Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/dsp/dec_sse2.c
21407 views
1
// Copyright 2011 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// SSE2 version of some decoding functions (idct, loop filtering).
11
//
12
// Author: [email protected] (Somnath Banerjee)
13
// [email protected] (Christian Duvivier)
14
15
#include "src/dsp/dsp.h"
16
17
#if defined(WEBP_USE_SSE2)
18
19
// The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
20
// one it seems => disable it by default. Uncomment the following to enable:
21
#if !defined(USE_TRANSFORM_AC3)
22
#define USE_TRANSFORM_AC3 0 // ALTERNATE_CODE
23
#endif
24
25
#include <emmintrin.h>
26
27
#include "src/dec/vp8i_dec.h"
28
#include "src/dsp/common_sse2.h"
29
#include "src/dsp/cpu.h"
30
#include "src/utils/utils.h"
31
#include "src/webp/types.h"
32
33
//------------------------------------------------------------------------------
34
// Transforms (Paragraph 14.4)
35
36
static void Transform_SSE2(const int16_t* WEBP_RESTRICT in,
37
uint8_t* WEBP_RESTRICT dst, int do_two) {
38
// This implementation makes use of 16-bit fixed point versions of two
39
// multiply constants:
40
// K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
41
// K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
42
//
43
// To be able to use signed 16-bit integers, we use the following trick to
44
// have constants within range:
45
// - Associated constants are obtained by subtracting the 16-bit fixed point
46
// version of one:
47
// k = K - (1 << 16) => K = k + (1 << 16)
48
// K1 = 85267 => k1 = 20091
49
// K2 = 35468 => k2 = -30068
50
// - The multiplication of a variable by a constant become the sum of the
51
// variable and the multiplication of that variable by the associated
52
// constant:
53
// (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
54
const __m128i k1 = _mm_set1_epi16(20091);
55
const __m128i k2 = _mm_set1_epi16(-30068);
56
__m128i T0, T1, T2, T3;
57
58
// Load and concatenate the transform coefficients (we'll do two transforms
59
// in parallel). In the case of only one transform, the second half of the
60
// vectors will just contain random value we'll never use nor store.
61
__m128i in0, in1, in2, in3;
62
{
63
in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
64
in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
65
in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
66
in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
67
// a00 a10 a20 a30 x x x x
68
// a01 a11 a21 a31 x x x x
69
// a02 a12 a22 a32 x x x x
70
// a03 a13 a23 a33 x x x x
71
if (do_two) {
72
const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
73
const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
74
const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
75
const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
76
in0 = _mm_unpacklo_epi64(in0, inB0);
77
in1 = _mm_unpacklo_epi64(in1, inB1);
78
in2 = _mm_unpacklo_epi64(in2, inB2);
79
in3 = _mm_unpacklo_epi64(in3, inB3);
80
// a00 a10 a20 a30 b00 b10 b20 b30
81
// a01 a11 a21 a31 b01 b11 b21 b31
82
// a02 a12 a22 a32 b02 b12 b22 b32
83
// a03 a13 a23 a33 b03 b13 b23 b33
84
}
85
}
86
87
// Vertical pass and subsequent transpose.
88
{
89
// First pass, c and d calculations are longer because of the "trick"
90
// multiplications.
91
const __m128i a = _mm_add_epi16(in0, in2);
92
const __m128i b = _mm_sub_epi16(in0, in2);
93
// c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
94
const __m128i c1 = _mm_mulhi_epi16(in1, k2);
95
const __m128i c2 = _mm_mulhi_epi16(in3, k1);
96
const __m128i c3 = _mm_sub_epi16(in1, in3);
97
const __m128i c4 = _mm_sub_epi16(c1, c2);
98
const __m128i c = _mm_add_epi16(c3, c4);
99
// d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
100
const __m128i d1 = _mm_mulhi_epi16(in1, k1);
101
const __m128i d2 = _mm_mulhi_epi16(in3, k2);
102
const __m128i d3 = _mm_add_epi16(in1, in3);
103
const __m128i d4 = _mm_add_epi16(d1, d2);
104
const __m128i d = _mm_add_epi16(d3, d4);
105
106
// Second pass.
107
const __m128i tmp0 = _mm_add_epi16(a, d);
108
const __m128i tmp1 = _mm_add_epi16(b, c);
109
const __m128i tmp2 = _mm_sub_epi16(b, c);
110
const __m128i tmp3 = _mm_sub_epi16(a, d);
111
112
// Transpose the two 4x4.
113
VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
114
}
115
116
// Horizontal pass and subsequent transpose.
117
{
118
// First pass, c and d calculations are longer because of the "trick"
119
// multiplications.
120
const __m128i four = _mm_set1_epi16(4);
121
const __m128i dc = _mm_add_epi16(T0, four);
122
const __m128i a = _mm_add_epi16(dc, T2);
123
const __m128i b = _mm_sub_epi16(dc, T2);
124
// c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
125
const __m128i c1 = _mm_mulhi_epi16(T1, k2);
126
const __m128i c2 = _mm_mulhi_epi16(T3, k1);
127
const __m128i c3 = _mm_sub_epi16(T1, T3);
128
const __m128i c4 = _mm_sub_epi16(c1, c2);
129
const __m128i c = _mm_add_epi16(c3, c4);
130
// d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
131
const __m128i d1 = _mm_mulhi_epi16(T1, k1);
132
const __m128i d2 = _mm_mulhi_epi16(T3, k2);
133
const __m128i d3 = _mm_add_epi16(T1, T3);
134
const __m128i d4 = _mm_add_epi16(d1, d2);
135
const __m128i d = _mm_add_epi16(d3, d4);
136
137
// Second pass.
138
const __m128i tmp0 = _mm_add_epi16(a, d);
139
const __m128i tmp1 = _mm_add_epi16(b, c);
140
const __m128i tmp2 = _mm_sub_epi16(b, c);
141
const __m128i tmp3 = _mm_sub_epi16(a, d);
142
const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
143
const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
144
const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
145
const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
146
147
// Transpose the two 4x4.
148
VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
149
&T2, &T3);
150
}
151
152
// Add inverse transform to 'dst' and store.
153
{
154
const __m128i zero = _mm_setzero_si128();
155
// Load the reference(s).
156
__m128i dst0, dst1, dst2, dst3;
157
if (do_two) {
158
// Load eight bytes/pixels per line.
159
dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
160
dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
161
dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
162
dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
163
} else {
164
// Load four bytes/pixels per line.
165
dst0 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 0 * BPS));
166
dst1 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 1 * BPS));
167
dst2 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 2 * BPS));
168
dst3 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 3 * BPS));
169
}
170
// Convert to 16b.
171
dst0 = _mm_unpacklo_epi8(dst0, zero);
172
dst1 = _mm_unpacklo_epi8(dst1, zero);
173
dst2 = _mm_unpacklo_epi8(dst2, zero);
174
dst3 = _mm_unpacklo_epi8(dst3, zero);
175
// Add the inverse transform(s).
176
dst0 = _mm_add_epi16(dst0, T0);
177
dst1 = _mm_add_epi16(dst1, T1);
178
dst2 = _mm_add_epi16(dst2, T2);
179
dst3 = _mm_add_epi16(dst3, T3);
180
// Unsigned saturate to 8b.
181
dst0 = _mm_packus_epi16(dst0, dst0);
182
dst1 = _mm_packus_epi16(dst1, dst1);
183
dst2 = _mm_packus_epi16(dst2, dst2);
184
dst3 = _mm_packus_epi16(dst3, dst3);
185
// Store the results.
186
if (do_two) {
187
// Store eight bytes/pixels per line.
188
_mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
189
_mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
190
_mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
191
_mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
192
} else {
193
// Store four bytes/pixels per line.
194
WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
195
WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
196
WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
197
WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
198
}
199
}
200
}
201
202
#if (USE_TRANSFORM_AC3 == 1)
203
204
static void TransformAC3_SSE2(const int16_t* WEBP_RESTRICT in,
205
uint8_t* WEBP_RESTRICT dst) {
206
const __m128i A = _mm_set1_epi16(in[0] + 4);
207
const __m128i c4 = _mm_set1_epi16(WEBP_TRANSFORM_AC3_MUL2(in[4]));
208
const __m128i d4 = _mm_set1_epi16(WEBP_TRANSFORM_AC3_MUL1(in[4]));
209
const int c1 = WEBP_TRANSFORM_AC3_MUL2(in[1]);
210
const int d1 = WEBP_TRANSFORM_AC3_MUL1(in[1]);
211
const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
212
const __m128i B = _mm_adds_epi16(A, CD);
213
const __m128i m0 = _mm_adds_epi16(B, d4);
214
const __m128i m1 = _mm_adds_epi16(B, c4);
215
const __m128i m2 = _mm_subs_epi16(B, c4);
216
const __m128i m3 = _mm_subs_epi16(B, d4);
217
const __m128i zero = _mm_setzero_si128();
218
// Load the source pixels.
219
__m128i dst0 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 0 * BPS));
220
__m128i dst1 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 1 * BPS));
221
__m128i dst2 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 2 * BPS));
222
__m128i dst3 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 3 * BPS));
223
// Convert to 16b.
224
dst0 = _mm_unpacklo_epi8(dst0, zero);
225
dst1 = _mm_unpacklo_epi8(dst1, zero);
226
dst2 = _mm_unpacklo_epi8(dst2, zero);
227
dst3 = _mm_unpacklo_epi8(dst3, zero);
228
// Add the inverse transform.
229
dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
230
dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
231
dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
232
dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
233
// Unsigned saturate to 8b.
234
dst0 = _mm_packus_epi16(dst0, dst0);
235
dst1 = _mm_packus_epi16(dst1, dst1);
236
dst2 = _mm_packus_epi16(dst2, dst2);
237
dst3 = _mm_packus_epi16(dst3, dst3);
238
// Store the results.
239
WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
240
WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
241
WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
242
WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
243
}
244
245
#endif // USE_TRANSFORM_AC3
246
247
//------------------------------------------------------------------------------
248
// Loop Filter (Paragraph 15)
249
250
// Compute abs(p - q) = subs(p - q) OR subs(q - p)
251
#define MM_ABS(p, q) _mm_or_si128( \
252
_mm_subs_epu8((q), (p)), \
253
_mm_subs_epu8((p), (q)))
254
255
// Shift each byte of "x" by 3 bits while preserving by the sign bit.
256
static WEBP_INLINE void SignedShift8b_SSE2(__m128i* const x) {
257
const __m128i zero = _mm_setzero_si128();
258
const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
259
const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
260
const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
261
const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
262
*x = _mm_packs_epi16(lo_1, hi_1);
263
}
264
265
#define FLIP_SIGN_BIT2(a, b) do { \
266
(a) = _mm_xor_si128(a, sign_bit); \
267
(b) = _mm_xor_si128(b, sign_bit); \
268
} while (0)
269
270
#define FLIP_SIGN_BIT4(a, b, c, d) do { \
271
FLIP_SIGN_BIT2(a, b); \
272
FLIP_SIGN_BIT2(c, d); \
273
} while (0)
274
275
// input/output is uint8_t
276
static WEBP_INLINE void GetNotHEV_SSE2(const __m128i* const p1,
277
const __m128i* const p0,
278
const __m128i* const q0,
279
const __m128i* const q1,
280
int hev_thresh, __m128i* const not_hev) {
281
const __m128i zero = _mm_setzero_si128();
282
const __m128i t_1 = MM_ABS(*p1, *p0);
283
const __m128i t_2 = MM_ABS(*q1, *q0);
284
285
const __m128i h = _mm_set1_epi8(hev_thresh);
286
const __m128i t_max = _mm_max_epu8(t_1, t_2);
287
288
const __m128i t_max_h = _mm_subs_epu8(t_max, h);
289
*not_hev = _mm_cmpeq_epi8(t_max_h, zero); // not_hev <= t1 && not_hev <= t2
290
}
291
292
// input pixels are int8_t
293
static WEBP_INLINE void GetBaseDelta_SSE2(const __m128i* const p1,
294
const __m128i* const p0,
295
const __m128i* const q0,
296
const __m128i* const q1,
297
__m128i* const delta) {
298
// beware of addition order, for saturation!
299
const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1); // p1 - q1
300
const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0); // q0 - p0
301
const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0); // p1 - q1 + 1 * (q0 - p0)
302
const __m128i s2 = _mm_adds_epi8(q0_p0, s1); // p1 - q1 + 2 * (q0 - p0)
303
const __m128i s3 = _mm_adds_epi8(q0_p0, s2); // p1 - q1 + 3 * (q0 - p0)
304
*delta = s3;
305
}
306
307
// input and output are int8_t
308
static WEBP_INLINE void DoSimpleFilter_SSE2(__m128i* const p0,
309
__m128i* const q0,
310
const __m128i* const fl) {
311
const __m128i k3 = _mm_set1_epi8(3);
312
const __m128i k4 = _mm_set1_epi8(4);
313
__m128i v3 = _mm_adds_epi8(*fl, k3);
314
__m128i v4 = _mm_adds_epi8(*fl, k4);
315
316
SignedShift8b_SSE2(&v4); // v4 >> 3
317
SignedShift8b_SSE2(&v3); // v3 >> 3
318
*q0 = _mm_subs_epi8(*q0, v4); // q0 -= v4
319
*p0 = _mm_adds_epi8(*p0, v3); // p0 += v3
320
}
321
322
// Updates values of 2 pixels at MB edge during complex filtering.
323
// Update operations:
324
// q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
325
// Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
326
static WEBP_INLINE void Update2Pixels_SSE2(__m128i* const pi, __m128i* const qi,
327
const __m128i* const a0_lo,
328
const __m128i* const a0_hi) {
329
const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
330
const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
331
const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
332
const __m128i sign_bit = _mm_set1_epi8((char)0x80);
333
*pi = _mm_adds_epi8(*pi, delta);
334
*qi = _mm_subs_epi8(*qi, delta);
335
FLIP_SIGN_BIT2(*pi, *qi);
336
}
337
338
// input pixels are uint8_t
339
static WEBP_INLINE void NeedsFilter_SSE2(const __m128i* const p1,
340
const __m128i* const p0,
341
const __m128i* const q0,
342
const __m128i* const q1,
343
int thresh, __m128i* const mask) {
344
const __m128i m_thresh = _mm_set1_epi8((char)thresh);
345
const __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1)
346
const __m128i kFE = _mm_set1_epi8((char)0xFE);
347
const __m128i t2 = _mm_and_si128(t1, kFE); // set lsb of each byte to zero
348
const __m128i t3 = _mm_srli_epi16(t2, 1); // abs(p1 - q1) / 2
349
350
const __m128i t4 = MM_ABS(*p0, *q0); // abs(p0 - q0)
351
const __m128i t5 = _mm_adds_epu8(t4, t4); // abs(p0 - q0) * 2
352
const __m128i t6 = _mm_adds_epu8(t5, t3); // abs(p0-q0)*2 + abs(p1-q1)/2
353
354
const __m128i t7 = _mm_subs_epu8(t6, m_thresh); // mask <= m_thresh
355
*mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
356
}
357
358
//------------------------------------------------------------------------------
359
// Edge filtering functions
360
361
// Applies filter on 2 pixels (p0 and q0)
362
static WEBP_INLINE void DoFilter2_SSE2(__m128i* const p1, __m128i* const p0,
363
__m128i* const q0, __m128i* const q1,
364
int thresh) {
365
__m128i a, mask;
366
const __m128i sign_bit = _mm_set1_epi8((char)0x80);
367
// convert p1/q1 to int8_t (for GetBaseDelta_SSE2)
368
const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
369
const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
370
371
NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &mask);
372
373
FLIP_SIGN_BIT2(*p0, *q0);
374
GetBaseDelta_SSE2(&p1s, p0, q0, &q1s, &a);
375
a = _mm_and_si128(a, mask); // mask filter values we don't care about
376
DoSimpleFilter_SSE2(p0, q0, &a);
377
FLIP_SIGN_BIT2(*p0, *q0);
378
}
379
380
// Applies filter on 4 pixels (p1, p0, q0 and q1)
381
static WEBP_INLINE void DoFilter4_SSE2(__m128i* const p1, __m128i* const p0,
382
__m128i* const q0, __m128i* const q1,
383
const __m128i* const mask,
384
int hev_thresh) {
385
const __m128i zero = _mm_setzero_si128();
386
const __m128i sign_bit = _mm_set1_epi8((char)0x80);
387
const __m128i k64 = _mm_set1_epi8(64);
388
const __m128i k3 = _mm_set1_epi8(3);
389
const __m128i k4 = _mm_set1_epi8(4);
390
__m128i not_hev;
391
__m128i t1, t2, t3;
392
393
// compute hev mask
394
GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);
395
396
// convert to signed values
397
FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
398
399
t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1
400
t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1)
401
t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0
402
t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0)
403
t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0)
404
t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0)
405
t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about
406
407
t2 = _mm_adds_epi8(t1, k3); // 3 * (q0 - p0) + hev(p1 - q1) + 3
408
t3 = _mm_adds_epi8(t1, k4); // 3 * (q0 - p0) + hev(p1 - q1) + 4
409
SignedShift8b_SSE2(&t2); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
410
SignedShift8b_SSE2(&t3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
411
*p0 = _mm_adds_epi8(*p0, t2); // p0 += t2
412
*q0 = _mm_subs_epi8(*q0, t3); // q0 -= t3
413
FLIP_SIGN_BIT2(*p0, *q0);
414
415
// this is equivalent to signed (a + 1) >> 1 calculation
416
t2 = _mm_add_epi8(t3, sign_bit);
417
t3 = _mm_avg_epu8(t2, zero);
418
t3 = _mm_sub_epi8(t3, k64);
419
420
t3 = _mm_and_si128(not_hev, t3); // if !hev
421
*q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3
422
*p1 = _mm_adds_epi8(*p1, t3); // p1 += t3
423
FLIP_SIGN_BIT2(*p1, *q1);
424
}
425
426
// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
427
static WEBP_INLINE void DoFilter6_SSE2(__m128i* const p2, __m128i* const p1,
428
__m128i* const p0, __m128i* const q0,
429
__m128i* const q1, __m128i* const q2,
430
const __m128i* const mask,
431
int hev_thresh) {
432
const __m128i zero = _mm_setzero_si128();
433
const __m128i sign_bit = _mm_set1_epi8((char)0x80);
434
__m128i a, not_hev;
435
436
// compute hev mask
437
GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);
438
439
FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
440
FLIP_SIGN_BIT2(*p2, *q2);
441
GetBaseDelta_SSE2(p1, p0, q0, q1, &a);
442
443
{ // do simple filter on pixels with hev
444
const __m128i m = _mm_andnot_si128(not_hev, *mask);
445
const __m128i f = _mm_and_si128(a, m);
446
DoSimpleFilter_SSE2(p0, q0, &f);
447
}
448
449
{ // do strong filter on pixels with not hev
450
const __m128i k9 = _mm_set1_epi16(0x0900);
451
const __m128i k63 = _mm_set1_epi16(63);
452
453
const __m128i m = _mm_and_si128(not_hev, *mask);
454
const __m128i f = _mm_and_si128(a, m);
455
456
const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
457
const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
458
459
const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9); // Filter (lo) * 9
460
const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9); // Filter (hi) * 9
461
462
const __m128i a2_lo = _mm_add_epi16(f9_lo, k63); // Filter * 9 + 63
463
const __m128i a2_hi = _mm_add_epi16(f9_hi, k63); // Filter * 9 + 63
464
465
const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo); // Filter * 18 + 63
466
const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi); // Filter * 18 + 63
467
468
const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo); // Filter * 27 + 63
469
const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi); // Filter * 27 + 63
470
471
Update2Pixels_SSE2(p2, q2, &a2_lo, &a2_hi);
472
Update2Pixels_SSE2(p1, q1, &a1_lo, &a1_hi);
473
Update2Pixels_SSE2(p0, q0, &a0_lo, &a0_hi);
474
}
475
}
476
477
// reads 8 rows across a vertical edge.
478
static WEBP_INLINE void Load8x4_SSE2(const uint8_t* const b, int stride,
479
__m128i* const p, __m128i* const q) {
480
// A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
481
// A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
482
const __m128i A0 = _mm_set_epi32(
483
WebPMemToInt32(&b[6 * stride]), WebPMemToInt32(&b[2 * stride]),
484
WebPMemToInt32(&b[4 * stride]), WebPMemToInt32(&b[0 * stride]));
485
const __m128i A1 = _mm_set_epi32(
486
WebPMemToInt32(&b[7 * stride]), WebPMemToInt32(&b[3 * stride]),
487
WebPMemToInt32(&b[5 * stride]), WebPMemToInt32(&b[1 * stride]));
488
489
// B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
490
// B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
491
const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
492
const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
493
494
// C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
495
// C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
496
const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
497
const __m128i C1 = _mm_unpackhi_epi16(B0, B1);
498
499
// *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
500
// *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
501
*p = _mm_unpacklo_epi32(C0, C1);
502
*q = _mm_unpackhi_epi32(C0, C1);
503
}
504
505
static WEBP_INLINE void Load16x4_SSE2(const uint8_t* const r0,
506
const uint8_t* const r8,
507
int stride,
508
__m128i* const p1, __m128i* const p0,
509
__m128i* const q0, __m128i* const q1) {
510
// Assume the pixels around the edge (|) are numbered as follows
511
// 00 01 | 02 03
512
// 10 11 | 12 13
513
// ... | ...
514
// e0 e1 | e2 e3
515
// f0 f1 | f2 f3
516
//
517
// r0 is pointing to the 0th row (00)
518
// r8 is pointing to the 8th row (80)
519
520
// Load
521
// p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
522
// q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
523
// p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
524
// q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
525
Load8x4_SSE2(r0, stride, p1, q0);
526
Load8x4_SSE2(r8, stride, p0, q1);
527
528
{
529
// p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
530
// p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
531
// q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
532
// q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
533
const __m128i t1 = *p1;
534
const __m128i t2 = *q0;
535
*p1 = _mm_unpacklo_epi64(t1, *p0);
536
*p0 = _mm_unpackhi_epi64(t1, *p0);
537
*q0 = _mm_unpacklo_epi64(t2, *q1);
538
*q1 = _mm_unpackhi_epi64(t2, *q1);
539
}
540
}
541
542
static WEBP_INLINE void Store4x4_SSE2(__m128i* const x,
543
uint8_t* dst, int stride) {
544
int i;
545
for (i = 0; i < 4; ++i, dst += stride) {
546
WebPInt32ToMem(dst, _mm_cvtsi128_si32(*x));
547
*x = _mm_srli_si128(*x, 4);
548
}
549
}
550
551
// Transpose back and store
552
static WEBP_INLINE void Store16x4_SSE2(const __m128i* const p1,
553
const __m128i* const p0,
554
const __m128i* const q0,
555
const __m128i* const q1,
556
uint8_t* r0, uint8_t* r8,
557
int stride) {
558
__m128i t1, p1_s, p0_s, q0_s, q1_s;
559
560
// p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
561
// p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
562
t1 = *p0;
563
p0_s = _mm_unpacklo_epi8(*p1, t1);
564
p1_s = _mm_unpackhi_epi8(*p1, t1);
565
566
// q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
567
// q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
568
t1 = *q0;
569
q0_s = _mm_unpacklo_epi8(t1, *q1);
570
q1_s = _mm_unpackhi_epi8(t1, *q1);
571
572
// p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
573
// q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
574
t1 = p0_s;
575
p0_s = _mm_unpacklo_epi16(t1, q0_s);
576
q0_s = _mm_unpackhi_epi16(t1, q0_s);
577
578
// p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
579
// q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
580
t1 = p1_s;
581
p1_s = _mm_unpacklo_epi16(t1, q1_s);
582
q1_s = _mm_unpackhi_epi16(t1, q1_s);
583
584
Store4x4_SSE2(&p0_s, r0, stride);
585
r0 += 4 * stride;
586
Store4x4_SSE2(&q0_s, r0, stride);
587
588
Store4x4_SSE2(&p1_s, r8, stride);
589
r8 += 4 * stride;
590
Store4x4_SSE2(&q1_s, r8, stride);
591
}
592
593
//------------------------------------------------------------------------------
594
// Simple In-loop filtering (Paragraph 15.2)
595
596
static void SimpleVFilter16_SSE2(uint8_t* p, int stride, int thresh) {
597
// Load
598
__m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
599
__m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
600
__m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
601
__m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
602
603
DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
604
605
// Store
606
_mm_storeu_si128((__m128i*)&p[-stride], p0);
607
_mm_storeu_si128((__m128i*)&p[0], q0);
608
}
609
610
static void SimpleHFilter16_SSE2(uint8_t* p, int stride, int thresh) {
611
__m128i p1, p0, q0, q1;
612
613
p -= 2; // beginning of p1
614
615
Load16x4_SSE2(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
616
DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
617
Store16x4_SSE2(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
618
}
619
620
static void SimpleVFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
621
int k;
622
for (k = 3; k > 0; --k) {
623
p += 4 * stride;
624
SimpleVFilter16_SSE2(p, stride, thresh);
625
}
626
}
627
628
static void SimpleHFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
629
int k;
630
for (k = 3; k > 0; --k) {
631
p += 4;
632
SimpleHFilter16_SSE2(p, stride, thresh);
633
}
634
}
635
636
//------------------------------------------------------------------------------
637
// Complex In-loop filtering (Paragraph 15.3)
638
639
#define MAX_DIFF1(p3, p2, p1, p0, m) do { \
640
(m) = MM_ABS(p1, p0); \
641
(m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \
642
(m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \
643
} while (0)
644
645
#define MAX_DIFF2(p3, p2, p1, p0, m) do { \
646
(m) = _mm_max_epu8(m, MM_ABS(p1, p0)); \
647
(m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \
648
(m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \
649
} while (0)
650
651
#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) do { \
652
(e1) = _mm_loadu_si128((__m128i*)&(p)[0 * (stride)]); \
653
(e2) = _mm_loadu_si128((__m128i*)&(p)[1 * (stride)]); \
654
(e3) = _mm_loadu_si128((__m128i*)&(p)[2 * (stride)]); \
655
(e4) = _mm_loadu_si128((__m128i*)&(p)[3 * (stride)]); \
656
} while (0)
657
658
#define LOADUV_H_EDGE(p, u, v, stride) do { \
659
const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \
660
const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]); \
661
(p) = _mm_unpacklo_epi64(U, V); \
662
} while (0)
663
664
#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) do { \
665
LOADUV_H_EDGE(e1, u, v, 0 * (stride)); \
666
LOADUV_H_EDGE(e2, u, v, 1 * (stride)); \
667
LOADUV_H_EDGE(e3, u, v, 2 * (stride)); \
668
LOADUV_H_EDGE(e4, u, v, 3 * (stride)); \
669
} while (0)
670
671
#define STOREUV(p, u, v, stride) do { \
672
_mm_storel_epi64((__m128i*)&(u)[(stride)], p); \
673
(p) = _mm_srli_si128(p, 8); \
674
_mm_storel_epi64((__m128i*)&(v)[(stride)], p); \
675
} while (0)
676
677
static WEBP_INLINE void ComplexMask_SSE2(const __m128i* const p1,
678
const __m128i* const p0,
679
const __m128i* const q0,
680
const __m128i* const q1,
681
int thresh, int ithresh,
682
__m128i* const mask) {
683
const __m128i it = _mm_set1_epi8(ithresh);
684
const __m128i diff = _mm_subs_epu8(*mask, it);
685
const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
686
__m128i filter_mask;
687
NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &filter_mask);
688
*mask = _mm_and_si128(thresh_mask, filter_mask);
689
}
690
691
// on macroblock edges
692
static void VFilter16_SSE2(uint8_t* p, int stride,
693
int thresh, int ithresh, int hev_thresh) {
694
__m128i t1;
695
__m128i mask;
696
__m128i p2, p1, p0, q0, q1, q2;
697
698
// Load p3, p2, p1, p0
699
LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
700
MAX_DIFF1(t1, p2, p1, p0, mask);
701
702
// Load q0, q1, q2, q3
703
LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
704
MAX_DIFF2(t1, q2, q1, q0, mask);
705
706
ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
707
DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
708
709
// Store
710
_mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
711
_mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
712
_mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
713
_mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
714
_mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
715
_mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
716
}
717
718
static void HFilter16_SSE2(uint8_t* p, int stride,
719
int thresh, int ithresh, int hev_thresh) {
720
__m128i mask;
721
__m128i p3, p2, p1, p0, q0, q1, q2, q3;
722
723
uint8_t* const b = p - 4;
724
Load16x4_SSE2(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
725
MAX_DIFF1(p3, p2, p1, p0, mask);
726
727
Load16x4_SSE2(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
728
MAX_DIFF2(q3, q2, q1, q0, mask);
729
730
ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
731
DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
732
733
Store16x4_SSE2(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
734
Store16x4_SSE2(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
735
}
736
737
// on three inner edges
738
static void VFilter16i_SSE2(uint8_t* p, int stride,
739
int thresh, int ithresh, int hev_thresh) {
740
int k;
741
__m128i p3, p2, p1, p0; // loop invariants
742
743
LOAD_H_EDGES4(p, stride, p3, p2, p1, p0); // prologue
744
745
for (k = 3; k > 0; --k) {
746
__m128i mask, tmp1, tmp2;
747
uint8_t* const b = p + 2 * stride; // beginning of p1
748
p += 4 * stride;
749
750
MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask
751
LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
752
MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
753
754
// p3 and p2 are not just temporary variables here: they will be
755
// re-used for next span. And q2/q3 will become p1/p0 accordingly.
756
ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
757
DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
758
759
// Store
760
_mm_storeu_si128((__m128i*)&b[0 * stride], p1);
761
_mm_storeu_si128((__m128i*)&b[1 * stride], p0);
762
_mm_storeu_si128((__m128i*)&b[2 * stride], p3);
763
_mm_storeu_si128((__m128i*)&b[3 * stride], p2);
764
765
// rotate samples
766
p1 = tmp1;
767
p0 = tmp2;
768
}
769
}
770
771
static void HFilter16i_SSE2(uint8_t* p, int stride,
772
int thresh, int ithresh, int hev_thresh) {
773
int k;
774
__m128i p3, p2, p1, p0; // loop invariants
775
776
Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0); // prologue
777
778
for (k = 3; k > 0; --k) {
779
__m128i mask, tmp1, tmp2;
780
uint8_t* const b = p + 2; // beginning of p1
781
782
p += 4; // beginning of q0 (and next span)
783
784
MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask
785
Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
786
MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
787
788
ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
789
DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
790
791
Store16x4_SSE2(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
792
793
// rotate samples
794
p1 = tmp1;
795
p0 = tmp2;
796
}
797
}
798
799
// 8-pixels wide variant, for chroma filtering
800
static void VFilter8_SSE2(uint8_t* WEBP_RESTRICT u, uint8_t* WEBP_RESTRICT v,
801
int stride, int thresh, int ithresh, int hev_thresh) {
802
__m128i mask;
803
__m128i t1, p2, p1, p0, q0, q1, q2;
804
805
// Load p3, p2, p1, p0
806
LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
807
MAX_DIFF1(t1, p2, p1, p0, mask);
808
809
// Load q0, q1, q2, q3
810
LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
811
MAX_DIFF2(t1, q2, q1, q0, mask);
812
813
ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
814
DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
815
816
// Store
817
STOREUV(p2, u, v, -3 * stride);
818
STOREUV(p1, u, v, -2 * stride);
819
STOREUV(p0, u, v, -1 * stride);
820
STOREUV(q0, u, v, 0 * stride);
821
STOREUV(q1, u, v, 1 * stride);
822
STOREUV(q2, u, v, 2 * stride);
823
}
824
825
static void HFilter8_SSE2(uint8_t* WEBP_RESTRICT u, uint8_t* WEBP_RESTRICT v,
826
int stride, int thresh, int ithresh, int hev_thresh) {
827
__m128i mask;
828
__m128i p3, p2, p1, p0, q0, q1, q2, q3;
829
830
uint8_t* const tu = u - 4;
831
uint8_t* const tv = v - 4;
832
Load16x4_SSE2(tu, tv, stride, &p3, &p2, &p1, &p0);
833
MAX_DIFF1(p3, p2, p1, p0, mask);
834
835
Load16x4_SSE2(u, v, stride, &q0, &q1, &q2, &q3);
836
MAX_DIFF2(q3, q2, q1, q0, mask);
837
838
ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
839
DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
840
841
Store16x4_SSE2(&p3, &p2, &p1, &p0, tu, tv, stride);
842
Store16x4_SSE2(&q0, &q1, &q2, &q3, u, v, stride);
843
}
844
845
static void VFilter8i_SSE2(uint8_t* WEBP_RESTRICT u, uint8_t* WEBP_RESTRICT v,
846
int stride,
847
int thresh, int ithresh, int hev_thresh) {
848
__m128i mask;
849
__m128i t1, t2, p1, p0, q0, q1;
850
851
// Load p3, p2, p1, p0
852
LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
853
MAX_DIFF1(t2, t1, p1, p0, mask);
854
855
u += 4 * stride;
856
v += 4 * stride;
857
858
// Load q0, q1, q2, q3
859
LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
860
MAX_DIFF2(t2, t1, q1, q0, mask);
861
862
ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
863
DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
864
865
// Store
866
STOREUV(p1, u, v, -2 * stride);
867
STOREUV(p0, u, v, -1 * stride);
868
STOREUV(q0, u, v, 0 * stride);
869
STOREUV(q1, u, v, 1 * stride);
870
}
871
872
static void HFilter8i_SSE2(uint8_t* WEBP_RESTRICT u, uint8_t* WEBP_RESTRICT v,
873
int stride,
874
int thresh, int ithresh, int hev_thresh) {
875
__m128i mask;
876
__m128i t1, t2, p1, p0, q0, q1;
877
Load16x4_SSE2(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0
878
MAX_DIFF1(t2, t1, p1, p0, mask);
879
880
u += 4; // beginning of q0
881
v += 4;
882
Load16x4_SSE2(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3
883
MAX_DIFF2(t2, t1, q1, q0, mask);
884
885
ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
886
DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
887
888
u -= 2; // beginning of p1
889
v -= 2;
890
Store16x4_SSE2(&p1, &p0, &q0, &q1, u, v, stride);
891
}
892
893
//------------------------------------------------------------------------------
894
// 4x4 predictions
895
896
#define DST(x, y) dst[(x) + (y) * BPS]
897
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
898
899
// We use the following 8b-arithmetic tricks:
900
// (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
901
// where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
902
// and:
903
// (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
904
// where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1
905
// and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
906
907
static void VE4_SSE2(uint8_t* dst) { // vertical
908
const __m128i one = _mm_set1_epi8(1);
909
const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
910
const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
911
const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
912
const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
913
const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
914
const __m128i b = _mm_subs_epu8(a, lsb);
915
const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
916
const int vals = _mm_cvtsi128_si32(avg);
917
int i;
918
for (i = 0; i < 4; ++i) {
919
WebPInt32ToMem(dst + i * BPS, vals);
920
}
921
}
922
923
static void LD4_SSE2(uint8_t* dst) { // Down-Left
924
const __m128i one = _mm_set1_epi8(1);
925
const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
926
const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
927
const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
928
const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
929
const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
930
const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
931
const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
932
const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
933
WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg ));
934
WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
935
WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
936
WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
937
}
938
939
static void VR4_SSE2(uint8_t* dst) { // Vertical-Right
940
const __m128i one = _mm_set1_epi8(1);
941
const int I = dst[-1 + 0 * BPS];
942
const int J = dst[-1 + 1 * BPS];
943
const int K = dst[-1 + 2 * BPS];
944
const int X = dst[-1 - BPS];
945
const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
946
const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
947
const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
948
const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
949
const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0);
950
const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
951
const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
952
const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
953
const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
954
WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd ));
955
WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh ));
956
WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
957
WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
958
959
// these two are hard to implement in SSE2, so we keep the C-version:
960
DST(0, 2) = AVG3(J, I, X);
961
DST(0, 3) = AVG3(K, J, I);
962
}
963
964
static void VL4_SSE2(uint8_t* dst) { // Vertical-Left
965
const __m128i one = _mm_set1_epi8(1);
966
const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
967
const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
968
const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
969
const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
970
const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
971
const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
972
const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
973
const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
974
const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
975
const __m128i abbc = _mm_or_si128(ab, bc);
976
const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
977
const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
978
const uint32_t extra_out =
979
(uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
980
WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 ));
981
WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 ));
982
WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
983
WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
984
985
// these two are hard to get and irregular
986
DST(3, 2) = (extra_out >> 0) & 0xff;
987
DST(3, 3) = (extra_out >> 8) & 0xff;
988
}
989
990
static void RD4_SSE2(uint8_t* dst) { // Down-right
991
const __m128i one = _mm_set1_epi8(1);
992
const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
993
const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
994
const uint32_t I = dst[-1 + 0 * BPS];
995
const uint32_t J = dst[-1 + 1 * BPS];
996
const uint32_t K = dst[-1 + 2 * BPS];
997
const uint32_t L = dst[-1 + 3 * BPS];
998
const __m128i LKJI_____ =
999
_mm_cvtsi32_si128((int)(L | (K << 8) | (J << 16) | (I << 24)));
1000
const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
1001
const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
1002
const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
1003
const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
1004
const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
1005
const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
1006
const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
1007
WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg ));
1008
WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1009
WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1010
WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1011
}
1012
1013
#undef DST
1014
#undef AVG3
1015
1016
//------------------------------------------------------------------------------
1017
// Luma 16x16
1018
1019
static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, int size) {
1020
const uint8_t* top = dst - BPS;
1021
const __m128i zero = _mm_setzero_si128();
1022
int y;
1023
if (size == 4) {
1024
const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top));
1025
const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1026
for (y = 0; y < 4; ++y, dst += BPS) {
1027
const int val = dst[-1] - top[-1];
1028
const __m128i base = _mm_set1_epi16(val);
1029
const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1030
WebPInt32ToMem(dst, _mm_cvtsi128_si32(out));
1031
}
1032
} else if (size == 8) {
1033
const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
1034
const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1035
for (y = 0; y < 8; ++y, dst += BPS) {
1036
const int val = dst[-1] - top[-1];
1037
const __m128i base = _mm_set1_epi16(val);
1038
const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1039
_mm_storel_epi64((__m128i*)dst, out);
1040
}
1041
} else {
1042
const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
1043
const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
1044
const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
1045
for (y = 0; y < 16; ++y, dst += BPS) {
1046
const int val = dst[-1] - top[-1];
1047
const __m128i base = _mm_set1_epi16(val);
1048
const __m128i out_0 = _mm_add_epi16(base, top_base_0);
1049
const __m128i out_1 = _mm_add_epi16(base, top_base_1);
1050
const __m128i out = _mm_packus_epi16(out_0, out_1);
1051
_mm_storeu_si128((__m128i*)dst, out);
1052
}
1053
}
1054
}
1055
1056
static void TM4_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 4); }
1057
static void TM8uv_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 8); }
1058
static void TM16_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 16); }
1059
1060
static void VE16_SSE2(uint8_t* dst) {
1061
const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1062
int j;
1063
for (j = 0; j < 16; ++j) {
1064
_mm_storeu_si128((__m128i*)(dst + j * BPS), top);
1065
}
1066
}
1067
1068
static void HE16_SSE2(uint8_t* dst) { // horizontal
1069
int j;
1070
for (j = 16; j > 0; --j) {
1071
const __m128i values = _mm_set1_epi8((char)dst[-1]);
1072
_mm_storeu_si128((__m128i*)dst, values);
1073
dst += BPS;
1074
}
1075
}
1076
1077
static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
1078
int j;
1079
const __m128i values = _mm_set1_epi8((char)v);
1080
for (j = 0; j < 16; ++j) {
1081
_mm_storeu_si128((__m128i*)(dst + j * BPS), values);
1082
}
1083
}
1084
1085
static void DC16_SSE2(uint8_t* dst) { // DC
1086
const __m128i zero = _mm_setzero_si128();
1087
const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1088
const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1089
// sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1090
const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1091
int left = 0;
1092
int j;
1093
for (j = 0; j < 16; ++j) {
1094
left += dst[-1 + j * BPS];
1095
}
1096
{
1097
const int DC = _mm_cvtsi128_si32(sum) + left + 16;
1098
Put16_SSE2(DC >> 5, dst);
1099
}
1100
}
1101
1102
static void DC16NoTop_SSE2(uint8_t* dst) { // DC with top samples unavailable
1103
int DC = 8;
1104
int j;
1105
for (j = 0; j < 16; ++j) {
1106
DC += dst[-1 + j * BPS];
1107
}
1108
Put16_SSE2(DC >> 4, dst);
1109
}
1110
1111
static void DC16NoLeft_SSE2(uint8_t* dst) { // DC with left samples unavailable
1112
const __m128i zero = _mm_setzero_si128();
1113
const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1114
const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1115
// sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1116
const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1117
const int DC = _mm_cvtsi128_si32(sum) + 8;
1118
Put16_SSE2(DC >> 4, dst);
1119
}
1120
1121
static void DC16NoTopLeft_SSE2(uint8_t* dst) { // DC with no top & left samples
1122
Put16_SSE2(0x80, dst);
1123
}
1124
1125
//------------------------------------------------------------------------------
1126
// Chroma
1127
1128
static void VE8uv_SSE2(uint8_t* dst) { // vertical
1129
int j;
1130
const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1131
for (j = 0; j < 8; ++j) {
1132
_mm_storel_epi64((__m128i*)(dst + j * BPS), top);
1133
}
1134
}
1135
1136
// helper for chroma-DC predictions
1137
static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
1138
int j;
1139
const __m128i values = _mm_set1_epi8((char)v);
1140
for (j = 0; j < 8; ++j) {
1141
_mm_storel_epi64((__m128i*)(dst + j * BPS), values);
1142
}
1143
}
1144
1145
static void DC8uv_SSE2(uint8_t* dst) { // DC
1146
const __m128i zero = _mm_setzero_si128();
1147
const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1148
const __m128i sum = _mm_sad_epu8(top, zero);
1149
int left = 0;
1150
int j;
1151
for (j = 0; j < 8; ++j) {
1152
left += dst[-1 + j * BPS];
1153
}
1154
{
1155
const int DC = _mm_cvtsi128_si32(sum) + left + 8;
1156
Put8x8uv_SSE2(DC >> 4, dst);
1157
}
1158
}
1159
1160
static void DC8uvNoLeft_SSE2(uint8_t* dst) { // DC with no left samples
1161
const __m128i zero = _mm_setzero_si128();
1162
const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1163
const __m128i sum = _mm_sad_epu8(top, zero);
1164
const int DC = _mm_cvtsi128_si32(sum) + 4;
1165
Put8x8uv_SSE2(DC >> 3, dst);
1166
}
1167
1168
static void DC8uvNoTop_SSE2(uint8_t* dst) { // DC with no top samples
1169
int dc0 = 4;
1170
int i;
1171
for (i = 0; i < 8; ++i) {
1172
dc0 += dst[-1 + i * BPS];
1173
}
1174
Put8x8uv_SSE2(dc0 >> 3, dst);
1175
}
1176
1177
static void DC8uvNoTopLeft_SSE2(uint8_t* dst) { // DC with nothing
1178
Put8x8uv_SSE2(0x80, dst);
1179
}
1180
1181
//------------------------------------------------------------------------------
1182
// Entry point
1183
1184
extern void VP8DspInitSSE2(void);
1185
1186
WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
1187
VP8Transform = Transform_SSE2;
1188
#if (USE_TRANSFORM_AC3 == 1)
1189
VP8TransformAC3 = TransformAC3_SSE2;
1190
#endif
1191
1192
VP8VFilter16 = VFilter16_SSE2;
1193
VP8HFilter16 = HFilter16_SSE2;
1194
VP8VFilter8 = VFilter8_SSE2;
1195
VP8HFilter8 = HFilter8_SSE2;
1196
VP8VFilter16i = VFilter16i_SSE2;
1197
VP8HFilter16i = HFilter16i_SSE2;
1198
VP8VFilter8i = VFilter8i_SSE2;
1199
VP8HFilter8i = HFilter8i_SSE2;
1200
1201
VP8SimpleVFilter16 = SimpleVFilter16_SSE2;
1202
VP8SimpleHFilter16 = SimpleHFilter16_SSE2;
1203
VP8SimpleVFilter16i = SimpleVFilter16i_SSE2;
1204
VP8SimpleHFilter16i = SimpleHFilter16i_SSE2;
1205
1206
VP8PredLuma4[1] = TM4_SSE2;
1207
VP8PredLuma4[2] = VE4_SSE2;
1208
VP8PredLuma4[4] = RD4_SSE2;
1209
VP8PredLuma4[5] = VR4_SSE2;
1210
VP8PredLuma4[6] = LD4_SSE2;
1211
VP8PredLuma4[7] = VL4_SSE2;
1212
1213
VP8PredLuma16[0] = DC16_SSE2;
1214
VP8PredLuma16[1] = TM16_SSE2;
1215
VP8PredLuma16[2] = VE16_SSE2;
1216
VP8PredLuma16[3] = HE16_SSE2;
1217
VP8PredLuma16[4] = DC16NoTop_SSE2;
1218
VP8PredLuma16[5] = DC16NoLeft_SSE2;
1219
VP8PredLuma16[6] = DC16NoTopLeft_SSE2;
1220
1221
VP8PredChroma8[0] = DC8uv_SSE2;
1222
VP8PredChroma8[1] = TM8uv_SSE2;
1223
VP8PredChroma8[2] = VE8uv_SSE2;
1224
VP8PredChroma8[4] = DC8uvNoTop_SSE2;
1225
VP8PredChroma8[5] = DC8uvNoLeft_SSE2;
1226
VP8PredChroma8[6] = DC8uvNoTopLeft_SSE2;
1227
}
1228
1229
#else // !WEBP_USE_SSE2
1230
1231
WEBP_DSP_INIT_STUB(VP8DspInitSSE2)
1232
1233
#endif // WEBP_USE_SSE2
1234
1235