Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/sharpyuv/sharpyuv_gamma.c
9898 views
1
// Copyright 2022 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Gamma correction utilities.
11
12
#include "sharpyuv/sharpyuv_gamma.h"
13
14
#include <assert.h>
15
#include <float.h>
16
#include <math.h>
17
18
#include "src/webp/types.h"
19
20
// Gamma correction compensates loss of resolution during chroma subsampling.
21
// Size of pre-computed table for converting from gamma to linear.
22
#define GAMMA_TO_LINEAR_TAB_BITS 10
23
#define GAMMA_TO_LINEAR_TAB_SIZE (1 << GAMMA_TO_LINEAR_TAB_BITS)
24
static uint32_t kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 2];
25
#define LINEAR_TO_GAMMA_TAB_BITS 9
26
#define LINEAR_TO_GAMMA_TAB_SIZE (1 << LINEAR_TO_GAMMA_TAB_BITS)
27
static uint32_t kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 2];
28
29
#if defined(_MSC_VER)
30
static const double kGammaF = 2.222222222222222;
31
#else
32
static const double kGammaF = 1. / 0.45;
33
#endif
34
#define GAMMA_TO_LINEAR_BITS 16
35
36
static volatile int kGammaTablesSOk = 0;
37
void SharpYuvInitGammaTables(void) {
38
assert(GAMMA_TO_LINEAR_BITS <= 16);
39
if (!kGammaTablesSOk) {
40
int v;
41
const double a = 0.09929682680944;
42
const double thresh = 0.018053968510807;
43
const double final_scale = 1 << GAMMA_TO_LINEAR_BITS;
44
// Precompute gamma to linear table.
45
{
46
const double norm = 1. / GAMMA_TO_LINEAR_TAB_SIZE;
47
const double a_rec = 1. / (1. + a);
48
for (v = 0; v <= GAMMA_TO_LINEAR_TAB_SIZE; ++v) {
49
const double g = norm * v;
50
double value;
51
if (g <= thresh * 4.5) {
52
value = g / 4.5;
53
} else {
54
value = pow(a_rec * (g + a), kGammaF);
55
}
56
kGammaToLinearTabS[v] = (uint32_t)(value * final_scale + .5);
57
}
58
// to prevent small rounding errors to cause read-overflow:
59
kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 1] =
60
kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE];
61
}
62
// Precompute linear to gamma table.
63
{
64
const double scale = 1. / LINEAR_TO_GAMMA_TAB_SIZE;
65
for (v = 0; v <= LINEAR_TO_GAMMA_TAB_SIZE; ++v) {
66
const double g = scale * v;
67
double value;
68
if (g <= thresh) {
69
value = 4.5 * g;
70
} else {
71
value = (1. + a) * pow(g, 1. / kGammaF) - a;
72
}
73
kLinearToGammaTabS[v] =
74
(uint32_t)(final_scale * value + 0.5);
75
}
76
// to prevent small rounding errors to cause read-overflow:
77
kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 1] =
78
kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE];
79
}
80
kGammaTablesSOk = 1;
81
}
82
}
83
84
static WEBP_INLINE int Shift(int v, int shift) {
85
return (shift >= 0) ? (v << shift) : (v >> -shift);
86
}
87
88
static WEBP_INLINE uint32_t FixedPointInterpolation(int v, uint32_t* tab,
89
int tab_pos_shift_right,
90
int tab_value_shift) {
91
const uint32_t tab_pos = Shift(v, -tab_pos_shift_right);
92
// fractional part, in 'tab_pos_shift' fixed-point precision
93
const uint32_t x = v - (tab_pos << tab_pos_shift_right); // fractional part
94
// v0 / v1 are in kGammaToLinearBits fixed-point precision (range [0..1])
95
const uint32_t v0 = Shift(tab[tab_pos + 0], tab_value_shift);
96
const uint32_t v1 = Shift(tab[tab_pos + 1], tab_value_shift);
97
// Final interpolation.
98
const uint32_t v2 = (v1 - v0) * x; // note: v1 >= v0.
99
const int half =
100
(tab_pos_shift_right > 0) ? 1 << (tab_pos_shift_right - 1) : 0;
101
const uint32_t result = v0 + ((v2 + half) >> tab_pos_shift_right);
102
return result;
103
}
104
105
static uint32_t ToLinearSrgb(uint16_t v, int bit_depth) {
106
const int shift = GAMMA_TO_LINEAR_TAB_BITS - bit_depth;
107
if (shift > 0) {
108
return kGammaToLinearTabS[v << shift];
109
}
110
return FixedPointInterpolation(v, kGammaToLinearTabS, -shift, 0);
111
}
112
113
static uint16_t FromLinearSrgb(uint32_t value, int bit_depth) {
114
return FixedPointInterpolation(
115
value, kLinearToGammaTabS,
116
(GAMMA_TO_LINEAR_BITS - LINEAR_TO_GAMMA_TAB_BITS),
117
bit_depth - GAMMA_TO_LINEAR_BITS);
118
}
119
120
////////////////////////////////////////////////////////////////////////////////
121
122
#define CLAMP(x, low, high) \
123
(((x) < (low)) ? (low) : (((high) < (x)) ? (high) : (x)))
124
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
125
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
126
127
static WEBP_INLINE float Roundf(float x) {
128
if (x < 0)
129
return (float)ceil((double)(x - 0.5f));
130
else
131
return (float)floor((double)(x + 0.5f));
132
}
133
134
static WEBP_INLINE float Powf(float base, float exp) {
135
return (float)pow((double)base, (double)exp);
136
}
137
138
static WEBP_INLINE float Log10f(float x) { return (float)log10((double)x); }
139
140
static float ToLinear709(float gamma) {
141
if (gamma < 0.f) {
142
return 0.f;
143
} else if (gamma < 4.5f * 0.018053968510807f) {
144
return gamma / 4.5f;
145
} else if (gamma < 1.f) {
146
return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f);
147
}
148
return 1.f;
149
}
150
151
static float FromLinear709(float linear) {
152
if (linear < 0.f) {
153
return 0.f;
154
} else if (linear < 0.018053968510807f) {
155
return linear * 4.5f;
156
} else if (linear < 1.f) {
157
return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f;
158
}
159
return 1.f;
160
}
161
162
static float ToLinear470M(float gamma) {
163
return Powf(CLAMP(gamma, 0.f, 1.f), 2.2f);
164
}
165
166
static float FromLinear470M(float linear) {
167
return Powf(CLAMP(linear, 0.f, 1.f), 1.f / 2.2f);
168
}
169
170
static float ToLinear470Bg(float gamma) {
171
return Powf(CLAMP(gamma, 0.f, 1.f), 2.8f);
172
}
173
174
static float FromLinear470Bg(float linear) {
175
return Powf(CLAMP(linear, 0.f, 1.f), 1.f / 2.8f);
176
}
177
178
static float ToLinearSmpte240(float gamma) {
179
if (gamma < 0.f) {
180
return 0.f;
181
} else if (gamma < 4.f * 0.022821585529445f) {
182
return gamma / 4.f;
183
} else if (gamma < 1.f) {
184
return Powf((gamma + 0.111572195921731f) / 1.111572195921731f, 1.f / 0.45f);
185
}
186
return 1.f;
187
}
188
189
static float FromLinearSmpte240(float linear) {
190
if (linear < 0.f) {
191
return 0.f;
192
} else if (linear < 0.022821585529445f) {
193
return linear * 4.f;
194
} else if (linear < 1.f) {
195
return 1.111572195921731f * Powf(linear, 0.45f) - 0.111572195921731f;
196
}
197
return 1.f;
198
}
199
200
static float ToLinearLog100(float gamma) {
201
// The function is non-bijective so choose the middle of [0, 0.01].
202
const float mid_interval = 0.01f / 2.f;
203
return (gamma <= 0.0f) ? mid_interval
204
: Powf(10.0f, 2.f * (MIN(gamma, 1.f) - 1.0f));
205
}
206
207
static float FromLinearLog100(float linear) {
208
return (linear < 0.01f) ? 0.0f : 1.0f + Log10f(MIN(linear, 1.f)) / 2.0f;
209
}
210
211
static float ToLinearLog100Sqrt10(float gamma) {
212
// The function is non-bijective so choose the middle of [0, 0.00316227766f[.
213
const float mid_interval = 0.00316227766f / 2.f;
214
return (gamma <= 0.0f) ? mid_interval
215
: Powf(10.0f, 2.5f * (MIN(gamma, 1.f) - 1.0f));
216
}
217
218
static float FromLinearLog100Sqrt10(float linear) {
219
return (linear < 0.00316227766f) ? 0.0f
220
: 1.0f + Log10f(MIN(linear, 1.f)) / 2.5f;
221
}
222
223
static float ToLinearIec61966(float gamma) {
224
if (gamma <= -4.5f * 0.018053968510807f) {
225
return Powf((-gamma + 0.09929682680944f) / -1.09929682680944f, 1.f / 0.45f);
226
} else if (gamma < 4.5f * 0.018053968510807f) {
227
return gamma / 4.5f;
228
}
229
return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f);
230
}
231
232
static float FromLinearIec61966(float linear) {
233
if (linear <= -0.018053968510807f) {
234
return -1.09929682680944f * Powf(-linear, 0.45f) + 0.09929682680944f;
235
} else if (linear < 0.018053968510807f) {
236
return linear * 4.5f;
237
}
238
return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f;
239
}
240
241
static float ToLinearBt1361(float gamma) {
242
if (gamma < -0.25f) {
243
return -0.25f;
244
} else if (gamma < 0.f) {
245
return Powf((gamma - 0.02482420670236f) / -0.27482420670236f, 1.f / 0.45f) /
246
-4.f;
247
} else if (gamma < 4.5f * 0.018053968510807f) {
248
return gamma / 4.5f;
249
} else if (gamma < 1.f) {
250
return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f);
251
}
252
return 1.f;
253
}
254
255
static float FromLinearBt1361(float linear) {
256
if (linear < -0.25f) {
257
return -0.25f;
258
} else if (linear < 0.f) {
259
return -0.27482420670236f * Powf(-4.f * linear, 0.45f) + 0.02482420670236f;
260
} else if (linear < 0.018053968510807f) {
261
return linear * 4.5f;
262
} else if (linear < 1.f) {
263
return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f;
264
}
265
return 1.f;
266
}
267
268
static float ToLinearPq(float gamma) {
269
if (gamma > 0.f) {
270
const float pow_gamma = Powf(gamma, 32.f / 2523.f);
271
const float num = MAX(pow_gamma - 107.f / 128.f, 0.0f);
272
const float den = MAX(2413.f / 128.f - 2392.f / 128.f * pow_gamma, FLT_MIN);
273
return Powf(num / den, 4096.f / 653.f);
274
}
275
return 0.f;
276
}
277
278
static float FromLinearPq(float linear) {
279
if (linear > 0.f) {
280
const float pow_linear = Powf(linear, 653.f / 4096.f);
281
const float num = 107.f / 128.f + 2413.f / 128.f * pow_linear;
282
const float den = 1.0f + 2392.f / 128.f * pow_linear;
283
return Powf(num / den, 2523.f / 32.f);
284
}
285
return 0.f;
286
}
287
288
static float ToLinearSmpte428(float gamma) {
289
return Powf(MAX(gamma, 0.f), 2.6f) / 0.91655527974030934f;
290
}
291
292
static float FromLinearSmpte428(float linear) {
293
return Powf(0.91655527974030934f * MAX(linear, 0.f), 1.f / 2.6f);
294
}
295
296
// Conversion in BT.2100 requires RGB info. Simplify to gamma correction here.
297
static float ToLinearHlg(float gamma) {
298
if (gamma < 0.f) {
299
return 0.f;
300
} else if (gamma <= 0.5f) {
301
return Powf((gamma * gamma) * (1.f / 3.f), 1.2f);
302
}
303
return Powf((expf((gamma - 0.55991073f) / 0.17883277f) + 0.28466892f) / 12.0f,
304
1.2f);
305
}
306
307
static float FromLinearHlg(float linear) {
308
linear = Powf(linear, 1.f / 1.2f);
309
if (linear < 0.f) {
310
return 0.f;
311
} else if (linear <= (1.f / 12.f)) {
312
return sqrtf(3.f * linear);
313
}
314
return 0.17883277f * logf(12.f * linear - 0.28466892f) + 0.55991073f;
315
}
316
317
uint32_t SharpYuvGammaToLinear(uint16_t v, int bit_depth,
318
SharpYuvTransferFunctionType transfer_type) {
319
float v_float, linear;
320
if (transfer_type == kSharpYuvTransferFunctionSrgb) {
321
return ToLinearSrgb(v, bit_depth);
322
}
323
v_float = (float)v / ((1 << bit_depth) - 1);
324
switch (transfer_type) {
325
case kSharpYuvTransferFunctionBt709:
326
case kSharpYuvTransferFunctionBt601:
327
case kSharpYuvTransferFunctionBt2020_10Bit:
328
case kSharpYuvTransferFunctionBt2020_12Bit:
329
linear = ToLinear709(v_float);
330
break;
331
case kSharpYuvTransferFunctionBt470M:
332
linear = ToLinear470M(v_float);
333
break;
334
case kSharpYuvTransferFunctionBt470Bg:
335
linear = ToLinear470Bg(v_float);
336
break;
337
case kSharpYuvTransferFunctionSmpte240:
338
linear = ToLinearSmpte240(v_float);
339
break;
340
case kSharpYuvTransferFunctionLinear:
341
return v;
342
case kSharpYuvTransferFunctionLog100:
343
linear = ToLinearLog100(v_float);
344
break;
345
case kSharpYuvTransferFunctionLog100_Sqrt10:
346
linear = ToLinearLog100Sqrt10(v_float);
347
break;
348
case kSharpYuvTransferFunctionIec61966:
349
linear = ToLinearIec61966(v_float);
350
break;
351
case kSharpYuvTransferFunctionBt1361:
352
linear = ToLinearBt1361(v_float);
353
break;
354
case kSharpYuvTransferFunctionSmpte2084:
355
linear = ToLinearPq(v_float);
356
break;
357
case kSharpYuvTransferFunctionSmpte428:
358
linear = ToLinearSmpte428(v_float);
359
break;
360
case kSharpYuvTransferFunctionHlg:
361
linear = ToLinearHlg(v_float);
362
break;
363
default:
364
assert(0);
365
linear = 0;
366
break;
367
}
368
return (uint32_t)Roundf(linear * ((1 << 16) - 1));
369
}
370
371
uint16_t SharpYuvLinearToGamma(uint32_t v, int bit_depth,
372
SharpYuvTransferFunctionType transfer_type) {
373
float v_float, linear;
374
if (transfer_type == kSharpYuvTransferFunctionSrgb) {
375
return FromLinearSrgb(v, bit_depth);
376
}
377
v_float = (float)v / ((1 << 16) - 1);
378
switch (transfer_type) {
379
case kSharpYuvTransferFunctionBt709:
380
case kSharpYuvTransferFunctionBt601:
381
case kSharpYuvTransferFunctionBt2020_10Bit:
382
case kSharpYuvTransferFunctionBt2020_12Bit:
383
linear = FromLinear709(v_float);
384
break;
385
case kSharpYuvTransferFunctionBt470M:
386
linear = FromLinear470M(v_float);
387
break;
388
case kSharpYuvTransferFunctionBt470Bg:
389
linear = FromLinear470Bg(v_float);
390
break;
391
case kSharpYuvTransferFunctionSmpte240:
392
linear = FromLinearSmpte240(v_float);
393
break;
394
case kSharpYuvTransferFunctionLinear:
395
return v;
396
case kSharpYuvTransferFunctionLog100:
397
linear = FromLinearLog100(v_float);
398
break;
399
case kSharpYuvTransferFunctionLog100_Sqrt10:
400
linear = FromLinearLog100Sqrt10(v_float);
401
break;
402
case kSharpYuvTransferFunctionIec61966:
403
linear = FromLinearIec61966(v_float);
404
break;
405
case kSharpYuvTransferFunctionBt1361:
406
linear = FromLinearBt1361(v_float);
407
break;
408
case kSharpYuvTransferFunctionSmpte2084:
409
linear = FromLinearPq(v_float);
410
break;
411
case kSharpYuvTransferFunctionSmpte428:
412
linear = FromLinearSmpte428(v_float);
413
break;
414
case kSharpYuvTransferFunctionHlg:
415
linear = FromLinearHlg(v_float);
416
break;
417
default:
418
assert(0);
419
linear = 0;
420
break;
421
}
422
return (uint16_t)Roundf(linear * ((1 << bit_depth) - 1));
423
}
424
425