+.5);
2885
2886
if (r <= 2147483647. && r >= -2147483648.)
2887
return (png_fixed_point)r;
2888
#else
2889
png_fixed_point res;
2890
2891
if (png_muldiv(&res, 100000, 100000, a) != 0)
2892
return res;
2893
#endif
2894
2895
return 0; /* error/overflow */
2896
}
2897
#endif /* READ_GAMMA || COLORSPACE || INCH_CONVERSIONS || READ_pHYS */
2898
2899
#ifdef PNG_READ_GAMMA_SUPPORTED
2900
/* This is the shared test on whether a gamma value is 'significant' - whether
2901
* it is worth doing gamma correction.
2902
*/
2903
int /* PRIVATE */
2904
png_gamma_significant(png_fixed_point gamma_val)
2905
{
2906
/* sRGB: 1/2.2 == 0.4545(45)
2907
* AdobeRGB: 1/(2+51/256) ~= 0.45471 5dp
2908
*
2909
* So the correction from AdobeRGB to sRGB (output) is:
2910
*
2911
* 2.2/(2+51/256) == 1.00035524
2912
*
2913
* I.e. vanishly small (<4E-4) but still detectable in 16-bit linear (+/-
2914
* 23). Note that the Adobe choice seems to be something intended to give an
2915
* exact number with 8 binary fractional digits - it is the closest to 2.2
2916
* that is possible a base 2 .8p representation.
2917
*/
2918
return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
2919
gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
2920
}
2921
2922
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
2923
/* A local convenience routine. */
2924
static png_fixed_point
2925
png_product2(png_fixed_point a, png_fixed_point b)
2926
{
2927
/* The required result is a * b; the following preserves accuracy. */
2928
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED /* Should now be unused */
2929
double r = a * 1E-5;
2930
r *= b;
2931
r = floor(r+.5);
2932
2933
if (r <= 2147483647. && r >= -2147483648.)
2934
return (png_fixed_point)r;
2935
#else
2936
png_fixed_point res;
2937
2938
if (png_muldiv(&res, a, b, 100000) != 0)
2939
return res;
2940
#endif
2941
2942
return 0; /* overflow */
2943
}
2944
#endif /* FLOATING_ARITHMETIC */
2945
2946
png_fixed_point
2947
png_reciprocal2(png_fixed_point a, png_fixed_point b)
2948
{
2949
/* The required result is 1/a * 1/b; the following preserves accuracy. */
2950
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2951
if (a != 0 && b != 0)
2952
{
2953
double r = 1E15/a;
2954
r /= b;
2955
r = floor(r+.5);
2956
2957
if (r <= 2147483647. && r >= -2147483648.)
2958
return (png_fixed_point)r;
2959
}
2960
#else
2961
/* This may overflow because the range of png_fixed_point isn't symmetric,
2962
* but this API is only used for the product of file and screen gamma so it
2963
* doesn't matter that the smallest number it can produce is 1/21474, not
2964
* 1/100000
2965
*/
2966
png_fixed_point res = png_product2(a, b);
2967
2968
if (res != 0)
2969
return png_reciprocal(res);
2970
#endif
2971
2972
return 0; /* overflow */
2973
}
2974
#endif /* READ_GAMMA */
2975
2976
#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
2977
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
2978
/* Fixed point gamma.
2979
*
2980
* The code to calculate the tables used below can be found in the shell script
2981
* contrib/tools/intgamma.sh
2982
*
2983
* To calculate gamma this code implements fast log() and exp() calls using only
2984
* fixed point arithmetic. This code has sufficient precision for either 8-bit
2985
* or 16-bit sample values.
2986
*
2987
* The tables used here were calculated using simple 'bc' programs, but C double
2988
* precision floating point arithmetic would work fine.
2989
*
2990
* 8-bit log table
2991
* This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
2992
* 255, so it's the base 2 logarithm of a normalized 8-bit floating point
2993
* mantissa. The numbers are 32-bit fractions.
2994
*/
2995
static const png_uint_32
2996
png_8bit_l2[128] =
2997
{
2998
4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
2999
3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
3000
3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
3001
3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
3002
3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
3003
2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
3004
2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
3005
2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
3006
2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
3007
2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
3008
1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
3009
1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
3010
1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
3011
1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
3012
1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
3013
971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
3014
803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
3015
639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
3016
479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
3017
324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
3018
172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
3019
24347096U, 0U
3020
3021
#if 0
3022
/* The following are the values for 16-bit tables - these work fine for the
3023
* 8-bit conversions but produce very slightly larger errors in the 16-bit
3024
* log (about 1.2 as opposed to 0.7 absolute error in the final value). To
3025
* use these all the shifts below must be adjusted appropriately.
3026
*/
3027
65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
3028
57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
3029
50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
3030
43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
3031
37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
3032
31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
3033
25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
3034
20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
3035
15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
3036
10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
3037
6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
3038
1119, 744, 372
3039
#endif
3040
};
3041
3042
static png_int_32
3043
png_log8bit(unsigned int x)
3044
{
3045
unsigned int lg2 = 0;
3046
/* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
3047
* because the log is actually negate that means adding 1. The final
3048
* returned value thus has the range 0 (for 255 input) to 7.994 (for 1
3049
* input), return -1 for the overflow (log 0) case, - so the result is
3050
* always at most 19 bits.
3051
*/
3052
if ((x &= 0xff) == 0)
3053
return -1;
3054
3055
if ((x & 0xf0) == 0)
3056
lg2 = 4, x <<= 4;
3057
3058
if ((x & 0xc0) == 0)
3059
lg2 += 2, x <<= 2;
3060
3061
if ((x & 0x80) == 0)
3062
lg2 += 1, x <<= 1;
3063
3064
/* result is at most 19 bits, so this cast is safe: */
3065
return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
3066
}
3067
3068
/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
3069
* for 16-bit images we use the most significant 8 bits of the 16-bit value to
3070
* get an approximation then multiply the approximation by a correction factor
3071
* determined by the remaining up to 8 bits. This requires an additional step
3072
* in the 16-bit case.
3073
*
3074
* We want log2(value/65535), we have log2(v'/255), where:
3075
*
3076
* value = v' * 256 + v''
3077
* = v' * f
3078
*
3079
* So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
3080
* to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
3081
* than 258. The final factor also needs to correct for the fact that our 8-bit
3082
* value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
3083
*
3084
* This gives a final formula using a calculated value 'x' which is value/v' and
3085
* scaling by 65536 to match the above table:
3086
*
3087
* log2(x/257) * 65536
3088
*
3089
* Since these numbers are so close to '1' we can use simple linear
3090
* interpolation between the two end values 256/257 (result -368.61) and 258/257
3091
* (result 367.179). The values used below are scaled by a further 64 to give
3092
* 16-bit precision in the interpolation:
3093
*
3094
* Start (256): -23591
3095
* Zero (257): 0
3096
* End (258): 23499
3097
*/
3098
#ifdef PNG_16BIT_SUPPORTED
3099
static png_int_32
3100
png_log16bit(png_uint_32 x)
3101
{
3102
unsigned int lg2 = 0;
3103
3104
/* As above, but now the input has 16 bits. */
3105
if ((x &= 0xffff) == 0)
3106
return -1;
3107
3108
if ((x & 0xff00) == 0)
3109
lg2 = 8, x <<= 8;
3110
3111
if ((x & 0xf000) == 0)
3112
lg2 += 4, x <<= 4;
3113
3114
if ((x & 0xc000) == 0)
3115
lg2 += 2, x <<= 2;
3116
3117
if ((x & 0x8000) == 0)
3118
lg2 += 1, x <<= 1;
3119
3120
/* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
3121
* value.
3122
*/
3123
lg2 <<= 28;
3124
lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
3125
3126
/* Now we need to interpolate the factor, this requires a division by the top
3127
* 8 bits. Do this with maximum precision.
3128
*/
3129
x = ((x << 16) + (x >> 9)) / (x >> 8);
3130
3131
/* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
3132
* the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
3133
* 16 bits to interpolate to get the low bits of the result. Round the
3134
* answer. Note that the end point values are scaled by 64 to retain overall
3135
* precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
3136
* the overall scaling by 6-12. Round at every step.
3137
*/
3138
x -= 1U << 24;
3139
3140
if (x <= 65536U) /* <= '257' */
3141
lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
3142
3143
else
3144
lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
3145
3146
/* Safe, because the result can't have more than 20 bits: */
3147
return (png_int_32)((lg2 + 2048) >> 12);
3148
}
3149
#endif /* 16BIT */
3150
3151
/* The 'exp()' case must invert the above, taking a 20-bit fixed point
3152
* logarithmic value and returning a 16 or 8-bit number as appropriate. In
3153
* each case only the low 16 bits are relevant - the fraction - since the
3154
* integer bits (the top 4) simply determine a shift.
3155
*
3156
* The worst case is the 16-bit distinction between 65535 and 65534. This
3157
* requires perhaps spurious accuracy in the decoding of the logarithm to
3158
* distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance
3159
* of getting this accuracy in practice.
3160
*
3161
* To deal with this the following exp() function works out the exponent of the
3162
* fractional part of the logarithm by using an accurate 32-bit value from the
3163
* top four fractional bits then multiplying in the remaining bits.
3164
*/
3165
static const png_uint_32
3166
png_32bit_exp[16] =
3167
{
3168
/* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
3169
4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
3170
3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
3171
2553802834U, 2445529972U, 2341847524U, 2242560872U
3172
};
3173
3174
/* Adjustment table; provided to explain the numbers in the code below. */
3175
#if 0
3176
for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
3177
11 44937.64284865548751208448
3178
10 45180.98734845585101160448
3179
9 45303.31936980687359311872
3180
8 45364.65110595323018870784
3181
7 45395.35850361789624614912
3182
6 45410.72259715102037508096
3183
5 45418.40724413220722311168
3184
4 45422.25021786898173001728
3185
3 45424.17186732298419044352
3186
2 45425.13273269940811464704
3187
1 45425.61317555035558641664
3188
0 45425.85339951654943850496
3189
#endif
3190
3191
static png_uint_32
3192
png_exp(png_fixed_point x)
3193
{
3194
if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
3195
{
3196
/* Obtain a 4-bit approximation */
3197
png_uint_32 e = png_32bit_exp[(x >> 12) & 0x0f];
3198
3199
/* Incorporate the low 12 bits - these decrease the returned value by
3200
* multiplying by a number less than 1 if the bit is set. The multiplier
3201
* is determined by the above table and the shift. Notice that the values
3202
* converge on 45426 and this is used to allow linear interpolation of the
3203
* low bits.
3204
*/
3205
if (x & 0x800)
3206
e -= (((e >> 16) * 44938U) + 16U) >> 5;
3207
3208
if (x & 0x400)
3209
e -= (((e >> 16) * 45181U) + 32U) >> 6;
3210
3211
if (x & 0x200)
3212
e -= (((e >> 16) * 45303U) + 64U) >> 7;
3213
3214
if (x & 0x100)
3215
e -= (((e >> 16) * 45365U) + 128U) >> 8;
3216
3217
if (x & 0x080)
3218
e -= (((e >> 16) * 45395U) + 256U) >> 9;
3219
3220
if (x & 0x040)
3221
e -= (((e >> 16) * 45410U) + 512U) >> 10;
3222
3223
/* And handle the low 6 bits in a single block. */
3224
e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
3225
3226
/* Handle the upper bits of x. */
3227
e >>= x >> 16;
3228
return e;
3229
}
3230
3231
/* Check for overflow */
3232
if (x <= 0)
3233
return png_32bit_exp[0];
3234
3235
/* Else underflow */
3236
return 0;
3237
}
3238
3239
static png_byte
3240
png_exp8bit(png_fixed_point lg2)
3241
{
3242
/* Get a 32-bit value: */
3243
png_uint_32 x = png_exp(lg2);
3244
3245
/* Convert the 32-bit value to 0..255 by multiplying by 256-1. Note that the
3246
* second, rounding, step can't overflow because of the first, subtraction,
3247
* step.
3248
*/
3249
x -= x >> 8;
3250
return (png_byte)(((x + 0x7fffffU) >> 24) & 0xff);
3251
}
3252
3253
#ifdef PNG_16BIT_SUPPORTED
3254
static png_uint_16
3255
png_exp16bit(png_fixed_point lg2)
3256
{
3257
/* Get a 32-bit value: */
3258
png_uint_32 x = png_exp(lg2);
3259
3260
/* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
3261
x -= x >> 16;
3262
return (png_uint_16)((x + 32767U) >> 16);
3263
}
3264
#endif /* 16BIT */
3265
#endif /* FLOATING_ARITHMETIC */
3266
3267
png_byte
3268
png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
3269
{
3270
if (value > 0 && value < 255)
3271
{
3272
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3273
/* 'value' is unsigned, ANSI-C90 requires the compiler to correctly
3274
* convert this to a floating point value. This includes values that
3275
* would overflow if 'value' were to be converted to 'int'.
3276
*
3277
* Apparently GCC, however, does an intermediate conversion to (int)
3278
* on some (ARM) but not all (x86) platforms, possibly because of
3279
* hardware FP limitations. (E.g. if the hardware conversion always
3280
* assumes the integer register contains a signed value.) This results
3281
* in ANSI-C undefined behavior for large values.
3282
*
3283
* Other implementations on the same machine might actually be ANSI-C90
3284
* conformant and therefore compile spurious extra code for the large
3285
* values.
3286
*
3287
* We can be reasonably sure that an unsigned to float conversion
3288
* won't be faster than an int to float one. Therefore this code
3289
* assumes responsibility for the undefined behavior, which it knows
3290
* can't happen because of the check above.
3291
*
3292
* Note the argument to this routine is an (unsigned int) because, on
3293
* 16-bit platforms, it is assigned a value which might be out of
3294
* range for an (int); that would result in undefined behavior in the
3295
* caller if the *argument* ('value') were to be declared (int).
3296
*/
3297
double r = floor(255*pow((int)/*SAFE*/value/255.,gamma_val*.00001)+.5);
3298
return (png_byte)r;
3299
# else
3300
png_int_32 lg2 = png_log8bit(value);
3301
png_fixed_point res;
3302
3303
if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3304
return png_exp8bit(res);
3305
3306
/* Overflow. */
3307
value = 0;
3308
# endif
3309
}
3310
3311
return (png_byte)(value & 0xff);
3312
}
3313
3314
#ifdef PNG_16BIT_SUPPORTED
3315
png_uint_16
3316
png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
3317
{
3318
if (value > 0 && value < 65535)
3319
{
3320
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3321
/* The same (unsigned int)->(double) constraints apply here as above,
3322
* however in this case the (unsigned int) to (int) conversion can
3323
* overflow on an ANSI-C90 compliant system so the cast needs to ensure
3324
* that this is not possible.
3325
*/
3326
double r = floor(65535*pow((png_int_32)value/65535.,
3327
gamma_val*.00001)+.5);
3328
return (png_uint_16)r;
3329
# else
3330
png_int_32 lg2 = png_log16bit(value);
3331
png_fixed_point res;
3332
3333
if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3334
return png_exp16bit(res);
3335
3336
/* Overflow. */
3337
value = 0;
3338
# endif
3339
}
3340
3341
return (png_uint_16)value;
3342
}
3343
#endif /* 16BIT */
3344
3345
/* This does the right thing based on the bit_depth field of the
3346
* png_struct, interpreting values as 8-bit or 16-bit. While the result
3347
* is nominally a 16-bit value if bit depth is 8 then the result is
3348
* 8-bit (as are the arguments.)
3349
*/
3350
png_uint_16 /* PRIVATE */
3351
png_gamma_correct(png_structrp png_ptr, unsigned int value,
3352
png_fixed_point gamma_val)
3353
{
3354
if (png_ptr->bit_depth == 8)
3355
return png_gamma_8bit_correct(value, gamma_val);
3356
3357
#ifdef PNG_16BIT_SUPPORTED
3358
else
3359
return png_gamma_16bit_correct(value, gamma_val);
3360
#else
3361
/* should not reach this */
3362
return 0;
3363
#endif /* 16BIT */
3364
}
3365
3366
#ifdef PNG_16BIT_SUPPORTED
3367
/* Internal function to build a single 16-bit table - the table consists of
3368
* 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
3369
* to shift the input values right (or 16-number_of_signifiant_bits).
3370
*
3371
* The caller is responsible for ensuring that the table gets cleaned up on
3372
* png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
3373
* should be somewhere that will be cleaned.
3374
*/
3375
static void
3376
png_build_16bit_table(png_structrp png_ptr, png_uint_16pp *ptable,
3377
unsigned int shift, png_fixed_point gamma_val)
3378
{
3379
/* Various values derived from 'shift': */
3380
unsigned int num = 1U << (8U - shift);
3381
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3382
/* CSE the division and work round wacky GCC warnings (see the comments
3383
* in png_gamma_8bit_correct for where these come from.)
3384
*/
3385
double fmax = 1.0 / (((png_int_32)1 << (16U - shift)) - 1);
3386
#endif
3387
unsigned int max = (1U << (16U - shift)) - 1U;
3388
unsigned int max_by_2 = 1U << (15U - shift);
3389
unsigned int i;
3390
3391
png_uint_16pp table = *ptable =
3392
(png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
3393
3394
for (i = 0; i < num; i++)
3395
{
3396
png_uint_16p sub_table = table[i] =
3397
(png_uint_16p)png_malloc(png_ptr, 256 * (sizeof (png_uint_16)));
3398
3399
/* The 'threshold' test is repeated here because it can arise for one of
3400
* the 16-bit tables even if the others don't hit it.
3401
*/
3402
if (png_gamma_significant(gamma_val) != 0)
3403
{
3404
/* The old code would overflow at the end and this would cause the
3405
* 'pow' function to return a result >1, resulting in an
3406
* arithmetic error. This code follows the spec exactly; ig is
3407
* the recovered input sample, it always has 8-16 bits.
3408
*
3409
* We want input * 65535/max, rounded, the arithmetic fits in 32
3410
* bits (unsigned) so long as max <= 32767.
3411
*/
3412
unsigned int j;
3413
for (j = 0; j < 256; j++)
3414
{
3415
png_uint_32 ig = (j << (8-shift)) + i;
3416
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3417
/* Inline the 'max' scaling operation: */
3418
/* See png_gamma_8bit_correct for why the cast to (int) is
3419
* required here.
3420
*/
3421
double d = floor(65535.*pow(ig*fmax, gamma_val*.00001)+.5);
3422
sub_table[j] = (png_uint_16)d;
3423
# else
3424
if (shift != 0)
3425
ig = (ig * 65535U + max_by_2)/max;
3426
3427
sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
3428
# endif
3429
}
3430
}
3431
else
3432
{
3433
/* We must still build a table, but do it the fast way. */
3434
unsigned int j;
3435
3436
for (j = 0; j < 256; j++)
3437
{
3438
png_uint_32 ig = (j << (8-shift)) + i;
3439
3440
if (shift != 0)
3441
ig = (ig * 65535U + max_by_2)/max;
3442
3443
sub_table[j] = (png_uint_16)ig;
3444
}
3445
}
3446
}
3447
}
3448
3449
/* NOTE: this function expects the *inverse* of the overall gamma transformation
3450
* required.
3451
*/
3452
static void
3453
png_build_16to8_table(png_structrp png_ptr, png_uint_16pp *ptable,
3454
unsigned int shift, png_fixed_point gamma_val)
3455
{
3456
unsigned int num = 1U << (8U - shift);
3457
unsigned int max = (1U << (16U - shift))-1U;
3458
unsigned int i;
3459
png_uint_32 last;
3460
3461
png_uint_16pp table = *ptable =
3462
(png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
3463
3464
/* 'num' is the number of tables and also the number of low bits of low
3465
* bits of the input 16-bit value used to select a table. Each table is
3466
* itself indexed by the high 8 bits of the value.
3467
*/
3468
for (i = 0; i < num; i++)
3469
table[i] = (png_uint_16p)png_malloc(png_ptr,
3470
256 * (sizeof (png_uint_16)));
3471
3472
/* 'gamma_val' is set to the reciprocal of the value calculated above, so
3473
* pow(out,g) is an *input* value. 'last' is the last input value set.
3474
*
3475
* In the loop 'i' is used to find output values. Since the output is
3476
* 8-bit there are only 256 possible values. The tables are set up to
3477
* select the closest possible output value for each input by finding
3478
* the input value at the boundary between each pair of output values
3479
* and filling the table up to that boundary with the lower output
3480
* value.
3481
*
3482
* The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit
3483
* values the code below uses a 16-bit value in i; the values start at
3484
* 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
3485
* entries are filled with 255). Start i at 128 and fill all 'last'
3486
* table entries <= 'max'
3487
*/
3488
last = 0;
3489
for (i = 0; i < 255; ++i) /* 8-bit output value */
3490
{
3491
/* Find the corresponding maximum input value */
3492
png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
3493
3494
/* Find the boundary value in 16 bits: */
3495
png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
3496
3497
/* Adjust (round) to (16-shift) bits: */
3498
bound = (bound * max + 32768U)/65535U + 1U;
3499
3500
while (last < bound)
3501
{
3502
table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
3503
last++;
3504
}
3505
}
3506
3507
/* And fill in the final entries. */
3508
while (last < (num << 8))
3509
{
3510
table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
3511
last++;
3512
}
3513
}
3514
#endif /* 16BIT */
3515
3516
/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
3517
* typically much faster). Note that libpng currently does no sBIT processing
3518
* (apparently contrary to the spec) so a 256-entry table is always generated.
3519
*/
3520
static void
3521
png_build_8bit_table(png_structrp png_ptr, png_bytepp ptable,
3522
png_fixed_point gamma_val)
3523
{
3524
unsigned int i;
3525
png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
3526
3527
if (png_gamma_significant(gamma_val) != 0)
3528
for (i=0; i<256; i++)
3529
table[i] = png_gamma_8bit_correct(i, gamma_val);
3530
3531
else
3532
for (i=0; i<256; ++i)
3533
table[i] = (png_byte)(i & 0xff);
3534
}
3535
3536
/* Used from png_read_destroy and below to release the memory used by the gamma
3537
* tables.
3538
*/
3539
void /* PRIVATE */
3540
png_destroy_gamma_table(png_structrp png_ptr)
3541
{
3542
png_free(png_ptr, png_ptr->gamma_table);
3543
png_ptr->gamma_table = NULL;
3544
3545
#ifdef PNG_16BIT_SUPPORTED
3546
if (png_ptr->gamma_16_table != NULL)
3547
{
3548
int i;
3549
int istop = (1 << (8 - png_ptr->gamma_shift));
3550
for (i = 0; i < istop; i++)
3551
{
3552
png_free(png_ptr, png_ptr->gamma_16_table[i]);
3553
}
3554
png_free(png_ptr, png_ptr->gamma_16_table);
3555
png_ptr->gamma_16_table = NULL;
3556
}
3557
#endif /* 16BIT */
3558
3559
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3560
defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
3561
defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
3562
png_free(png_ptr, png_ptr->gamma_from_1);
3563
png_ptr->gamma_from_1 = NULL;
3564
png_free(png_ptr, png_ptr->gamma_to_1);
3565
png_ptr->gamma_to_1 = NULL;
3566
3567
#ifdef PNG_16BIT_SUPPORTED
3568
if (png_ptr->gamma_16_from_1 != NULL)
3569
{
3570
int i;
3571
int istop = (1 << (8 - png_ptr->gamma_shift));
3572
for (i = 0; i < istop; i++)
3573
{
3574
png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
3575
}
3576
png_free(png_ptr, png_ptr->gamma_16_from_1);
3577
png_ptr->gamma_16_from_1 = NULL;
3578
}
3579
if (png_ptr->gamma_16_to_1 != NULL)
3580
{
3581
int i;
3582
int istop = (1 << (8 - png_ptr->gamma_shift));
3583
for (i = 0; i < istop; i++)
3584
{
3585
png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
3586
}
3587
png_free(png_ptr, png_ptr->gamma_16_to_1);
3588
png_ptr->gamma_16_to_1 = NULL;
3589
}
3590
#endif /* 16BIT */
3591
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
3592
}
3593
3594
/* We build the 8- or 16-bit gamma tables here. Note that for 16-bit
3595
* tables, we don't make a full table if we are reducing to 8-bit in
3596
* the future. Note also how the gamma_16 tables are segmented so that
3597
* we don't need to allocate > 64K chunks for a full 16-bit table.
3598
*
3599
* TODO: move this to pngrtran.c and make it static. Better yet create
3600
* pngcolor.c and put all the PNG_COLORSPACE stuff in there.
3601
*/
3602
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3603
defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
3604
defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
3605
# define GAMMA_TRANSFORMS 1 /* #ifdef CSE */
3606
#else
3607
# define GAMMA_TRANSFORMS 0
3608
#endif
3609
3610
void /* PRIVATE */
3611
png_build_gamma_table(png_structrp png_ptr, int bit_depth)
3612
{
3613
png_fixed_point file_gamma, screen_gamma;
3614
png_fixed_point correction;
3615
# if GAMMA_TRANSFORMS
3616
png_fixed_point file_to_linear, linear_to_screen;
3617
# endif
3618
3619
png_debug(1, "in png_build_gamma_table");
3620
3621
/* Remove any existing table; this copes with multiple calls to
3622
* png_read_update_info. The warning is because building the gamma tables
3623
* multiple times is a performance hit - it's harmless but the ability to
3624
* call png_read_update_info() multiple times is new in 1.5.6 so it seems
3625
* sensible to warn if the app introduces such a hit.
3626
*/
3627
if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
3628
{
3629
png_warning(png_ptr, "gamma table being rebuilt");
3630
png_destroy_gamma_table(png_ptr);
3631
}
3632
3633
/* The following fields are set, finally, in png_init_read_transformations.
3634
* If file_gamma is 0 (unset) nothing can be done otherwise if screen_gamma
3635
* is 0 (unset) there is no gamma correction but to/from linear is possible.
3636
*/
3637
file_gamma = png_ptr->file_gamma;
3638
screen_gamma = png_ptr->screen_gamma;
3639
# if GAMMA_TRANSFORMS
3640
file_to_linear = png_reciprocal(file_gamma);
3641
# endif
3642
3643
if (screen_gamma > 0)
3644
{
3645
# if GAMMA_TRANSFORMS
3646
linear_to_screen = png_reciprocal(screen_gamma);
3647
# endif
3648
correction = png_reciprocal2(screen_gamma, file_gamma);
3649
}
3650
else /* screen gamma unknown */
3651
{
3652
# if GAMMA_TRANSFORMS
3653
linear_to_screen = file_gamma;
3654
# endif
3655
correction = PNG_FP_1;
3656
}
3657
3658
if (bit_depth <= 8)
3659
{
3660
png_build_8bit_table(png_ptr, &png_ptr->gamma_table, correction);
3661
3662
#if GAMMA_TRANSFORMS
3663
if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
3664
{
3665
png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1, file_to_linear);
3666
3667
png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
3668
linear_to_screen);
3669
}
3670
#endif /* GAMMA_TRANSFORMS */
3671
}
3672
#ifdef PNG_16BIT_SUPPORTED
3673
else
3674
{
3675
png_byte shift, sig_bit;
3676
3677
if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0)
3678
{
3679
sig_bit = png_ptr->sig_bit.red;
3680
3681
if (png_ptr->sig_bit.green > sig_bit)
3682
sig_bit = png_ptr->sig_bit.green;
3683
3684
if (png_ptr->sig_bit.blue > sig_bit)
3685
sig_bit = png_ptr->sig_bit.blue;
3686
}
3687
else
3688
sig_bit = png_ptr->sig_bit.gray;
3689
3690
/* 16-bit gamma code uses this equation:
3691
*
3692
* ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
3693
*
3694
* Where 'iv' is the input color value and 'ov' is the output value -
3695
* pow(iv, gamma).
3696
*
3697
* Thus the gamma table consists of up to 256 256-entry tables. The table
3698
* is selected by the (8-gamma_shift) most significant of the low 8 bits
3699
* of the color value then indexed by the upper 8 bits:
3700
*
3701
* table[low bits][high 8 bits]
3702
*
3703
* So the table 'n' corresponds to all those 'iv' of:
3704
*
3705
* <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
3706
*
3707
*/
3708
if (sig_bit > 0 && sig_bit < 16U)
3709
/* shift == insignificant bits */
3710
shift = (png_byte)((16U - sig_bit) & 0xff);
3711
3712
else
3713
shift = 0; /* keep all 16 bits */
3714
3715
if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
3716
{
3717
/* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
3718
* the significant bits in the *input* when the output will
3719
* eventually be 8 bits. By default it is 11.
3720
*/
3721
if (shift < (16U - PNG_MAX_GAMMA_8))
3722
shift = (16U - PNG_MAX_GAMMA_8);
3723
}
3724
3725
if (shift > 8U)
3726
shift = 8U; /* Guarantees at least one table! */
3727
3728
png_ptr->gamma_shift = shift;
3729
3730
/* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
3731
* PNG_COMPOSE). This effectively smashed the background calculation for
3732
* 16-bit output because the 8-bit table assumes the result will be
3733
* reduced to 8 bits.
3734
*/
3735
if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
3736
png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
3737
png_reciprocal(correction));
3738
else
3739
png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
3740
correction);
3741
3742
# if GAMMA_TRANSFORMS
3743
if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
3744
{
3745
png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
3746
file_to_linear);
3747
3748
/* Notice that the '16 from 1' table should be full precision, however
3749
* the lookup on this table still uses gamma_shift, so it can't be.
3750
* TODO: fix this.
3751
*/
3752
png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
3753
linear_to_screen);
3754
}
3755
#endif /* GAMMA_TRANSFORMS */
3756
}
3757
#endif /* 16BIT */
3758
}
3759
#endif /* READ_GAMMA */
3760
3761
/* HARDWARE OR SOFTWARE OPTION SUPPORT */
3762
#ifdef PNG_SET_OPTION_SUPPORTED
3763
int PNGAPI
3764
png_set_option(png_structrp png_ptr, int option, int onoff)
3765
{
3766
if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT &&
3767
(option & 1) == 0)
3768
{
3769
png_uint_32 mask = 3U << option;
3770
png_uint_32 setting = (2U + (onoff != 0)) << option;
3771
png_uint_32 current = png_ptr->options;
3772
3773
png_ptr->options = (png_uint_32)((current & ~mask) | setting);
3774
3775
return (int)(current & mask) >> option;
3776
}
3777
3778
return PNG_OPTION_INVALID;
3779
}
3780
#endif
3781
3782
/* sRGB support */
3783
#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
3784
defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
3785
/* sRGB conversion tables; these are machine generated with the code in
3786
* contrib/tools/makesRGB.c. The actual sRGB transfer curve defined in the
3787
* specification (see the article at https://en.wikipedia.org/wiki/SRGB)
3788
* is used, not the gamma=1/2.2 approximation use elsewhere in libpng.
3789
* The sRGB to linear table is exact (to the nearest 16-bit linear fraction).
3790
* The inverse (linear to sRGB) table has accuracies as follows:
3791
*
3792
* For all possible (255*65535+1) input values:
3793
*
3794
* error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact
3795
*
3796
* For the input values corresponding to the 65536 16-bit values:
3797
*
3798
* error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact
3799
*
3800
* In all cases the inexact readings are only off by one.
3801
*/
3802
3803
#ifdef PNG_SIMPLIFIED_READ_SUPPORTED
3804
/* The convert-to-sRGB table is only currently required for read. */
3805
const png_uint_16 png_sRGB_table[256] =
3806
{
3807
0,20,40,60,80,99,119,139,
3808
159,179,199,219,241,264,288,313,
3809
340,367,396,427,458,491,526,562,
3810
599,637,677,718,761,805,851,898,
3811
947,997,1048,1101,1156,1212,1270,1330,
3812
1391,1453,1517,1583,1651,1720,1790,1863,
3813
1937,2013,2090,2170,2250,2333,2418,2504,
3814
2592,2681,2773,2866,2961,3058,3157,3258,
3815
3360,3464,3570,3678,3788,3900,4014,4129,
3816
4247,4366,4488,4611,4736,4864,4993,5124,
3817
5257,5392,5530,5669,5810,5953,6099,6246,
3818
6395,6547,6700,6856,7014,7174,7335,7500,
3819
7666,7834,8004,8177,8352,8528,8708,8889,
3820
9072,9258,9445,9635,9828,10022,10219,10417,
3821
10619,10822,11028,11235,11446,11658,11873,12090,
3822
12309,12530,12754,12980,13209,13440,13673,13909,
3823
14146,14387,14629,14874,15122,15371,15623,15878,
3824
16135,16394,16656,16920,17187,17456,17727,18001,
3825
18277,18556,18837,19121,19407,19696,19987,20281,
3826
20577,20876,21177,21481,21787,22096,22407,22721,
3827
23038,23357,23678,24002,24329,24658,24990,25325,
3828
25662,26001,26344,26688,27036,27386,27739,28094,
3829
28452,28813,29176,29542,29911,30282,30656,31033,
3830
31412,31794,32179,32567,32957,33350,33745,34143,
3831
34544,34948,35355,35764,36176,36591,37008,37429,
3832
37852,38278,38706,39138,39572,40009,40449,40891,
3833
41337,41785,42236,42690,43147,43606,44069,44534,
3834
45002,45473,45947,46423,46903,47385,47871,48359,
3835
48850,49344,49841,50341,50844,51349,51858,52369,
3836
52884,53401,53921,54445,54971,55500,56032,56567,
3837
57105,57646,58190,58737,59287,59840,60396,60955,
3838
61517,62082,62650,63221,63795,64372,64952,65535
3839
};
3840
#endif /* SIMPLIFIED_READ */
3841
3842
/* The base/delta tables are required for both read and write (but currently
3843
* only the simplified versions.)
3844
*/
3845
const png_uint_16 png_sRGB_base[512] =
3846
{
3847
128,1782,3383,4644,5675,6564,7357,8074,
3848
8732,9346,9921,10463,10977,11466,11935,12384,
3849
12816,13233,13634,14024,14402,14769,15125,15473,
3850
15812,16142,16466,16781,17090,17393,17690,17981,
3851
18266,18546,18822,19093,19359,19621,19879,20133,
3852
20383,20630,20873,21113,21349,21583,21813,22041,
3853
22265,22487,22707,22923,23138,23350,23559,23767,
3854
23972,24175,24376,24575,24772,24967,25160,25352,
3855
25542,25730,25916,26101,26284,26465,26645,26823,
3856
27000,27176,27350,27523,27695,27865,28034,28201,
3857
28368,28533,28697,28860,29021,29182,29341,29500,
3858
29657,29813,29969,30123,30276,30429,30580,30730,
3859
30880,31028,31176,31323,31469,31614,31758,31902,
3860
32045,32186,32327,32468,32607,32746,32884,33021,
3861
33158,33294,33429,33564,33697,33831,33963,34095,
3862
34226,34357,34486,34616,34744,34873,35000,35127,
3863
35253,35379,35504,35629,35753,35876,35999,36122,
3864
36244,36365,36486,36606,36726,36845,36964,37083,
3865
37201,37318,37435,37551,37668,37783,37898,38013,
3866
38127,38241,38354,38467,38580,38692,38803,38915,
3867
39026,39136,39246,39356,39465,39574,39682,39790,
3868
39898,40005,40112,40219,40325,40431,40537,40642,
3869
40747,40851,40955,41059,41163,41266,41369,41471,
3870
41573,41675,41777,41878,41979,42079,42179,42279,
3871
42379,42478,42577,42676,42775,42873,42971,43068,
3872
43165,43262,43359,43456,43552,43648,43743,43839,
3873
43934,44028,44123,44217,44311,44405,44499,44592,
3874
44685,44778,44870,44962,45054,45146,45238,45329,
3875
45420,45511,45601,45692,45782,45872,45961,46051,
3876
46140,46229,46318,46406,46494,46583,46670,46758,
3877
46846,46933,47020,47107,47193,47280,47366,47452,
3878
47538,47623,47709,47794,47879,47964,48048,48133,
3879
48217,48301,48385,48468,48552,48635,48718,48801,
3880
48884,48966,49048,49131,49213,49294,49376,49458,
3881
49539,49620,49701,49782,49862,49943,50023,50103,
3882
50183,50263,50342,50422,50501,50580,50659,50738,
3883
50816,50895,50973,51051,51129,51207,51285,51362,
3884
51439,51517,51594,51671,51747,51824,51900,51977,
3885
52053,52129,52205,52280,52356,52432,52507,52582,
3886
52657,52732,52807,52881,52956,53030,53104,53178,
3887
53252,53326,53400,53473,53546,53620,53693,53766,
3888
53839,53911,53984,54056,54129,54201,54273,54345,
3889
54417,54489,54560,54632,54703,54774,54845,54916,
3890
54987,55058,55129,55199,55269,55340,55410,55480,
3891
55550,55620,55689,55759,55828,55898,55967,56036,
3892
56105,56174,56243,56311,56380,56448,56517,56585,
3893
56653,56721,56789,56857,56924,56992,57059,57127,
3894
57194,57261,57328,57395,57462,57529,57595,57662,
3895
57728,57795,57861,57927,57993,58059,58125,58191,
3896
58256,58322,58387,58453,58518,58583,58648,58713,
3897
58778,58843,58908,58972,59037,59101,59165,59230,
3898
59294,59358,59422,59486,59549,59613,59677,59740,
3899
59804,59867,59930,59993,60056,60119,60182,60245,
3900
60308,60370,60433,60495,60558,60620,60682,60744,
3901
60806,60868,60930,60992,61054,61115,61177,61238,
3902
61300,61361,61422,61483,61544,61605,61666,61727,
3903
61788,61848,61909,61969,62030,62090,62150,62211,
3904
62271,62331,62391,62450,62510,62570,62630,62689,
3905
62749,62808,62867,62927,62986,63045,63104,63163,
3906
63222,63281,63340,63398,63457,63515,63574,63632,
3907
63691,63749,63807,63865,63923,63981,64039,64097,
3908
64155,64212,64270,64328,64385,64443,64500,64557,
3909
64614,64672,64729,64786,64843,64900,64956,65013,
3910
65070,65126,65183,65239,65296,65352,65409,65465
3911
};
3912
3913
const png_byte png_sRGB_delta[512] =
3914
{
3915
207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54,
3916
52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36,
3917
35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28,
3918
28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24,
3919
23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21,
3920
21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19,
3921
19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17,
3922
17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16,
3923
16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15,
3924
15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14,
3925
14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13,
3926
13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12,
3927
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
3928
12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11,
3929
11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
3930
11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
3931
11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
3932
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
3933
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
3934
10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3935
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3936
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3937
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3938
9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3939
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3940
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3941
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3942
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3943
8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7,
3944
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
3945
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
3946
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
3947
};
3948
#endif /* SIMPLIFIED READ/WRITE sRGB support */
3949
3950
/* SIMPLIFIED READ/WRITE SUPPORT */
3951
#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
3952
defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
3953
static int
3954
png_image_free_function(png_voidp argument)
3955
{
3956
png_imagep image = png_voidcast(png_imagep, argument);
3957
png_controlp cp = image->opaque;
3958
png_control c;
3959
3960
/* Double check that we have a png_ptr - it should be impossible to get here
3961
* without one.
3962
*/
3963
if (cp->png_ptr == NULL)
3964
return 0;
3965
3966
/* First free any data held in the control structure. */
3967
# ifdef PNG_STDIO_SUPPORTED
3968
if (cp->owned_file != 0)
3969
{
3970
FILE *fp = png_voidcast(FILE *, cp->png_ptr->io_ptr);
3971
cp->owned_file = 0;
3972
3973
/* Ignore errors here. */
3974
if (fp != NULL)
3975
{
3976
cp->png_ptr->io_ptr = NULL;
3977
(void)fclose(fp);
3978
}
3979
}
3980
# endif
3981
3982
/* Copy the control structure so that the original, allocated, version can be
3983
* safely freed. Notice that a png_error here stops the remainder of the
3984
* cleanup, but this is probably fine because that would indicate bad memory
3985
* problems anyway.
3986
*/
3987
c = *cp;
3988
image->opaque = &c;
3989
png_free(c.png_ptr, cp);
3990
3991
/* Then the structures, calling the correct API. */
3992
if (c.for_write != 0)
3993
{
3994
# ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED
3995
png_destroy_write_struct(&c.png_ptr, &c.info_ptr);
3996
# else
3997
png_error(c.png_ptr, "simplified write not supported");
3998
# endif
3999
}
4000
else
4001
{
4002
# ifdef PNG_SIMPLIFIED_READ_SUPPORTED
4003
png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL);
4004
# else
4005
png_error(c.png_ptr, "simplified read not supported");
4006
# endif
4007
}
4008
4009
/* Success. */
4010
return 1;
4011
}
4012
4013
void PNGAPI
4014
png_image_free(png_imagep image)
4015
{
4016
/* Safely call the real function, but only if doing so is safe at this point
4017
* (if not inside an error handling context). Otherwise assume
4018
* png_safe_execute will call this API after the return.
4019
*/
4020
if (image != NULL && image->opaque != NULL &&
4021
image->opaque->error_buf == NULL)
4022
{
4023
png_image_free_function(image);
4024
image->opaque = NULL;
4025
}
4026
}
4027
4028
int /* PRIVATE */
4029
png_image_error(png_imagep image, png_const_charp error_message)
4030
{
4031
/* Utility to log an error. */
4032
png_safecat(image->message, (sizeof image->message), 0, error_message);
4033
image->warning_or_error |= PNG_IMAGE_ERROR;
4034
png_image_free(image);
4035
return 0;
4036
}
4037
4038
#endif /* SIMPLIFIED READ/WRITE */
4039
#endif /* READ || WRITE */
4040
4041