Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/dec/frame_dec.c
9912 views
1
// Copyright 2010 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Frame-reconstruction function. Memory allocation.
11
//
12
// Author: Skal ([email protected])
13
14
#include <stdlib.h>
15
#include "src/dec/vp8i_dec.h"
16
#include "src/utils/utils.h"
17
18
//------------------------------------------------------------------------------
19
// Main reconstruction function.
20
21
static const uint16_t kScan[16] = {
22
0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
23
0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
24
0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
25
0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
26
};
27
28
static int CheckMode(int mb_x, int mb_y, int mode) {
29
if (mode == B_DC_PRED) {
30
if (mb_x == 0) {
31
return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
32
} else {
33
return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
34
}
35
}
36
return mode;
37
}
38
39
static void Copy32b(uint8_t* const dst, const uint8_t* const src) {
40
memcpy(dst, src, 4);
41
}
42
43
static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src,
44
uint8_t* const dst) {
45
switch (bits >> 30) {
46
case 3:
47
VP8Transform(src, dst, 0);
48
break;
49
case 2:
50
VP8TransformAC3(src, dst);
51
break;
52
case 1:
53
VP8TransformDC(src, dst);
54
break;
55
default:
56
break;
57
}
58
}
59
60
static void DoUVTransform(uint32_t bits, const int16_t* const src,
61
uint8_t* const dst) {
62
if (bits & 0xff) { // any non-zero coeff at all?
63
if (bits & 0xaa) { // any non-zero AC coefficient?
64
VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V
65
} else {
66
VP8TransformDCUV(src, dst);
67
}
68
}
69
}
70
71
static void ReconstructRow(const VP8Decoder* const dec,
72
const VP8ThreadContext* ctx) {
73
int j;
74
int mb_x;
75
const int mb_y = ctx->mb_y_;
76
const int cache_id = ctx->id_;
77
uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
78
uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
79
uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
80
81
// Initialize left-most block.
82
for (j = 0; j < 16; ++j) {
83
y_dst[j * BPS - 1] = 129;
84
}
85
for (j = 0; j < 8; ++j) {
86
u_dst[j * BPS - 1] = 129;
87
v_dst[j * BPS - 1] = 129;
88
}
89
90
// Init top-left sample on left column too.
91
if (mb_y > 0) {
92
y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
93
} else {
94
// we only need to do this init once at block (0,0).
95
// Afterward, it remains valid for the whole topmost row.
96
memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
97
memset(u_dst - BPS - 1, 127, 8 + 1);
98
memset(v_dst - BPS - 1, 127, 8 + 1);
99
}
100
101
// Reconstruct one row.
102
for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) {
103
const VP8MBData* const block = ctx->mb_data_ + mb_x;
104
105
// Rotate in the left samples from previously decoded block. We move four
106
// pixels at a time for alignment reason, and because of in-loop filter.
107
if (mb_x > 0) {
108
for (j = -1; j < 16; ++j) {
109
Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
110
}
111
for (j = -1; j < 8; ++j) {
112
Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
113
Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
114
}
115
}
116
{
117
// bring top samples into the cache
118
VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x;
119
const int16_t* const coeffs = block->coeffs_;
120
uint32_t bits = block->non_zero_y_;
121
int n;
122
123
if (mb_y > 0) {
124
memcpy(y_dst - BPS, top_yuv[0].y, 16);
125
memcpy(u_dst - BPS, top_yuv[0].u, 8);
126
memcpy(v_dst - BPS, top_yuv[0].v, 8);
127
}
128
129
// predict and add residuals
130
if (block->is_i4x4_) { // 4x4
131
uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
132
133
if (mb_y > 0) {
134
if (mb_x >= dec->mb_w_ - 1) { // on rightmost border
135
memset(top_right, top_yuv[0].y[15], sizeof(*top_right));
136
} else {
137
memcpy(top_right, top_yuv[1].y, sizeof(*top_right));
138
}
139
}
140
// replicate the top-right pixels below
141
top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
142
143
// predict and add residuals for all 4x4 blocks in turn.
144
for (n = 0; n < 16; ++n, bits <<= 2) {
145
uint8_t* const dst = y_dst + kScan[n];
146
VP8PredLuma4[block->imodes_[n]](dst);
147
DoTransform(bits, coeffs + n * 16, dst);
148
}
149
} else { // 16x16
150
const int pred_func = CheckMode(mb_x, mb_y, block->imodes_[0]);
151
VP8PredLuma16[pred_func](y_dst);
152
if (bits != 0) {
153
for (n = 0; n < 16; ++n, bits <<= 2) {
154
DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]);
155
}
156
}
157
}
158
{
159
// Chroma
160
const uint32_t bits_uv = block->non_zero_uv_;
161
const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_);
162
VP8PredChroma8[pred_func](u_dst);
163
VP8PredChroma8[pred_func](v_dst);
164
DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst);
165
DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst);
166
}
167
168
// stash away top samples for next block
169
if (mb_y < dec->mb_h_ - 1) {
170
memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16);
171
memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8);
172
memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8);
173
}
174
}
175
// Transfer reconstructed samples from yuv_b_ cache to final destination.
176
{
177
const int y_offset = cache_id * 16 * dec->cache_y_stride_;
178
const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
179
uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset;
180
uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset;
181
uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset;
182
for (j = 0; j < 16; ++j) {
183
memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16);
184
}
185
for (j = 0; j < 8; ++j) {
186
memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8);
187
memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8);
188
}
189
}
190
}
191
}
192
193
//------------------------------------------------------------------------------
194
// Filtering
195
196
// kFilterExtraRows[] = How many extra lines are needed on the MB boundary
197
// for caching, given a filtering level.
198
// Simple filter: up to 2 luma samples are read and 1 is written.
199
// Complex filter: up to 4 luma samples are read and 3 are written. Same for
200
// U/V, so it's 8 samples total (because of the 2x upsampling).
201
static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
202
203
static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
204
const VP8ThreadContext* const ctx = &dec->thread_ctx_;
205
const int cache_id = ctx->id_;
206
const int y_bps = dec->cache_y_stride_;
207
const VP8FInfo* const f_info = ctx->f_info_ + mb_x;
208
uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16;
209
const int ilevel = f_info->f_ilevel_;
210
const int limit = f_info->f_limit_;
211
if (limit == 0) {
212
return;
213
}
214
assert(limit >= 3);
215
if (dec->filter_type_ == 1) { // simple
216
if (mb_x > 0) {
217
VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
218
}
219
if (f_info->f_inner_) {
220
VP8SimpleHFilter16i(y_dst, y_bps, limit);
221
}
222
if (mb_y > 0) {
223
VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
224
}
225
if (f_info->f_inner_) {
226
VP8SimpleVFilter16i(y_dst, y_bps, limit);
227
}
228
} else { // complex
229
const int uv_bps = dec->cache_uv_stride_;
230
uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
231
uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
232
const int hev_thresh = f_info->hev_thresh_;
233
if (mb_x > 0) {
234
VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
235
VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
236
}
237
if (f_info->f_inner_) {
238
VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
239
VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
240
}
241
if (mb_y > 0) {
242
VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
243
VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
244
}
245
if (f_info->f_inner_) {
246
VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
247
VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
248
}
249
}
250
}
251
252
// Filter the decoded macroblock row (if needed)
253
static void FilterRow(const VP8Decoder* const dec) {
254
int mb_x;
255
const int mb_y = dec->thread_ctx_.mb_y_;
256
assert(dec->thread_ctx_.filter_row_);
257
for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
258
DoFilter(dec, mb_x, mb_y);
259
}
260
}
261
262
//------------------------------------------------------------------------------
263
// Precompute the filtering strength for each segment and each i4x4/i16x16 mode.
264
265
static void PrecomputeFilterStrengths(VP8Decoder* const dec) {
266
if (dec->filter_type_ > 0) {
267
int s;
268
const VP8FilterHeader* const hdr = &dec->filter_hdr_;
269
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
270
int i4x4;
271
// First, compute the initial level
272
int base_level;
273
if (dec->segment_hdr_.use_segment_) {
274
base_level = dec->segment_hdr_.filter_strength_[s];
275
if (!dec->segment_hdr_.absolute_delta_) {
276
base_level += hdr->level_;
277
}
278
} else {
279
base_level = hdr->level_;
280
}
281
for (i4x4 = 0; i4x4 <= 1; ++i4x4) {
282
VP8FInfo* const info = &dec->fstrengths_[s][i4x4];
283
int level = base_level;
284
if (hdr->use_lf_delta_) {
285
level += hdr->ref_lf_delta_[0];
286
if (i4x4) {
287
level += hdr->mode_lf_delta_[0];
288
}
289
}
290
level = (level < 0) ? 0 : (level > 63) ? 63 : level;
291
if (level > 0) {
292
int ilevel = level;
293
if (hdr->sharpness_ > 0) {
294
if (hdr->sharpness_ > 4) {
295
ilevel >>= 2;
296
} else {
297
ilevel >>= 1;
298
}
299
if (ilevel > 9 - hdr->sharpness_) {
300
ilevel = 9 - hdr->sharpness_;
301
}
302
}
303
if (ilevel < 1) ilevel = 1;
304
info->f_ilevel_ = ilevel;
305
info->f_limit_ = 2 * level + ilevel;
306
info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
307
} else {
308
info->f_limit_ = 0; // no filtering
309
}
310
info->f_inner_ = i4x4;
311
}
312
}
313
}
314
}
315
316
//------------------------------------------------------------------------------
317
// Dithering
318
319
// minimal amp that will provide a non-zero dithering effect
320
#define MIN_DITHER_AMP 4
321
322
#define DITHER_AMP_TAB_SIZE 12
323
static const uint8_t kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = {
324
// roughly, it's dqm->uv_mat_[1]
325
8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1
326
};
327
328
void VP8InitDithering(const WebPDecoderOptions* const options,
329
VP8Decoder* const dec) {
330
assert(dec != NULL);
331
if (options != NULL) {
332
const int d = options->dithering_strength;
333
const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1;
334
const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100);
335
if (f > 0) {
336
int s;
337
int all_amp = 0;
338
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
339
VP8QuantMatrix* const dqm = &dec->dqm_[s];
340
if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) {
341
const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_;
342
dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3;
343
}
344
all_amp |= dqm->dither_;
345
}
346
if (all_amp != 0) {
347
VP8InitRandom(&dec->dithering_rg_, 1.0f);
348
dec->dither_ = 1;
349
}
350
}
351
// potentially allow alpha dithering
352
dec->alpha_dithering_ = options->alpha_dithering_strength;
353
if (dec->alpha_dithering_ > 100) {
354
dec->alpha_dithering_ = 100;
355
} else if (dec->alpha_dithering_ < 0) {
356
dec->alpha_dithering_ = 0;
357
}
358
}
359
}
360
361
// Convert to range: [-2,2] for dither=50, [-4,4] for dither=100
362
static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) {
363
uint8_t dither[64];
364
int i;
365
for (i = 0; i < 8 * 8; ++i) {
366
dither[i] = VP8RandomBits2(rg, VP8_DITHER_AMP_BITS + 1, amp);
367
}
368
VP8DitherCombine8x8(dither, dst, bps);
369
}
370
371
static void DitherRow(VP8Decoder* const dec) {
372
int mb_x;
373
assert(dec->dither_);
374
for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
375
const VP8ThreadContext* const ctx = &dec->thread_ctx_;
376
const VP8MBData* const data = ctx->mb_data_ + mb_x;
377
const int cache_id = ctx->id_;
378
const int uv_bps = dec->cache_uv_stride_;
379
if (data->dither_ >= MIN_DITHER_AMP) {
380
uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
381
uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
382
Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_);
383
Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_);
384
}
385
}
386
}
387
388
//------------------------------------------------------------------------------
389
// This function is called after a row of macroblocks is finished decoding.
390
// It also takes into account the following restrictions:
391
// * In case of in-loop filtering, we must hold off sending some of the bottom
392
// pixels as they are yet unfiltered. They will be when the next macroblock
393
// row is decoded. Meanwhile, we must preserve them by rotating them in the
394
// cache area. This doesn't hold for the very bottom row of the uncropped
395
// picture of course.
396
// * we must clip the remaining pixels against the cropping area. The VP8Io
397
// struct must have the following fields set correctly before calling put():
398
399
#define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB
400
401
// Finalize and transmit a complete row. Return false in case of user-abort.
402
static int FinishRow(void* arg1, void* arg2) {
403
VP8Decoder* const dec = (VP8Decoder*)arg1;
404
VP8Io* const io = (VP8Io*)arg2;
405
int ok = 1;
406
const VP8ThreadContext* const ctx = &dec->thread_ctx_;
407
const int cache_id = ctx->id_;
408
const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
409
const int ysize = extra_y_rows * dec->cache_y_stride_;
410
const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
411
const int y_offset = cache_id * 16 * dec->cache_y_stride_;
412
const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
413
uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
414
uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
415
uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
416
const int mb_y = ctx->mb_y_;
417
const int is_first_row = (mb_y == 0);
418
const int is_last_row = (mb_y >= dec->br_mb_y_ - 1);
419
420
if (dec->mt_method_ == 2) {
421
ReconstructRow(dec, ctx);
422
}
423
424
if (ctx->filter_row_) {
425
FilterRow(dec);
426
}
427
428
if (dec->dither_) {
429
DitherRow(dec);
430
}
431
432
if (io->put != NULL) {
433
int y_start = MACROBLOCK_VPOS(mb_y);
434
int y_end = MACROBLOCK_VPOS(mb_y + 1);
435
if (!is_first_row) {
436
y_start -= extra_y_rows;
437
io->y = ydst;
438
io->u = udst;
439
io->v = vdst;
440
} else {
441
io->y = dec->cache_y_ + y_offset;
442
io->u = dec->cache_u_ + uv_offset;
443
io->v = dec->cache_v_ + uv_offset;
444
}
445
446
if (!is_last_row) {
447
y_end -= extra_y_rows;
448
}
449
if (y_end > io->crop_bottom) {
450
y_end = io->crop_bottom; // make sure we don't overflow on last row.
451
}
452
// If dec->alpha_data_ is not NULL, we have some alpha plane present.
453
io->a = NULL;
454
if (dec->alpha_data_ != NULL && y_start < y_end) {
455
io->a = VP8DecompressAlphaRows(dec, io, y_start, y_end - y_start);
456
if (io->a == NULL) {
457
return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
458
"Could not decode alpha data.");
459
}
460
}
461
if (y_start < io->crop_top) {
462
const int delta_y = io->crop_top - y_start;
463
y_start = io->crop_top;
464
assert(!(delta_y & 1));
465
io->y += dec->cache_y_stride_ * delta_y;
466
io->u += dec->cache_uv_stride_ * (delta_y >> 1);
467
io->v += dec->cache_uv_stride_ * (delta_y >> 1);
468
if (io->a != NULL) {
469
io->a += io->width * delta_y;
470
}
471
}
472
if (y_start < y_end) {
473
io->y += io->crop_left;
474
io->u += io->crop_left >> 1;
475
io->v += io->crop_left >> 1;
476
if (io->a != NULL) {
477
io->a += io->crop_left;
478
}
479
io->mb_y = y_start - io->crop_top;
480
io->mb_w = io->crop_right - io->crop_left;
481
io->mb_h = y_end - y_start;
482
ok = io->put(io);
483
}
484
}
485
// rotate top samples if needed
486
if (cache_id + 1 == dec->num_caches_) {
487
if (!is_last_row) {
488
memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
489
memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
490
memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
491
}
492
}
493
494
return ok;
495
}
496
497
#undef MACROBLOCK_VPOS
498
499
//------------------------------------------------------------------------------
500
501
int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
502
int ok = 1;
503
VP8ThreadContext* const ctx = &dec->thread_ctx_;
504
const int filter_row =
505
(dec->filter_type_ > 0) &&
506
(dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_);
507
if (dec->mt_method_ == 0) {
508
// ctx->id_ and ctx->f_info_ are already set
509
ctx->mb_y_ = dec->mb_y_;
510
ctx->filter_row_ = filter_row;
511
ReconstructRow(dec, ctx);
512
ok = FinishRow(dec, io);
513
} else {
514
WebPWorker* const worker = &dec->worker_;
515
// Finish previous job *before* updating context
516
ok &= WebPGetWorkerInterface()->Sync(worker);
517
assert(worker->status_ == OK);
518
if (ok) { // spawn a new deblocking/output job
519
ctx->io_ = *io;
520
ctx->id_ = dec->cache_id_;
521
ctx->mb_y_ = dec->mb_y_;
522
ctx->filter_row_ = filter_row;
523
if (dec->mt_method_ == 2) { // swap macroblock data
524
VP8MBData* const tmp = ctx->mb_data_;
525
ctx->mb_data_ = dec->mb_data_;
526
dec->mb_data_ = tmp;
527
} else {
528
// perform reconstruction directly in main thread
529
ReconstructRow(dec, ctx);
530
}
531
if (filter_row) { // swap filter info
532
VP8FInfo* const tmp = ctx->f_info_;
533
ctx->f_info_ = dec->f_info_;
534
dec->f_info_ = tmp;
535
}
536
// (reconstruct)+filter in parallel
537
WebPGetWorkerInterface()->Launch(worker);
538
if (++dec->cache_id_ == dec->num_caches_) {
539
dec->cache_id_ = 0;
540
}
541
}
542
}
543
return ok;
544
}
545
546
//------------------------------------------------------------------------------
547
// Finish setting up the decoding parameter once user's setup() is called.
548
549
VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
550
// Call setup() first. This may trigger additional decoding features on 'io'.
551
// Note: Afterward, we must call teardown() no matter what.
552
if (io->setup != NULL && !io->setup(io)) {
553
VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
554
return dec->status_;
555
}
556
557
// Disable filtering per user request
558
if (io->bypass_filtering) {
559
dec->filter_type_ = 0;
560
}
561
562
// Define the area where we can skip in-loop filtering, in case of cropping.
563
//
564
// 'Simple' filter reads two luma samples outside of the macroblock
565
// and filters one. It doesn't filter the chroma samples. Hence, we can
566
// avoid doing the in-loop filtering before crop_top/crop_left position.
567
// For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
568
// Means: there's a dependency chain that goes all the way up to the
569
// top-left corner of the picture (MB #0). We must filter all the previous
570
// macroblocks.
571
{
572
const int extra_pixels = kFilterExtraRows[dec->filter_type_];
573
if (dec->filter_type_ == 2) {
574
// For complex filter, we need to preserve the dependency chain.
575
dec->tl_mb_x_ = 0;
576
dec->tl_mb_y_ = 0;
577
} else {
578
// For simple filter, we can filter only the cropped region.
579
// We include 'extra_pixels' on the other side of the boundary, since
580
// vertical or horizontal filtering of the previous macroblock can
581
// modify some abutting pixels.
582
dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4;
583
dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4;
584
if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0;
585
if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0;
586
}
587
// We need some 'extra' pixels on the right/bottom.
588
dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
589
dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
590
if (dec->br_mb_x_ > dec->mb_w_) {
591
dec->br_mb_x_ = dec->mb_w_;
592
}
593
if (dec->br_mb_y_ > dec->mb_h_) {
594
dec->br_mb_y_ = dec->mb_h_;
595
}
596
}
597
PrecomputeFilterStrengths(dec);
598
return VP8_STATUS_OK;
599
}
600
601
int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
602
int ok = 1;
603
if (dec->mt_method_ > 0) {
604
ok = WebPGetWorkerInterface()->Sync(&dec->worker_);
605
}
606
607
if (io->teardown != NULL) {
608
io->teardown(io);
609
}
610
return ok;
611
}
612
613
//------------------------------------------------------------------------------
614
// For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line.
615
//
616
// Reason is: the deblocking filter cannot deblock the bottom horizontal edges
617
// immediately, and needs to wait for first few rows of the next macroblock to
618
// be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending
619
// on strength).
620
// With two threads, the vertical positions of the rows being decoded are:
621
// Decode: [ 0..15][16..31][32..47][48..63][64..79][...
622
// Deblock: [ 0..11][12..27][28..43][44..59][...
623
// If we use two threads and two caches of 16 pixels, the sequence would be:
624
// Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][...
625
// Deblock: [ 0..11][12..27!!][-4..11][12..27][...
626
// The problem occurs during row [12..15!!] that both the decoding and
627
// deblocking threads are writing simultaneously.
628
// With 3 cache lines, one get a safe write pattern:
629
// Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0..
630
// Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28...
631
// Note that multi-threaded output _without_ deblocking can make use of two
632
// cache lines of 16 pixels only, since there's no lagging behind. The decoding
633
// and output process have non-concurrent writing:
634
// Decode: [ 0..15][16..31][ 0..15][16..31][...
635
// io->put: [ 0..15][16..31][ 0..15][...
636
637
#define MT_CACHE_LINES 3
638
#define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case
639
640
// Initialize multi/single-thread worker
641
static int InitThreadContext(VP8Decoder* const dec) {
642
dec->cache_id_ = 0;
643
if (dec->mt_method_ > 0) {
644
WebPWorker* const worker = &dec->worker_;
645
if (!WebPGetWorkerInterface()->Reset(worker)) {
646
return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
647
"thread initialization failed.");
648
}
649
worker->data1 = dec;
650
worker->data2 = (void*)&dec->thread_ctx_.io_;
651
worker->hook = FinishRow;
652
dec->num_caches_ =
653
(dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
654
} else {
655
dec->num_caches_ = ST_CACHE_LINES;
656
}
657
return 1;
658
}
659
660
int VP8GetThreadMethod(const WebPDecoderOptions* const options,
661
const WebPHeaderStructure* const headers,
662
int width, int height) {
663
if (options == NULL || options->use_threads == 0) {
664
return 0;
665
}
666
(void)headers;
667
(void)width;
668
(void)height;
669
assert(headers == NULL || !headers->is_lossless);
670
#if defined(WEBP_USE_THREAD)
671
if (width >= MIN_WIDTH_FOR_THREADS) return 2;
672
#endif
673
return 0;
674
}
675
676
#undef MT_CACHE_LINES
677
#undef ST_CACHE_LINES
678
679
//------------------------------------------------------------------------------
680
// Memory setup
681
682
static int AllocateMemory(VP8Decoder* const dec) {
683
const int num_caches = dec->num_caches_;
684
const int mb_w = dec->mb_w_;
685
// Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
686
const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
687
const size_t top_size = sizeof(VP8TopSamples) * mb_w;
688
const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
689
const size_t f_info_size =
690
(dec->filter_type_ > 0) ?
691
mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo)
692
: 0;
693
const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
694
const size_t mb_data_size =
695
(dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_);
696
const size_t cache_height = (16 * num_caches
697
+ kFilterExtraRows[dec->filter_type_]) * 3 / 2;
698
const size_t cache_size = top_size * cache_height;
699
// alpha_size is the only one that scales as width x height.
700
const uint64_t alpha_size = (dec->alpha_data_ != NULL) ?
701
(uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
702
const uint64_t needed = (uint64_t)intra_pred_mode_size
703
+ top_size + mb_info_size + f_info_size
704
+ yuv_size + mb_data_size
705
+ cache_size + alpha_size + WEBP_ALIGN_CST;
706
uint8_t* mem;
707
708
if (!CheckSizeOverflow(needed)) return 0; // check for overflow
709
if (needed > dec->mem_size_) {
710
WebPSafeFree(dec->mem_);
711
dec->mem_size_ = 0;
712
dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t));
713
if (dec->mem_ == NULL) {
714
return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
715
"no memory during frame initialization.");
716
}
717
// down-cast is ok, thanks to WebPSafeMalloc() above.
718
dec->mem_size_ = (size_t)needed;
719
}
720
721
mem = (uint8_t*)dec->mem_;
722
dec->intra_t_ = mem;
723
mem += intra_pred_mode_size;
724
725
dec->yuv_t_ = (VP8TopSamples*)mem;
726
mem += top_size;
727
728
dec->mb_info_ = ((VP8MB*)mem) + 1;
729
mem += mb_info_size;
730
731
dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL;
732
mem += f_info_size;
733
dec->thread_ctx_.id_ = 0;
734
dec->thread_ctx_.f_info_ = dec->f_info_;
735
if (dec->filter_type_ > 0 && dec->mt_method_ > 0) {
736
// secondary cache line. The deblocking process need to make use of the
737
// filtering strength from previous macroblock row, while the new ones
738
// are being decoded in parallel. We'll just swap the pointers.
739
dec->thread_ctx_.f_info_ += mb_w;
740
}
741
742
mem = (uint8_t*)WEBP_ALIGN(mem);
743
assert((yuv_size & WEBP_ALIGN_CST) == 0);
744
dec->yuv_b_ = mem;
745
mem += yuv_size;
746
747
dec->mb_data_ = (VP8MBData*)mem;
748
dec->thread_ctx_.mb_data_ = (VP8MBData*)mem;
749
if (dec->mt_method_ == 2) {
750
dec->thread_ctx_.mb_data_ += mb_w;
751
}
752
mem += mb_data_size;
753
754
dec->cache_y_stride_ = 16 * mb_w;
755
dec->cache_uv_stride_ = 8 * mb_w;
756
{
757
const int extra_rows = kFilterExtraRows[dec->filter_type_];
758
const int extra_y = extra_rows * dec->cache_y_stride_;
759
const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
760
dec->cache_y_ = mem + extra_y;
761
dec->cache_u_ = dec->cache_y_
762
+ 16 * num_caches * dec->cache_y_stride_ + extra_uv;
763
dec->cache_v_ = dec->cache_u_
764
+ 8 * num_caches * dec->cache_uv_stride_ + extra_uv;
765
dec->cache_id_ = 0;
766
}
767
mem += cache_size;
768
769
// alpha plane
770
dec->alpha_plane_ = alpha_size ? mem : NULL;
771
mem += alpha_size;
772
assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_);
773
774
// note: left/top-info is initialized once for all.
775
memset(dec->mb_info_ - 1, 0, mb_info_size);
776
VP8InitScanline(dec); // initialize left too.
777
778
// initialize top
779
memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
780
781
return 1;
782
}
783
784
static void InitIo(VP8Decoder* const dec, VP8Io* io) {
785
// prepare 'io'
786
io->mb_y = 0;
787
io->y = dec->cache_y_;
788
io->u = dec->cache_u_;
789
io->v = dec->cache_v_;
790
io->y_stride = dec->cache_y_stride_;
791
io->uv_stride = dec->cache_uv_stride_;
792
io->a = NULL;
793
}
794
795
int VP8InitFrame(VP8Decoder* const dec, VP8Io* const io) {
796
if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_.
797
if (!AllocateMemory(dec)) return 0;
798
InitIo(dec, io);
799
VP8DspInit(); // Init critical function pointers and look-up tables.
800
return 1;
801
}
802
803
//------------------------------------------------------------------------------
804
805