Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libtheora/x86/x86enquant.c
9898 views
1
/********************************************************************
2
* *
3
* THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. *
4
* USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
5
* GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
6
* IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
7
* *
8
* THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009 *
9
* by the Xiph.Org Foundation and contributors *
10
* https://www.xiph.org/ *
11
* *
12
********************************************************************
13
14
function:
15
16
********************************************************************/
17
18
#include "x86enc.h"
19
20
#if defined(OC_X86_ASM)
21
22
23
24
/*The default enquant table is not quite suitable for SIMD purposes.
25
First, the m and l parameters need to be separated so that an entire row full
26
of m's or l's can be loaded at a time.
27
Second, x86 SIMD has no element-wise arithmetic right-shift, so we have to
28
emulate one with a multiply.
29
Therefore we translate the shift count into a scale factor.*/
30
void oc_enc_enquant_table_init_x86(void *_enquant,
31
const ogg_uint16_t _dequant[64]){
32
ogg_int16_t *m;
33
ogg_int16_t *l;
34
int zzi;
35
m=(ogg_int16_t *)_enquant;
36
l=m+64;
37
for(zzi=0;zzi<64;zzi++){
38
oc_iquant q;
39
oc_iquant_init(&q,_dequant[zzi]);
40
m[zzi]=q.m;
41
/*q.l must be at least 2 for this to work; fortunately, once all the scale
42
factors are baked in, the minimum quantizer is much larger than that.*/
43
l[zzi]=1<<16-q.l;
44
}
45
}
46
47
void oc_enc_enquant_table_fixup_x86(void *_enquant[3][3][2],int _nqis){
48
int pli;
49
int qii;
50
int qti;
51
for(pli=0;pli<3;pli++)for(qii=1;qii<_nqis;qii++)for(qti=0;qti<2;qti++){
52
((ogg_int16_t *)_enquant[pli][qii][qti])[0]=
53
((ogg_int16_t *)_enquant[pli][0][qti])[0];
54
((ogg_int16_t *)_enquant[pli][qii][qti])[64]=
55
((ogg_int16_t *)_enquant[pli][0][qti])[64];
56
}
57
}
58
59
int oc_enc_quantize_sse2(ogg_int16_t _qdct[64],const ogg_int16_t _dct[64],
60
const ogg_uint16_t _dequant[64],const void *_enquant){
61
ptrdiff_t r;
62
__asm__ __volatile__(
63
"xor %[r],%[r]\n\t"
64
/*Loop through two rows at a time.*/
65
".p2align 4\n\t"
66
"0:\n\t"
67
/*Load the first two rows of the data and the quant matrices.*/
68
"movdqa 0x00(%[dct],%[r]),%%xmm0\n\t"
69
"movdqa 0x10(%[dct],%[r]),%%xmm1\n\t"
70
"movdqa 0x00(%[dq],%[r]),%%xmm2\n\t"
71
"movdqa 0x10(%[dq],%[r]),%%xmm3\n\t"
72
"movdqa 0x00(%[q],%[r]),%%xmm4\n\t"
73
"movdqa 0x10(%[q],%[r]),%%xmm5\n\t"
74
/*Double the input and propagate its sign to the rounding factor.
75
Using SSSE3's psignw would help here, but we need the mask later anyway.*/
76
"movdqa %%xmm0,%%xmm6\n\t"
77
"psraw $15,%%xmm0\n\t"
78
"movdqa %%xmm1,%%xmm7\n\t"
79
"paddw %%xmm6,%%xmm6\n\t"
80
"psraw $15,%%xmm1\n\t"
81
"paddw %%xmm7,%%xmm7\n\t"
82
"paddw %%xmm0,%%xmm2\n\t"
83
"paddw %%xmm1,%%xmm3\n\t"
84
"pxor %%xmm0,%%xmm2\n\t"
85
"pxor %%xmm1,%%xmm3\n\t"
86
/*Add the rounding factor and perform the first multiply.*/
87
"paddw %%xmm2,%%xmm6\n\t"
88
"paddw %%xmm3,%%xmm7\n\t"
89
"pmulhw %%xmm6,%%xmm4\n\t"
90
"pmulhw %%xmm7,%%xmm5\n\t"
91
"movdqa 0x80(%[q],%[r]),%%xmm2\n\t"
92
"movdqa 0x90(%[q],%[r]),%%xmm3\n\t"
93
"paddw %%xmm4,%%xmm6\n\t"
94
"paddw %%xmm5,%%xmm7\n\t"
95
/*Emulate an element-wise right-shift via a second multiply.*/
96
"pmulhw %%xmm2,%%xmm6\n\t"
97
"pmulhw %%xmm3,%%xmm7\n\t"
98
"add $32,%[r]\n\t"
99
"cmp $96,%[r]\n\t"
100
/*Correct for the sign.*/
101
"psubw %%xmm0,%%xmm6\n\t"
102
"psubw %%xmm1,%%xmm7\n\t"
103
/*Save the result.*/
104
"movdqa %%xmm6,-0x20(%[qdct],%[r])\n\t"
105
"movdqa %%xmm7,-0x10(%[qdct],%[r])\n\t"
106
"jle 0b\n\t"
107
/*Now find the location of the last non-zero value.*/
108
"movdqa 0x50(%[qdct]),%%xmm5\n\t"
109
"movdqa 0x40(%[qdct]),%%xmm4\n\t"
110
"packsswb %%xmm7,%%xmm6\n\t"
111
"packsswb %%xmm5,%%xmm4\n\t"
112
"pxor %%xmm0,%%xmm0\n\t"
113
"mov $-1,%k[dq]\n\t"
114
"pcmpeqb %%xmm0,%%xmm6\n\t"
115
"pcmpeqb %%xmm0,%%xmm4\n\t"
116
"pmovmskb %%xmm6,%k[q]\n\t"
117
"pmovmskb %%xmm4,%k[r]\n\t"
118
"shl $16,%k[q]\n\t"
119
"or %k[r],%k[q]\n\t"
120
"mov $32,%[r]\n\t"
121
/*We have to use xor here instead of not in order to set the flags.*/
122
"xor %k[dq],%k[q]\n\t"
123
"jnz 1f\n\t"
124
"movdqa 0x30(%[qdct]),%%xmm7\n\t"
125
"movdqa 0x20(%[qdct]),%%xmm6\n\t"
126
"movdqa 0x10(%[qdct]),%%xmm5\n\t"
127
"movdqa 0x00(%[qdct]),%%xmm4\n\t"
128
"packsswb %%xmm7,%%xmm6\n\t"
129
"packsswb %%xmm5,%%xmm4\n\t"
130
"pcmpeqb %%xmm0,%%xmm6\n\t"
131
"pcmpeqb %%xmm0,%%xmm4\n\t"
132
"pmovmskb %%xmm6,%k[q]\n\t"
133
"pmovmskb %%xmm4,%k[r]\n\t"
134
"shl $16,%k[q]\n\t"
135
"or %k[r],%k[q]\n\t"
136
"xor %[r],%[r]\n\t"
137
"not %k[q]\n\t"
138
"or $1,%k[q]\n\t"
139
"1:\n\t"
140
"bsr %k[q],%k[q]\n\t"
141
"add %k[q],%k[r]\n\t"
142
:[r]"=&a"(r),[q]"+r"(_enquant),[dq]"+r"(_dequant)
143
:[dct]"r"(_dct),[qdct]"r"(_qdct)
144
:"cc","memory"
145
);
146
return (int)r;
147
}
148
149
#endif
150
151