Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/dsp/alpha_processing_sse2.c
9913 views
1
// Copyright 2014 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Utilities for processing transparent channel.
11
//
12
// Author: Skal ([email protected])
13
14
#include "src/dsp/dsp.h"
15
16
#if defined(WEBP_USE_SSE2)
17
#include <emmintrin.h>
18
19
//------------------------------------------------------------------------------
20
21
static int DispatchAlpha_SSE2(const uint8_t* WEBP_RESTRICT alpha,
22
int alpha_stride, int width, int height,
23
uint8_t* WEBP_RESTRICT dst, int dst_stride) {
24
// alpha_and stores an 'and' operation of all the alpha[] values. The final
25
// value is not 0xff if any of the alpha[] is not equal to 0xff.
26
uint32_t alpha_and = 0xff;
27
int i, j;
28
const __m128i zero = _mm_setzero_si128();
29
const __m128i rgb_mask = _mm_set1_epi32((int)0xffffff00); // to preserve RGB
30
const __m128i all_0xff = _mm_set_epi32(0, 0, ~0, ~0);
31
__m128i all_alphas = all_0xff;
32
33
// We must be able to access 3 extra bytes after the last written byte
34
// 'dst[4 * width - 4]', because we don't know if alpha is the first or the
35
// last byte of the quadruplet.
36
const int limit = (width - 1) & ~7;
37
38
for (j = 0; j < height; ++j) {
39
__m128i* out = (__m128i*)dst;
40
for (i = 0; i < limit; i += 8) {
41
// load 8 alpha bytes
42
const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[i]);
43
const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
44
const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
45
const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
46
// load 8 dst pixels (32 bytes)
47
const __m128i b0_lo = _mm_loadu_si128(out + 0);
48
const __m128i b0_hi = _mm_loadu_si128(out + 1);
49
// mask dst alpha values
50
const __m128i b1_lo = _mm_and_si128(b0_lo, rgb_mask);
51
const __m128i b1_hi = _mm_and_si128(b0_hi, rgb_mask);
52
// combine
53
const __m128i b2_lo = _mm_or_si128(b1_lo, a2_lo);
54
const __m128i b2_hi = _mm_or_si128(b1_hi, a2_hi);
55
// store
56
_mm_storeu_si128(out + 0, b2_lo);
57
_mm_storeu_si128(out + 1, b2_hi);
58
// accumulate eight alpha 'and' in parallel
59
all_alphas = _mm_and_si128(all_alphas, a0);
60
out += 2;
61
}
62
for (; i < width; ++i) {
63
const uint32_t alpha_value = alpha[i];
64
dst[4 * i] = alpha_value;
65
alpha_and &= alpha_value;
66
}
67
alpha += alpha_stride;
68
dst += dst_stride;
69
}
70
// Combine the eight alpha 'and' into a 8-bit mask.
71
alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff));
72
return (alpha_and != 0xff);
73
}
74
75
static void DispatchAlphaToGreen_SSE2(const uint8_t* WEBP_RESTRICT alpha,
76
int alpha_stride, int width, int height,
77
uint32_t* WEBP_RESTRICT dst,
78
int dst_stride) {
79
int i, j;
80
const __m128i zero = _mm_setzero_si128();
81
const int limit = width & ~15;
82
for (j = 0; j < height; ++j) {
83
for (i = 0; i < limit; i += 16) { // process 16 alpha bytes
84
const __m128i a0 = _mm_loadu_si128((const __m128i*)&alpha[i]);
85
const __m128i a1 = _mm_unpacklo_epi8(zero, a0); // note the 'zero' first!
86
const __m128i b1 = _mm_unpackhi_epi8(zero, a0);
87
const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
88
const __m128i b2_lo = _mm_unpacklo_epi16(b1, zero);
89
const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
90
const __m128i b2_hi = _mm_unpackhi_epi16(b1, zero);
91
_mm_storeu_si128((__m128i*)&dst[i + 0], a2_lo);
92
_mm_storeu_si128((__m128i*)&dst[i + 4], a2_hi);
93
_mm_storeu_si128((__m128i*)&dst[i + 8], b2_lo);
94
_mm_storeu_si128((__m128i*)&dst[i + 12], b2_hi);
95
}
96
for (; i < width; ++i) dst[i] = alpha[i] << 8;
97
alpha += alpha_stride;
98
dst += dst_stride;
99
}
100
}
101
102
static int ExtractAlpha_SSE2(const uint8_t* WEBP_RESTRICT argb, int argb_stride,
103
int width, int height,
104
uint8_t* WEBP_RESTRICT alpha, int alpha_stride) {
105
// alpha_and stores an 'and' operation of all the alpha[] values. The final
106
// value is not 0xff if any of the alpha[] is not equal to 0xff.
107
uint32_t alpha_and = 0xff;
108
int i, j;
109
const __m128i a_mask = _mm_set1_epi32(0xff); // to preserve alpha
110
const __m128i all_0xff = _mm_set_epi32(0, 0, ~0, ~0);
111
__m128i all_alphas = all_0xff;
112
113
// We must be able to access 3 extra bytes after the last written byte
114
// 'src[4 * width - 4]', because we don't know if alpha is the first or the
115
// last byte of the quadruplet.
116
const int limit = (width - 1) & ~7;
117
118
for (j = 0; j < height; ++j) {
119
const __m128i* src = (const __m128i*)argb;
120
for (i = 0; i < limit; i += 8) {
121
// load 32 argb bytes
122
const __m128i a0 = _mm_loadu_si128(src + 0);
123
const __m128i a1 = _mm_loadu_si128(src + 1);
124
const __m128i b0 = _mm_and_si128(a0, a_mask);
125
const __m128i b1 = _mm_and_si128(a1, a_mask);
126
const __m128i c0 = _mm_packs_epi32(b0, b1);
127
const __m128i d0 = _mm_packus_epi16(c0, c0);
128
// store
129
_mm_storel_epi64((__m128i*)&alpha[i], d0);
130
// accumulate eight alpha 'and' in parallel
131
all_alphas = _mm_and_si128(all_alphas, d0);
132
src += 2;
133
}
134
for (; i < width; ++i) {
135
const uint32_t alpha_value = argb[4 * i];
136
alpha[i] = alpha_value;
137
alpha_and &= alpha_value;
138
}
139
argb += argb_stride;
140
alpha += alpha_stride;
141
}
142
// Combine the eight alpha 'and' into a 8-bit mask.
143
alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff));
144
return (alpha_and == 0xff);
145
}
146
147
static void ExtractGreen_SSE2(const uint32_t* WEBP_RESTRICT argb,
148
uint8_t* WEBP_RESTRICT alpha, int size) {
149
int i;
150
const __m128i mask = _mm_set1_epi32(0xff);
151
const __m128i* src = (const __m128i*)argb;
152
153
for (i = 0; i + 16 <= size; i += 16, src += 4) {
154
const __m128i a0 = _mm_loadu_si128(src + 0);
155
const __m128i a1 = _mm_loadu_si128(src + 1);
156
const __m128i a2 = _mm_loadu_si128(src + 2);
157
const __m128i a3 = _mm_loadu_si128(src + 3);
158
const __m128i b0 = _mm_srli_epi32(a0, 8);
159
const __m128i b1 = _mm_srli_epi32(a1, 8);
160
const __m128i b2 = _mm_srli_epi32(a2, 8);
161
const __m128i b3 = _mm_srli_epi32(a3, 8);
162
const __m128i c0 = _mm_and_si128(b0, mask);
163
const __m128i c1 = _mm_and_si128(b1, mask);
164
const __m128i c2 = _mm_and_si128(b2, mask);
165
const __m128i c3 = _mm_and_si128(b3, mask);
166
const __m128i d0 = _mm_packs_epi32(c0, c1);
167
const __m128i d1 = _mm_packs_epi32(c2, c3);
168
const __m128i e = _mm_packus_epi16(d0, d1);
169
// store
170
_mm_storeu_si128((__m128i*)&alpha[i], e);
171
}
172
if (i + 8 <= size) {
173
const __m128i a0 = _mm_loadu_si128(src + 0);
174
const __m128i a1 = _mm_loadu_si128(src + 1);
175
const __m128i b0 = _mm_srli_epi32(a0, 8);
176
const __m128i b1 = _mm_srli_epi32(a1, 8);
177
const __m128i c0 = _mm_and_si128(b0, mask);
178
const __m128i c1 = _mm_and_si128(b1, mask);
179
const __m128i d = _mm_packs_epi32(c0, c1);
180
const __m128i e = _mm_packus_epi16(d, d);
181
_mm_storel_epi64((__m128i*)&alpha[i], e);
182
i += 8;
183
}
184
for (; i < size; ++i) alpha[i] = argb[i] >> 8;
185
}
186
187
//------------------------------------------------------------------------------
188
// Non-dither premultiplied modes
189
190
#define MULTIPLIER(a) ((a) * 0x8081)
191
#define PREMULTIPLY(x, m) (((x) * (m)) >> 23)
192
193
// We can't use a 'const int' for the SHUFFLE value, because it has to be an
194
// immediate in the _mm_shufflexx_epi16() instruction. We really need a macro.
195
// We use: v / 255 = (v * 0x8081) >> 23, where v = alpha * {r,g,b} is a 16bit
196
// value.
197
#define APPLY_ALPHA(RGBX, SHUFFLE) do { \
198
const __m128i argb0 = _mm_loadu_si128((const __m128i*)&(RGBX)); \
199
const __m128i argb1_lo = _mm_unpacklo_epi8(argb0, zero); \
200
const __m128i argb1_hi = _mm_unpackhi_epi8(argb0, zero); \
201
const __m128i alpha0_lo = _mm_or_si128(argb1_lo, kMask); \
202
const __m128i alpha0_hi = _mm_or_si128(argb1_hi, kMask); \
203
const __m128i alpha1_lo = _mm_shufflelo_epi16(alpha0_lo, SHUFFLE); \
204
const __m128i alpha1_hi = _mm_shufflelo_epi16(alpha0_hi, SHUFFLE); \
205
const __m128i alpha2_lo = _mm_shufflehi_epi16(alpha1_lo, SHUFFLE); \
206
const __m128i alpha2_hi = _mm_shufflehi_epi16(alpha1_hi, SHUFFLE); \
207
/* alpha2 = [ff a0 a0 a0][ff a1 a1 a1] */ \
208
const __m128i A0_lo = _mm_mullo_epi16(alpha2_lo, argb1_lo); \
209
const __m128i A0_hi = _mm_mullo_epi16(alpha2_hi, argb1_hi); \
210
const __m128i A1_lo = _mm_mulhi_epu16(A0_lo, kMult); \
211
const __m128i A1_hi = _mm_mulhi_epu16(A0_hi, kMult); \
212
const __m128i A2_lo = _mm_srli_epi16(A1_lo, 7); \
213
const __m128i A2_hi = _mm_srli_epi16(A1_hi, 7); \
214
const __m128i A3 = _mm_packus_epi16(A2_lo, A2_hi); \
215
_mm_storeu_si128((__m128i*)&(RGBX), A3); \
216
} while (0)
217
218
static void ApplyAlphaMultiply_SSE2(uint8_t* rgba, int alpha_first,
219
int w, int h, int stride) {
220
const __m128i zero = _mm_setzero_si128();
221
const __m128i kMult = _mm_set1_epi16((short)0x8081);
222
const __m128i kMask = _mm_set_epi16(0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0);
223
const int kSpan = 4;
224
while (h-- > 0) {
225
uint32_t* const rgbx = (uint32_t*)rgba;
226
int i;
227
if (!alpha_first) {
228
for (i = 0; i + kSpan <= w; i += kSpan) {
229
APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(2, 3, 3, 3));
230
}
231
} else {
232
for (i = 0; i + kSpan <= w; i += kSpan) {
233
APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 1));
234
}
235
}
236
// Finish with left-overs.
237
for (; i < w; ++i) {
238
uint8_t* const rgb = rgba + (alpha_first ? 1 : 0);
239
const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3);
240
const uint32_t a = alpha[4 * i];
241
if (a != 0xff) {
242
const uint32_t mult = MULTIPLIER(a);
243
rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult);
244
rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult);
245
rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult);
246
}
247
}
248
rgba += stride;
249
}
250
}
251
#undef MULTIPLIER
252
#undef PREMULTIPLY
253
254
//------------------------------------------------------------------------------
255
// Alpha detection
256
257
static int HasAlpha8b_SSE2(const uint8_t* src, int length) {
258
const __m128i all_0xff = _mm_set1_epi8((char)0xff);
259
int i = 0;
260
for (; i + 16 <= length; i += 16) {
261
const __m128i v = _mm_loadu_si128((const __m128i*)(src + i));
262
const __m128i bits = _mm_cmpeq_epi8(v, all_0xff);
263
const int mask = _mm_movemask_epi8(bits);
264
if (mask != 0xffff) return 1;
265
}
266
for (; i < length; ++i) if (src[i] != 0xff) return 1;
267
return 0;
268
}
269
270
static int HasAlpha32b_SSE2(const uint8_t* src, int length) {
271
const __m128i alpha_mask = _mm_set1_epi32(0xff);
272
const __m128i all_0xff = _mm_set1_epi8((char)0xff);
273
int i = 0;
274
// We don't know if we can access the last 3 bytes after the last alpha
275
// value 'src[4 * length - 4]' (because we don't know if alpha is the first
276
// or the last byte of the quadruplet). Hence the '-3' protection below.
277
length = length * 4 - 3; // size in bytes
278
for (; i + 64 <= length; i += 64) {
279
const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0));
280
const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 16));
281
const __m128i a2 = _mm_loadu_si128((const __m128i*)(src + i + 32));
282
const __m128i a3 = _mm_loadu_si128((const __m128i*)(src + i + 48));
283
const __m128i b0 = _mm_and_si128(a0, alpha_mask);
284
const __m128i b1 = _mm_and_si128(a1, alpha_mask);
285
const __m128i b2 = _mm_and_si128(a2, alpha_mask);
286
const __m128i b3 = _mm_and_si128(a3, alpha_mask);
287
const __m128i c0 = _mm_packs_epi32(b0, b1);
288
const __m128i c1 = _mm_packs_epi32(b2, b3);
289
const __m128i d = _mm_packus_epi16(c0, c1);
290
const __m128i bits = _mm_cmpeq_epi8(d, all_0xff);
291
const int mask = _mm_movemask_epi8(bits);
292
if (mask != 0xffff) return 1;
293
}
294
for (; i + 32 <= length; i += 32) {
295
const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0));
296
const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 16));
297
const __m128i b0 = _mm_and_si128(a0, alpha_mask);
298
const __m128i b1 = _mm_and_si128(a1, alpha_mask);
299
const __m128i c = _mm_packs_epi32(b0, b1);
300
const __m128i d = _mm_packus_epi16(c, c);
301
const __m128i bits = _mm_cmpeq_epi8(d, all_0xff);
302
const int mask = _mm_movemask_epi8(bits);
303
if (mask != 0xffff) return 1;
304
}
305
for (; i <= length; i += 4) if (src[i] != 0xff) return 1;
306
return 0;
307
}
308
309
static void AlphaReplace_SSE2(uint32_t* src, int length, uint32_t color) {
310
const __m128i m_color = _mm_set1_epi32((int)color);
311
const __m128i zero = _mm_setzero_si128();
312
int i = 0;
313
for (; i + 8 <= length; i += 8) {
314
const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0));
315
const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 4));
316
const __m128i b0 = _mm_srai_epi32(a0, 24);
317
const __m128i b1 = _mm_srai_epi32(a1, 24);
318
const __m128i c0 = _mm_cmpeq_epi32(b0, zero);
319
const __m128i c1 = _mm_cmpeq_epi32(b1, zero);
320
const __m128i d0 = _mm_and_si128(c0, m_color);
321
const __m128i d1 = _mm_and_si128(c1, m_color);
322
const __m128i e0 = _mm_andnot_si128(c0, a0);
323
const __m128i e1 = _mm_andnot_si128(c1, a1);
324
_mm_storeu_si128((__m128i*)(src + i + 0), _mm_or_si128(d0, e0));
325
_mm_storeu_si128((__m128i*)(src + i + 4), _mm_or_si128(d1, e1));
326
}
327
for (; i < length; ++i) if ((src[i] >> 24) == 0) src[i] = color;
328
}
329
330
// -----------------------------------------------------------------------------
331
// Apply alpha value to rows
332
333
static void MultARGBRow_SSE2(uint32_t* const ptr, int width, int inverse) {
334
int x = 0;
335
if (!inverse) {
336
const int kSpan = 2;
337
const __m128i zero = _mm_setzero_si128();
338
const __m128i k128 = _mm_set1_epi16(128);
339
const __m128i kMult = _mm_set1_epi16(0x0101);
340
const __m128i kMask = _mm_set_epi16(0, 0xff, 0, 0, 0, 0xff, 0, 0);
341
for (x = 0; x + kSpan <= width; x += kSpan) {
342
// To compute 'result = (int)(a * x / 255. + .5)', we use:
343
// tmp = a * v + 128, result = (tmp * 0x0101u) >> 16
344
const __m128i A0 = _mm_loadl_epi64((const __m128i*)&ptr[x]);
345
const __m128i A1 = _mm_unpacklo_epi8(A0, zero);
346
const __m128i A2 = _mm_or_si128(A1, kMask);
347
const __m128i A3 = _mm_shufflelo_epi16(A2, _MM_SHUFFLE(2, 3, 3, 3));
348
const __m128i A4 = _mm_shufflehi_epi16(A3, _MM_SHUFFLE(2, 3, 3, 3));
349
// here, A4 = [ff a0 a0 a0][ff a1 a1 a1]
350
const __m128i A5 = _mm_mullo_epi16(A4, A1);
351
const __m128i A6 = _mm_add_epi16(A5, k128);
352
const __m128i A7 = _mm_mulhi_epu16(A6, kMult);
353
const __m128i A10 = _mm_packus_epi16(A7, zero);
354
_mm_storel_epi64((__m128i*)&ptr[x], A10);
355
}
356
}
357
width -= x;
358
if (width > 0) WebPMultARGBRow_C(ptr + x, width, inverse);
359
}
360
361
static void MultRow_SSE2(uint8_t* WEBP_RESTRICT const ptr,
362
const uint8_t* WEBP_RESTRICT const alpha,
363
int width, int inverse) {
364
int x = 0;
365
if (!inverse) {
366
const __m128i zero = _mm_setzero_si128();
367
const __m128i k128 = _mm_set1_epi16(128);
368
const __m128i kMult = _mm_set1_epi16(0x0101);
369
for (x = 0; x + 8 <= width; x += 8) {
370
const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
371
const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[x]);
372
const __m128i v1 = _mm_unpacklo_epi8(v0, zero);
373
const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
374
const __m128i v2 = _mm_mullo_epi16(v1, a1);
375
const __m128i v3 = _mm_add_epi16(v2, k128);
376
const __m128i v4 = _mm_mulhi_epu16(v3, kMult);
377
const __m128i v5 = _mm_packus_epi16(v4, zero);
378
_mm_storel_epi64((__m128i*)&ptr[x], v5);
379
}
380
}
381
width -= x;
382
if (width > 0) WebPMultRow_C(ptr + x, alpha + x, width, inverse);
383
}
384
385
//------------------------------------------------------------------------------
386
// Entry point
387
388
extern void WebPInitAlphaProcessingSSE2(void);
389
390
WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) {
391
WebPMultARGBRow = MultARGBRow_SSE2;
392
WebPMultRow = MultRow_SSE2;
393
WebPApplyAlphaMultiply = ApplyAlphaMultiply_SSE2;
394
WebPDispatchAlpha = DispatchAlpha_SSE2;
395
WebPDispatchAlphaToGreen = DispatchAlphaToGreen_SSE2;
396
WebPExtractAlpha = ExtractAlpha_SSE2;
397
WebPExtractGreen = ExtractGreen_SSE2;
398
399
WebPHasAlpha8b = HasAlpha8b_SSE2;
400
WebPHasAlpha32b = HasAlpha32b_SSE2;
401
WebPAlphaReplace = AlphaReplace_SSE2;
402
}
403
404
#else // !WEBP_USE_SSE2
405
406
WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2)
407
408
#endif // WEBP_USE_SSE2
409
410