Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/sharpyuv/sharpyuv.c
9898 views
1
// Copyright 2022 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Sharp RGB to YUV conversion.
11
//
12
// Author: Skal ([email protected])
13
14
#include "sharpyuv/sharpyuv.h"
15
16
#include <assert.h>
17
#include <limits.h>
18
#include <stddef.h>
19
#include <stdlib.h>
20
#include <string.h>
21
22
#include "src/webp/types.h"
23
#include "sharpyuv/sharpyuv_cpu.h"
24
#include "sharpyuv/sharpyuv_dsp.h"
25
#include "sharpyuv/sharpyuv_gamma.h"
26
27
//------------------------------------------------------------------------------
28
29
int SharpYuvGetVersion(void) {
30
return SHARPYUV_VERSION;
31
}
32
33
//------------------------------------------------------------------------------
34
// Sharp RGB->YUV conversion
35
36
static const int kNumIterations = 4;
37
38
#define YUV_FIX 16 // fixed-point precision for RGB->YUV
39
static const int kYuvHalf = 1 << (YUV_FIX - 1);
40
41
// Max bit depth so that intermediate calculations fit in 16 bits.
42
static const int kMaxBitDepth = 14;
43
44
// Returns the precision shift to use based on the input rgb_bit_depth.
45
static int GetPrecisionShift(int rgb_bit_depth) {
46
// Try to add 2 bits of precision if it fits in kMaxBitDepth. Otherwise remove
47
// bits if needed.
48
return ((rgb_bit_depth + 2) <= kMaxBitDepth) ? 2
49
: (kMaxBitDepth - rgb_bit_depth);
50
}
51
52
typedef int16_t fixed_t; // signed type with extra precision for UV
53
typedef uint16_t fixed_y_t; // unsigned type with extra precision for W
54
55
//------------------------------------------------------------------------------
56
57
static uint8_t clip_8b(fixed_t v) {
58
return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u;
59
}
60
61
static uint16_t clip(fixed_t v, int max) {
62
return (v < 0) ? 0 : (v > max) ? max : (uint16_t)v;
63
}
64
65
static fixed_y_t clip_bit_depth(int y, int bit_depth) {
66
const int max = (1 << bit_depth) - 1;
67
return (!(y & ~max)) ? (fixed_y_t)y : (y < 0) ? 0 : max;
68
}
69
70
//------------------------------------------------------------------------------
71
72
static int RGBToGray(int64_t r, int64_t g, int64_t b) {
73
const int64_t luma = 13933 * r + 46871 * g + 4732 * b + kYuvHalf;
74
return (int)(luma >> YUV_FIX);
75
}
76
77
static uint32_t ScaleDown(uint16_t a, uint16_t b, uint16_t c, uint16_t d,
78
int rgb_bit_depth,
79
SharpYuvTransferFunctionType transfer_type) {
80
const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
81
const uint32_t A = SharpYuvGammaToLinear(a, bit_depth, transfer_type);
82
const uint32_t B = SharpYuvGammaToLinear(b, bit_depth, transfer_type);
83
const uint32_t C = SharpYuvGammaToLinear(c, bit_depth, transfer_type);
84
const uint32_t D = SharpYuvGammaToLinear(d, bit_depth, transfer_type);
85
return SharpYuvLinearToGamma((A + B + C + D + 2) >> 2, bit_depth,
86
transfer_type);
87
}
88
89
static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w,
90
int rgb_bit_depth,
91
SharpYuvTransferFunctionType transfer_type) {
92
const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
93
int i = 0;
94
do {
95
const uint32_t R =
96
SharpYuvGammaToLinear(src[0 * w + i], bit_depth, transfer_type);
97
const uint32_t G =
98
SharpYuvGammaToLinear(src[1 * w + i], bit_depth, transfer_type);
99
const uint32_t B =
100
SharpYuvGammaToLinear(src[2 * w + i], bit_depth, transfer_type);
101
const uint32_t Y = RGBToGray(R, G, B);
102
dst[i] = (fixed_y_t)SharpYuvLinearToGamma(Y, bit_depth, transfer_type);
103
} while (++i < w);
104
}
105
106
static void UpdateChroma(const fixed_y_t* src1, const fixed_y_t* src2,
107
fixed_t* dst, int uv_w, int rgb_bit_depth,
108
SharpYuvTransferFunctionType transfer_type) {
109
int i = 0;
110
do {
111
const int r =
112
ScaleDown(src1[0 * uv_w + 0], src1[0 * uv_w + 1], src2[0 * uv_w + 0],
113
src2[0 * uv_w + 1], rgb_bit_depth, transfer_type);
114
const int g =
115
ScaleDown(src1[2 * uv_w + 0], src1[2 * uv_w + 1], src2[2 * uv_w + 0],
116
src2[2 * uv_w + 1], rgb_bit_depth, transfer_type);
117
const int b =
118
ScaleDown(src1[4 * uv_w + 0], src1[4 * uv_w + 1], src2[4 * uv_w + 0],
119
src2[4 * uv_w + 1], rgb_bit_depth, transfer_type);
120
const int W = RGBToGray(r, g, b);
121
dst[0 * uv_w] = (fixed_t)(r - W);
122
dst[1 * uv_w] = (fixed_t)(g - W);
123
dst[2 * uv_w] = (fixed_t)(b - W);
124
dst += 1;
125
src1 += 2;
126
src2 += 2;
127
} while (++i < uv_w);
128
}
129
130
static void StoreGray(const fixed_y_t* rgb, fixed_y_t* y, int w) {
131
int i = 0;
132
assert(w > 0);
133
do {
134
y[i] = RGBToGray(rgb[0 * w + i], rgb[1 * w + i], rgb[2 * w + i]);
135
} while (++i < w);
136
}
137
138
//------------------------------------------------------------------------------
139
140
static WEBP_INLINE fixed_y_t Filter2(int A, int B, int W0, int bit_depth) {
141
const int v0 = (A * 3 + B + 2) >> 2;
142
return clip_bit_depth(v0 + W0, bit_depth);
143
}
144
145
//------------------------------------------------------------------------------
146
147
static WEBP_INLINE int Shift(int v, int shift) {
148
return (shift >= 0) ? (v << shift) : (v >> -shift);
149
}
150
151
static void ImportOneRow(const uint8_t* const r_ptr,
152
const uint8_t* const g_ptr,
153
const uint8_t* const b_ptr,
154
int rgb_step,
155
int rgb_bit_depth,
156
int pic_width,
157
fixed_y_t* const dst) {
158
// Convert the rgb_step from a number of bytes to a number of uint8_t or
159
// uint16_t values depending the bit depth.
160
const int step = (rgb_bit_depth > 8) ? rgb_step / 2 : rgb_step;
161
int i = 0;
162
const int w = (pic_width + 1) & ~1;
163
do {
164
const int off = i * step;
165
const int shift = GetPrecisionShift(rgb_bit_depth);
166
if (rgb_bit_depth == 8) {
167
dst[i + 0 * w] = Shift(r_ptr[off], shift);
168
dst[i + 1 * w] = Shift(g_ptr[off], shift);
169
dst[i + 2 * w] = Shift(b_ptr[off], shift);
170
} else {
171
dst[i + 0 * w] = Shift(((uint16_t*)r_ptr)[off], shift);
172
dst[i + 1 * w] = Shift(((uint16_t*)g_ptr)[off], shift);
173
dst[i + 2 * w] = Shift(((uint16_t*)b_ptr)[off], shift);
174
}
175
} while (++i < pic_width);
176
if (pic_width & 1) { // replicate rightmost pixel
177
dst[pic_width + 0 * w] = dst[pic_width + 0 * w - 1];
178
dst[pic_width + 1 * w] = dst[pic_width + 1 * w - 1];
179
dst[pic_width + 2 * w] = dst[pic_width + 2 * w - 1];
180
}
181
}
182
183
static void InterpolateTwoRows(const fixed_y_t* const best_y,
184
const fixed_t* prev_uv,
185
const fixed_t* cur_uv,
186
const fixed_t* next_uv,
187
int w,
188
fixed_y_t* out1,
189
fixed_y_t* out2,
190
int rgb_bit_depth) {
191
const int uv_w = w >> 1;
192
const int len = (w - 1) >> 1; // length to filter
193
int k = 3;
194
const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
195
while (k-- > 0) { // process each R/G/B segments in turn
196
// special boundary case for i==0
197
out1[0] = Filter2(cur_uv[0], prev_uv[0], best_y[0], bit_depth);
198
out2[0] = Filter2(cur_uv[0], next_uv[0], best_y[w], bit_depth);
199
200
SharpYuvFilterRow(cur_uv, prev_uv, len, best_y + 0 + 1, out1 + 1,
201
bit_depth);
202
SharpYuvFilterRow(cur_uv, next_uv, len, best_y + w + 1, out2 + 1,
203
bit_depth);
204
205
// special boundary case for i == w - 1 when w is even
206
if (!(w & 1)) {
207
out1[w - 1] = Filter2(cur_uv[uv_w - 1], prev_uv[uv_w - 1],
208
best_y[w - 1 + 0], bit_depth);
209
out2[w - 1] = Filter2(cur_uv[uv_w - 1], next_uv[uv_w - 1],
210
best_y[w - 1 + w], bit_depth);
211
}
212
out1 += w;
213
out2 += w;
214
prev_uv += uv_w;
215
cur_uv += uv_w;
216
next_uv += uv_w;
217
}
218
}
219
220
static WEBP_INLINE int RGBToYUVComponent(int r, int g, int b,
221
const int coeffs[4], int sfix) {
222
const int srounder = 1 << (YUV_FIX + sfix - 1);
223
const int luma = coeffs[0] * r + coeffs[1] * g + coeffs[2] * b +
224
coeffs[3] + srounder;
225
return (luma >> (YUV_FIX + sfix));
226
}
227
228
static int ConvertWRGBToYUV(const fixed_y_t* best_y, const fixed_t* best_uv,
229
uint8_t* y_ptr, int y_stride, uint8_t* u_ptr,
230
int u_stride, uint8_t* v_ptr, int v_stride,
231
int rgb_bit_depth,
232
int yuv_bit_depth, int width, int height,
233
const SharpYuvConversionMatrix* yuv_matrix) {
234
int i, j;
235
const fixed_t* const best_uv_base = best_uv;
236
const int w = (width + 1) & ~1;
237
const int h = (height + 1) & ~1;
238
const int uv_w = w >> 1;
239
const int uv_h = h >> 1;
240
const int sfix = GetPrecisionShift(rgb_bit_depth);
241
const int yuv_max = (1 << yuv_bit_depth) - 1;
242
243
best_uv = best_uv_base;
244
j = 0;
245
do {
246
i = 0;
247
do {
248
const int off = (i >> 1);
249
const int W = best_y[i];
250
const int r = best_uv[off + 0 * uv_w] + W;
251
const int g = best_uv[off + 1 * uv_w] + W;
252
const int b = best_uv[off + 2 * uv_w] + W;
253
const int y = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_y, sfix);
254
if (yuv_bit_depth <= 8) {
255
y_ptr[i] = clip_8b(y);
256
} else {
257
((uint16_t*)y_ptr)[i] = clip(y, yuv_max);
258
}
259
} while (++i < width);
260
best_y += w;
261
best_uv += (j & 1) * 3 * uv_w;
262
y_ptr += y_stride;
263
} while (++j < height);
264
265
best_uv = best_uv_base;
266
j = 0;
267
do {
268
i = 0;
269
do {
270
// Note r, g and b values here are off by W, but a constant offset on all
271
// 3 components doesn't change the value of u and v with a YCbCr matrix.
272
const int r = best_uv[i + 0 * uv_w];
273
const int g = best_uv[i + 1 * uv_w];
274
const int b = best_uv[i + 2 * uv_w];
275
const int u = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_u, sfix);
276
const int v = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_v, sfix);
277
if (yuv_bit_depth <= 8) {
278
u_ptr[i] = clip_8b(u);
279
v_ptr[i] = clip_8b(v);
280
} else {
281
((uint16_t*)u_ptr)[i] = clip(u, yuv_max);
282
((uint16_t*)v_ptr)[i] = clip(v, yuv_max);
283
}
284
} while (++i < uv_w);
285
best_uv += 3 * uv_w;
286
u_ptr += u_stride;
287
v_ptr += v_stride;
288
} while (++j < uv_h);
289
return 1;
290
}
291
292
//------------------------------------------------------------------------------
293
// Main function
294
295
static void* SafeMalloc(uint64_t nmemb, size_t size) {
296
const uint64_t total_size = nmemb * (uint64_t)size;
297
if (total_size != (size_t)total_size) return NULL;
298
return malloc((size_t)total_size);
299
}
300
301
#define SAFE_ALLOC(W, H, T) ((T*)SafeMalloc((uint64_t)(W) * (H), sizeof(T)))
302
303
static int DoSharpArgbToYuv(const uint8_t* r_ptr, const uint8_t* g_ptr,
304
const uint8_t* b_ptr, int rgb_step, int rgb_stride,
305
int rgb_bit_depth, uint8_t* y_ptr, int y_stride,
306
uint8_t* u_ptr, int u_stride, uint8_t* v_ptr,
307
int v_stride, int yuv_bit_depth, int width,
308
int height,
309
const SharpYuvConversionMatrix* yuv_matrix,
310
SharpYuvTransferFunctionType transfer_type) {
311
// we expand the right/bottom border if needed
312
const int w = (width + 1) & ~1;
313
const int h = (height + 1) & ~1;
314
const int uv_w = w >> 1;
315
const int uv_h = h >> 1;
316
const int y_bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
317
uint64_t prev_diff_y_sum = ~0;
318
int j, iter;
319
320
// TODO(skal): allocate one big memory chunk. But for now, it's easier
321
// for valgrind debugging to have several chunks.
322
fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t); // scratch
323
fixed_y_t* const best_y_base = SAFE_ALLOC(w, h, fixed_y_t);
324
fixed_y_t* const target_y_base = SAFE_ALLOC(w, h, fixed_y_t);
325
fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t);
326
fixed_t* const best_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
327
fixed_t* const target_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
328
fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t);
329
fixed_y_t* best_y = best_y_base;
330
fixed_y_t* target_y = target_y_base;
331
fixed_t* best_uv = best_uv_base;
332
fixed_t* target_uv = target_uv_base;
333
const uint64_t diff_y_threshold = (uint64_t)(3.0 * w * h);
334
int ok;
335
assert(w > 0);
336
assert(h > 0);
337
338
if (best_y_base == NULL || best_uv_base == NULL ||
339
target_y_base == NULL || target_uv_base == NULL ||
340
best_rgb_y == NULL || best_rgb_uv == NULL ||
341
tmp_buffer == NULL) {
342
ok = 0;
343
goto End;
344
}
345
346
// Import RGB samples to W/RGB representation.
347
for (j = 0; j < height; j += 2) {
348
const int is_last_row = (j == height - 1);
349
fixed_y_t* const src1 = tmp_buffer + 0 * w;
350
fixed_y_t* const src2 = tmp_buffer + 3 * w;
351
352
// prepare two rows of input
353
ImportOneRow(r_ptr, g_ptr, b_ptr, rgb_step, rgb_bit_depth, width,
354
src1);
355
if (!is_last_row) {
356
ImportOneRow(r_ptr + rgb_stride, g_ptr + rgb_stride, b_ptr + rgb_stride,
357
rgb_step, rgb_bit_depth, width, src2);
358
} else {
359
memcpy(src2, src1, 3 * w * sizeof(*src2));
360
}
361
StoreGray(src1, best_y + 0, w);
362
StoreGray(src2, best_y + w, w);
363
364
UpdateW(src1, target_y, w, rgb_bit_depth, transfer_type);
365
UpdateW(src2, target_y + w, w, rgb_bit_depth, transfer_type);
366
UpdateChroma(src1, src2, target_uv, uv_w, rgb_bit_depth, transfer_type);
367
memcpy(best_uv, target_uv, 3 * uv_w * sizeof(*best_uv));
368
best_y += 2 * w;
369
best_uv += 3 * uv_w;
370
target_y += 2 * w;
371
target_uv += 3 * uv_w;
372
r_ptr += 2 * rgb_stride;
373
g_ptr += 2 * rgb_stride;
374
b_ptr += 2 * rgb_stride;
375
}
376
377
// Iterate and resolve clipping conflicts.
378
for (iter = 0; iter < kNumIterations; ++iter) {
379
const fixed_t* cur_uv = best_uv_base;
380
const fixed_t* prev_uv = best_uv_base;
381
uint64_t diff_y_sum = 0;
382
383
best_y = best_y_base;
384
best_uv = best_uv_base;
385
target_y = target_y_base;
386
target_uv = target_uv_base;
387
j = 0;
388
do {
389
fixed_y_t* const src1 = tmp_buffer + 0 * w;
390
fixed_y_t* const src2 = tmp_buffer + 3 * w;
391
{
392
const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0);
393
InterpolateTwoRows(best_y, prev_uv, cur_uv, next_uv, w,
394
src1, src2, rgb_bit_depth);
395
prev_uv = cur_uv;
396
cur_uv = next_uv;
397
}
398
399
UpdateW(src1, best_rgb_y + 0 * w, w, rgb_bit_depth, transfer_type);
400
UpdateW(src2, best_rgb_y + 1 * w, w, rgb_bit_depth, transfer_type);
401
UpdateChroma(src1, src2, best_rgb_uv, uv_w, rgb_bit_depth, transfer_type);
402
403
// update two rows of Y and one row of RGB
404
diff_y_sum +=
405
SharpYuvUpdateY(target_y, best_rgb_y, best_y, 2 * w, y_bit_depth);
406
SharpYuvUpdateRGB(target_uv, best_rgb_uv, best_uv, 3 * uv_w);
407
408
best_y += 2 * w;
409
best_uv += 3 * uv_w;
410
target_y += 2 * w;
411
target_uv += 3 * uv_w;
412
j += 2;
413
} while (j < h);
414
// test exit condition
415
if (iter > 0) {
416
if (diff_y_sum < diff_y_threshold) break;
417
if (diff_y_sum > prev_diff_y_sum) break;
418
}
419
prev_diff_y_sum = diff_y_sum;
420
}
421
422
// final reconstruction
423
ok = ConvertWRGBToYUV(best_y_base, best_uv_base, y_ptr, y_stride, u_ptr,
424
u_stride, v_ptr, v_stride, rgb_bit_depth, yuv_bit_depth,
425
width, height, yuv_matrix);
426
427
End:
428
free(best_y_base);
429
free(best_uv_base);
430
free(target_y_base);
431
free(target_uv_base);
432
free(best_rgb_y);
433
free(best_rgb_uv);
434
free(tmp_buffer);
435
return ok;
436
}
437
438
#undef SAFE_ALLOC
439
440
#if defined(WEBP_USE_THREAD) && !defined(_WIN32)
441
#include <pthread.h> // NOLINT
442
443
#define LOCK_ACCESS \
444
static pthread_mutex_t sharpyuv_lock = PTHREAD_MUTEX_INITIALIZER; \
445
if (pthread_mutex_lock(&sharpyuv_lock)) return
446
#define UNLOCK_ACCESS_AND_RETURN \
447
do { \
448
(void)pthread_mutex_unlock(&sharpyuv_lock); \
449
return; \
450
} while (0)
451
#else // !(defined(WEBP_USE_THREAD) && !defined(_WIN32))
452
#define LOCK_ACCESS do {} while (0)
453
#define UNLOCK_ACCESS_AND_RETURN return
454
#endif // defined(WEBP_USE_THREAD) && !defined(_WIN32)
455
456
// Hidden exported init function.
457
// By default SharpYuvConvert calls it with SharpYuvGetCPUInfo. If needed,
458
// users can declare it as extern and call it with an alternate VP8CPUInfo
459
// function.
460
extern VP8CPUInfo SharpYuvGetCPUInfo;
461
SHARPYUV_EXTERN void SharpYuvInit(VP8CPUInfo cpu_info_func);
462
void SharpYuvInit(VP8CPUInfo cpu_info_func) {
463
static volatile VP8CPUInfo sharpyuv_last_cpuinfo_used =
464
(VP8CPUInfo)&sharpyuv_last_cpuinfo_used;
465
LOCK_ACCESS;
466
// Only update SharpYuvGetCPUInfo when called from external code to avoid a
467
// race on reading the value in SharpYuvConvert().
468
if (cpu_info_func != (VP8CPUInfo)&SharpYuvGetCPUInfo) {
469
SharpYuvGetCPUInfo = cpu_info_func;
470
}
471
if (sharpyuv_last_cpuinfo_used == SharpYuvGetCPUInfo) {
472
UNLOCK_ACCESS_AND_RETURN;
473
}
474
475
SharpYuvInitDsp();
476
SharpYuvInitGammaTables();
477
478
sharpyuv_last_cpuinfo_used = SharpYuvGetCPUInfo;
479
UNLOCK_ACCESS_AND_RETURN;
480
}
481
482
int SharpYuvConvert(const void* r_ptr, const void* g_ptr, const void* b_ptr,
483
int rgb_step, int rgb_stride, int rgb_bit_depth,
484
void* y_ptr, int y_stride, void* u_ptr, int u_stride,
485
void* v_ptr, int v_stride, int yuv_bit_depth, int width,
486
int height, const SharpYuvConversionMatrix* yuv_matrix) {
487
SharpYuvOptions options;
488
options.yuv_matrix = yuv_matrix;
489
options.transfer_type = kSharpYuvTransferFunctionSrgb;
490
return SharpYuvConvertWithOptions(
491
r_ptr, g_ptr, b_ptr, rgb_step, rgb_stride, rgb_bit_depth, y_ptr, y_stride,
492
u_ptr, u_stride, v_ptr, v_stride, yuv_bit_depth, width, height, &options);
493
}
494
495
int SharpYuvOptionsInitInternal(const SharpYuvConversionMatrix* yuv_matrix,
496
SharpYuvOptions* options, int version) {
497
const int major = (version >> 24);
498
const int minor = (version >> 16) & 0xff;
499
if (options == NULL || yuv_matrix == NULL ||
500
(major == SHARPYUV_VERSION_MAJOR && major == 0 &&
501
minor != SHARPYUV_VERSION_MINOR) ||
502
(major != SHARPYUV_VERSION_MAJOR)) {
503
return 0;
504
}
505
options->yuv_matrix = yuv_matrix;
506
options->transfer_type = kSharpYuvTransferFunctionSrgb;
507
return 1;
508
}
509
510
int SharpYuvConvertWithOptions(const void* r_ptr, const void* g_ptr,
511
const void* b_ptr, int rgb_step, int rgb_stride,
512
int rgb_bit_depth, void* y_ptr, int y_stride,
513
void* u_ptr, int u_stride, void* v_ptr,
514
int v_stride, int yuv_bit_depth, int width,
515
int height, const SharpYuvOptions* options) {
516
const SharpYuvConversionMatrix* yuv_matrix = options->yuv_matrix;
517
SharpYuvTransferFunctionType transfer_type = options->transfer_type;
518
SharpYuvConversionMatrix scaled_matrix;
519
const int rgb_max = (1 << rgb_bit_depth) - 1;
520
const int rgb_round = 1 << (rgb_bit_depth - 1);
521
const int yuv_max = (1 << yuv_bit_depth) - 1;
522
const int sfix = GetPrecisionShift(rgb_bit_depth);
523
524
if (width < 1 || height < 1 || width == INT_MAX || height == INT_MAX ||
525
r_ptr == NULL || g_ptr == NULL || b_ptr == NULL || y_ptr == NULL ||
526
u_ptr == NULL || v_ptr == NULL) {
527
return 0;
528
}
529
if (rgb_bit_depth != 8 && rgb_bit_depth != 10 && rgb_bit_depth != 12 &&
530
rgb_bit_depth != 16) {
531
return 0;
532
}
533
if (yuv_bit_depth != 8 && yuv_bit_depth != 10 && yuv_bit_depth != 12) {
534
return 0;
535
}
536
if (rgb_bit_depth > 8 && (rgb_step % 2 != 0 || rgb_stride % 2 != 0)) {
537
// Step/stride should be even for uint16_t buffers.
538
return 0;
539
}
540
if (yuv_bit_depth > 8 &&
541
(y_stride % 2 != 0 || u_stride % 2 != 0 || v_stride % 2 != 0)) {
542
// Stride should be even for uint16_t buffers.
543
return 0;
544
}
545
// The address of the function pointer is used to avoid a read race.
546
SharpYuvInit((VP8CPUInfo)&SharpYuvGetCPUInfo);
547
548
// Add scaling factor to go from rgb_bit_depth to yuv_bit_depth, to the
549
// rgb->yuv conversion matrix.
550
if (rgb_bit_depth == yuv_bit_depth) {
551
memcpy(&scaled_matrix, yuv_matrix, sizeof(scaled_matrix));
552
} else {
553
int i;
554
for (i = 0; i < 3; ++i) {
555
scaled_matrix.rgb_to_y[i] =
556
(yuv_matrix->rgb_to_y[i] * yuv_max + rgb_round) / rgb_max;
557
scaled_matrix.rgb_to_u[i] =
558
(yuv_matrix->rgb_to_u[i] * yuv_max + rgb_round) / rgb_max;
559
scaled_matrix.rgb_to_v[i] =
560
(yuv_matrix->rgb_to_v[i] * yuv_max + rgb_round) / rgb_max;
561
}
562
}
563
// Also incorporate precision change scaling.
564
scaled_matrix.rgb_to_y[3] = Shift(yuv_matrix->rgb_to_y[3], sfix);
565
scaled_matrix.rgb_to_u[3] = Shift(yuv_matrix->rgb_to_u[3], sfix);
566
scaled_matrix.rgb_to_v[3] = Shift(yuv_matrix->rgb_to_v[3], sfix);
567
568
return DoSharpArgbToYuv(
569
(const uint8_t*)r_ptr, (const uint8_t*)g_ptr, (const uint8_t*)b_ptr,
570
rgb_step, rgb_stride, rgb_bit_depth, (uint8_t*)y_ptr, y_stride,
571
(uint8_t*)u_ptr, u_stride, (uint8_t*)v_ptr, v_stride, yuv_bit_depth,
572
width, height, &scaled_matrix, transfer_type);
573
}
574
575
//------------------------------------------------------------------------------
576
577