Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/dsp/enc.c
21212 views
1
// Copyright 2011 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Speed-critical encoding functions.
11
//
12
// Author: Skal ([email protected])
13
14
#include <assert.h>
15
#include <stdlib.h> // for abs()
16
#include <string.h>
17
18
#include "src/dsp/cpu.h"
19
#include "src/dsp/dsp.h"
20
#include "src/enc/vp8i_enc.h"
21
#include "src/utils/utils.h"
22
#include "src/webp/types.h"
23
24
static WEBP_INLINE uint8_t clip_8b(int v) {
25
return (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255;
26
}
27
28
#if !WEBP_NEON_OMIT_C_CODE
29
static WEBP_INLINE int clip_max(int v, int max) {
30
return (v > max) ? max : v;
31
}
32
#endif // !WEBP_NEON_OMIT_C_CODE
33
34
//------------------------------------------------------------------------------
35
// Compute susceptibility based on DCT-coeff histograms:
36
// the higher, the "easier" the macroblock is to compress.
37
38
const int VP8DspScan[16 + 4 + 4] = {
39
// Luma
40
0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
41
0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
42
0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
43
0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
44
45
0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U
46
8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V
47
};
48
49
// general-purpose util function
50
void VP8SetHistogramData(const int distribution[MAX_COEFF_THRESH + 1],
51
VP8Histogram* const histo) {
52
int max_value = 0, last_non_zero = 1;
53
int k;
54
for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
55
const int value = distribution[k];
56
if (value > 0) {
57
if (value > max_value) max_value = value;
58
last_non_zero = k;
59
}
60
}
61
histo->max_value = max_value;
62
histo->last_non_zero = last_non_zero;
63
}
64
65
#if !WEBP_NEON_OMIT_C_CODE
66
static void CollectHistogram_C(const uint8_t* WEBP_RESTRICT ref,
67
const uint8_t* WEBP_RESTRICT pred,
68
int start_block, int end_block,
69
VP8Histogram* WEBP_RESTRICT const histo) {
70
int j;
71
int distribution[MAX_COEFF_THRESH + 1] = { 0 };
72
for (j = start_block; j < end_block; ++j) {
73
int k;
74
int16_t out[16];
75
76
VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
77
78
// Convert coefficients to bin.
79
for (k = 0; k < 16; ++k) {
80
const int v = abs(out[k]) >> 3;
81
const int clipped_value = clip_max(v, MAX_COEFF_THRESH);
82
++distribution[clipped_value];
83
}
84
}
85
VP8SetHistogramData(distribution, histo);
86
}
87
#endif // !WEBP_NEON_OMIT_C_CODE
88
89
//------------------------------------------------------------------------------
90
// run-time tables (~4k)
91
92
static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255]
93
94
// We declare this variable 'volatile' to prevent instruction reordering
95
// and make sure it's set to true _last_ (so as to be thread-safe)
96
static volatile int tables_ok = 0;
97
98
static WEBP_TSAN_IGNORE_FUNCTION void InitTables(void) {
99
if (!tables_ok) {
100
int i;
101
for (i = -255; i <= 255 + 255; ++i) {
102
clip1[255 + i] = clip_8b(i);
103
}
104
tables_ok = 1;
105
}
106
}
107
108
109
//------------------------------------------------------------------------------
110
// Transforms (Paragraph 14.4)
111
112
#if !WEBP_NEON_OMIT_C_CODE
113
114
#define STORE(x, y, v) \
115
dst[(x) + (y) * BPS] = clip_8b(ref[(x) + (y) * BPS] + ((v) >> 3))
116
117
static WEBP_INLINE void ITransformOne(const uint8_t* WEBP_RESTRICT ref,
118
const int16_t* WEBP_RESTRICT in,
119
uint8_t* WEBP_RESTRICT dst) {
120
int C[4 * 4], *tmp;
121
int i;
122
tmp = C;
123
for (i = 0; i < 4; ++i) { // vertical pass
124
const int a = in[0] + in[8];
125
const int b = in[0] - in[8];
126
const int c =
127
WEBP_TRANSFORM_AC3_MUL2(in[4]) - WEBP_TRANSFORM_AC3_MUL1(in[12]);
128
const int d =
129
WEBP_TRANSFORM_AC3_MUL1(in[4]) + WEBP_TRANSFORM_AC3_MUL2(in[12]);
130
tmp[0] = a + d;
131
tmp[1] = b + c;
132
tmp[2] = b - c;
133
tmp[3] = a - d;
134
tmp += 4;
135
in++;
136
}
137
138
tmp = C;
139
for (i = 0; i < 4; ++i) { // horizontal pass
140
const int dc = tmp[0] + 4;
141
const int a = dc + tmp[8];
142
const int b = dc - tmp[8];
143
const int c =
144
WEBP_TRANSFORM_AC3_MUL2(tmp[4]) - WEBP_TRANSFORM_AC3_MUL1(tmp[12]);
145
const int d =
146
WEBP_TRANSFORM_AC3_MUL1(tmp[4]) + WEBP_TRANSFORM_AC3_MUL2(tmp[12]);
147
STORE(0, i, a + d);
148
STORE(1, i, b + c);
149
STORE(2, i, b - c);
150
STORE(3, i, a - d);
151
tmp++;
152
}
153
}
154
155
static void ITransform_C(const uint8_t* WEBP_RESTRICT ref,
156
const int16_t* WEBP_RESTRICT in,
157
uint8_t* WEBP_RESTRICT dst,
158
int do_two) {
159
ITransformOne(ref, in, dst);
160
if (do_two) {
161
ITransformOne(ref + 4, in + 16, dst + 4);
162
}
163
}
164
165
static void FTransform_C(const uint8_t* WEBP_RESTRICT src,
166
const uint8_t* WEBP_RESTRICT ref,
167
int16_t* WEBP_RESTRICT out) {
168
int i;
169
int tmp[16];
170
for (i = 0; i < 4; ++i, src += BPS, ref += BPS) {
171
const int d0 = src[0] - ref[0]; // 9bit dynamic range ([-255,255])
172
const int d1 = src[1] - ref[1];
173
const int d2 = src[2] - ref[2];
174
const int d3 = src[3] - ref[3];
175
const int a0 = (d0 + d3); // 10b [-510,510]
176
const int a1 = (d1 + d2);
177
const int a2 = (d1 - d2);
178
const int a3 = (d0 - d3);
179
tmp[0 + i * 4] = (a0 + a1) * 8; // 14b [-8160,8160]
180
tmp[1 + i * 4] = (a2 * 2217 + a3 * 5352 + 1812) >> 9; // [-7536,7542]
181
tmp[2 + i * 4] = (a0 - a1) * 8;
182
tmp[3 + i * 4] = (a3 * 2217 - a2 * 5352 + 937) >> 9;
183
}
184
for (i = 0; i < 4; ++i) {
185
const int a0 = (tmp[0 + i] + tmp[12 + i]); // 15b
186
const int a1 = (tmp[4 + i] + tmp[ 8 + i]);
187
const int a2 = (tmp[4 + i] - tmp[ 8 + i]);
188
const int a3 = (tmp[0 + i] - tmp[12 + i]);
189
out[0 + i] = (a0 + a1 + 7) >> 4; // 12b
190
out[4 + i] = ((a2 * 2217 + a3 * 5352 + 12000) >> 16) + (a3 != 0);
191
out[8 + i] = (a0 - a1 + 7) >> 4;
192
out[12+ i] = ((a3 * 2217 - a2 * 5352 + 51000) >> 16);
193
}
194
}
195
#endif // !WEBP_NEON_OMIT_C_CODE
196
197
static void FTransform2_C(const uint8_t* WEBP_RESTRICT src,
198
const uint8_t* WEBP_RESTRICT ref,
199
int16_t* WEBP_RESTRICT out) {
200
VP8FTransform(src, ref, out);
201
VP8FTransform(src + 4, ref + 4, out + 16);
202
}
203
204
#if !WEBP_NEON_OMIT_C_CODE
205
static void FTransformWHT_C(const int16_t* WEBP_RESTRICT in,
206
int16_t* WEBP_RESTRICT out) {
207
// input is 12b signed
208
int32_t tmp[16];
209
int i;
210
for (i = 0; i < 4; ++i, in += 64) {
211
const int a0 = (in[0 * 16] + in[2 * 16]); // 13b
212
const int a1 = (in[1 * 16] + in[3 * 16]);
213
const int a2 = (in[1 * 16] - in[3 * 16]);
214
const int a3 = (in[0 * 16] - in[2 * 16]);
215
tmp[0 + i * 4] = a0 + a1; // 14b
216
tmp[1 + i * 4] = a3 + a2;
217
tmp[2 + i * 4] = a3 - a2;
218
tmp[3 + i * 4] = a0 - a1;
219
}
220
for (i = 0; i < 4; ++i) {
221
const int a0 = (tmp[0 + i] + tmp[8 + i]); // 15b
222
const int a1 = (tmp[4 + i] + tmp[12+ i]);
223
const int a2 = (tmp[4 + i] - tmp[12+ i]);
224
const int a3 = (tmp[0 + i] - tmp[8 + i]);
225
const int b0 = a0 + a1; // 16b
226
const int b1 = a3 + a2;
227
const int b2 = a3 - a2;
228
const int b3 = a0 - a1;
229
out[ 0 + i] = b0 >> 1; // 15b
230
out[ 4 + i] = b1 >> 1;
231
out[ 8 + i] = b2 >> 1;
232
out[12 + i] = b3 >> 1;
233
}
234
}
235
#endif // !WEBP_NEON_OMIT_C_CODE
236
237
#undef STORE
238
239
//------------------------------------------------------------------------------
240
// Intra predictions
241
242
static WEBP_INLINE void Fill(uint8_t* dst, int value, int size) {
243
int j;
244
for (j = 0; j < size; ++j) {
245
memset(dst + j * BPS, value, size);
246
}
247
}
248
249
static WEBP_INLINE void VerticalPred(uint8_t* WEBP_RESTRICT dst,
250
const uint8_t* WEBP_RESTRICT top,
251
int size) {
252
int j;
253
if (top != NULL) {
254
for (j = 0; j < size; ++j) memcpy(dst + j * BPS, top, size);
255
} else {
256
Fill(dst, 127, size);
257
}
258
}
259
260
static WEBP_INLINE void HorizontalPred(uint8_t* WEBP_RESTRICT dst,
261
const uint8_t* WEBP_RESTRICT left,
262
int size) {
263
if (left != NULL) {
264
int j;
265
for (j = 0; j < size; ++j) {
266
memset(dst + j * BPS, left[j], size);
267
}
268
} else {
269
Fill(dst, 129, size);
270
}
271
}
272
273
static WEBP_INLINE void TrueMotion(uint8_t* WEBP_RESTRICT dst,
274
const uint8_t* WEBP_RESTRICT left,
275
const uint8_t* WEBP_RESTRICT top, int size) {
276
int y;
277
if (left != NULL) {
278
if (top != NULL) {
279
const uint8_t* const clip = clip1 + 255 - left[-1];
280
for (y = 0; y < size; ++y) {
281
const uint8_t* const clip_table = clip + left[y];
282
int x;
283
for (x = 0; x < size; ++x) {
284
dst[x] = clip_table[top[x]];
285
}
286
dst += BPS;
287
}
288
} else {
289
HorizontalPred(dst, left, size);
290
}
291
} else {
292
// true motion without left samples (hence: with default 129 value)
293
// is equivalent to VE prediction where you just copy the top samples.
294
// Note that if top samples are not available, the default value is
295
// then 129, and not 127 as in the VerticalPred case.
296
if (top != NULL) {
297
VerticalPred(dst, top, size);
298
} else {
299
Fill(dst, 129, size);
300
}
301
}
302
}
303
304
static WEBP_INLINE void DCMode(uint8_t* WEBP_RESTRICT dst,
305
const uint8_t* WEBP_RESTRICT left,
306
const uint8_t* WEBP_RESTRICT top,
307
int size, int round, int shift) {
308
int DC = 0;
309
int j;
310
if (top != NULL) {
311
for (j = 0; j < size; ++j) DC += top[j];
312
if (left != NULL) { // top and left present
313
for (j = 0; j < size; ++j) DC += left[j];
314
} else { // top, but no left
315
DC += DC;
316
}
317
DC = (DC + round) >> shift;
318
} else if (left != NULL) { // left but no top
319
for (j = 0; j < size; ++j) DC += left[j];
320
DC += DC;
321
DC = (DC + round) >> shift;
322
} else { // no top, no left, nothing.
323
DC = 0x80;
324
}
325
Fill(dst, DC, size);
326
}
327
328
//------------------------------------------------------------------------------
329
// Chroma 8x8 prediction (paragraph 12.2)
330
331
static void IntraChromaPreds_C(uint8_t* WEBP_RESTRICT dst,
332
const uint8_t* WEBP_RESTRICT left,
333
const uint8_t* WEBP_RESTRICT top) {
334
// U block
335
DCMode(C8DC8 + dst, left, top, 8, 8, 4);
336
VerticalPred(C8VE8 + dst, top, 8);
337
HorizontalPred(C8HE8 + dst, left, 8);
338
TrueMotion(C8TM8 + dst, left, top, 8);
339
// V block
340
dst += 8;
341
if (top != NULL) top += 8;
342
if (left != NULL) left += 16;
343
DCMode(C8DC8 + dst, left, top, 8, 8, 4);
344
VerticalPred(C8VE8 + dst, top, 8);
345
HorizontalPred(C8HE8 + dst, left, 8);
346
TrueMotion(C8TM8 + dst, left, top, 8);
347
}
348
349
//------------------------------------------------------------------------------
350
// luma 16x16 prediction (paragraph 12.3)
351
352
#if !WEBP_NEON_OMIT_C_CODE || !WEBP_AARCH64
353
static void Intra16Preds_C(uint8_t* WEBP_RESTRICT dst,
354
const uint8_t* WEBP_RESTRICT left,
355
const uint8_t* WEBP_RESTRICT top) {
356
DCMode(I16DC16 + dst, left, top, 16, 16, 5);
357
VerticalPred(I16VE16 + dst, top, 16);
358
HorizontalPred(I16HE16 + dst, left, 16);
359
TrueMotion(I16TM16 + dst, left, top, 16);
360
}
361
#endif // !WEBP_NEON_OMIT_C_CODE || !WEBP_AARCH64
362
363
//------------------------------------------------------------------------------
364
// luma 4x4 prediction
365
366
#if !WEBP_NEON_OMIT_C_CODE || !WEBP_AARCH64 || BPS != 32
367
368
#define DST(x, y) dst[(x) + (y) * BPS]
369
#define AVG3(a, b, c) ((uint8_t)(((a) + 2 * (b) + (c) + 2) >> 2))
370
#define AVG2(a, b) (((a) + (b) + 1) >> 1)
371
372
// vertical
373
static void VE4(uint8_t* WEBP_RESTRICT dst, const uint8_t* WEBP_RESTRICT top) {
374
const uint8_t vals[4] = {
375
AVG3(top[-1], top[0], top[1]),
376
AVG3(top[ 0], top[1], top[2]),
377
AVG3(top[ 1], top[2], top[3]),
378
AVG3(top[ 2], top[3], top[4])
379
};
380
int i;
381
for (i = 0; i < 4; ++i) {
382
memcpy(dst + i * BPS, vals, 4);
383
}
384
}
385
386
// horizontal
387
static void HE4(uint8_t* WEBP_RESTRICT dst, const uint8_t* WEBP_RESTRICT top) {
388
const int X = top[-1];
389
const int I = top[-2];
390
const int J = top[-3];
391
const int K = top[-4];
392
const int L = top[-5];
393
WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
394
WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
395
WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
396
WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
397
}
398
399
static void DC4(uint8_t* WEBP_RESTRICT dst, const uint8_t* WEBP_RESTRICT top) {
400
uint32_t dc = 4;
401
int i;
402
for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
403
Fill(dst, dc >> 3, 4);
404
}
405
406
static void RD4(uint8_t* WEBP_RESTRICT dst, const uint8_t* WEBP_RESTRICT top) {
407
const int X = top[-1];
408
const int I = top[-2];
409
const int J = top[-3];
410
const int K = top[-4];
411
const int L = top[-5];
412
const int A = top[0];
413
const int B = top[1];
414
const int C = top[2];
415
const int D = top[3];
416
DST(0, 3) = AVG3(J, K, L);
417
DST(0, 2) = DST(1, 3) = AVG3(I, J, K);
418
DST(0, 1) = DST(1, 2) = DST(2, 3) = AVG3(X, I, J);
419
DST(0, 0) = DST(1, 1) = DST(2, 2) = DST(3, 3) = AVG3(A, X, I);
420
DST(1, 0) = DST(2, 1) = DST(3, 2) = AVG3(B, A, X);
421
DST(2, 0) = DST(3, 1) = AVG3(C, B, A);
422
DST(3, 0) = AVG3(D, C, B);
423
}
424
425
static void LD4(uint8_t* WEBP_RESTRICT dst, const uint8_t* WEBP_RESTRICT top) {
426
const int A = top[0];
427
const int B = top[1];
428
const int C = top[2];
429
const int D = top[3];
430
const int E = top[4];
431
const int F = top[5];
432
const int G = top[6];
433
const int H = top[7];
434
DST(0, 0) = AVG3(A, B, C);
435
DST(1, 0) = DST(0, 1) = AVG3(B, C, D);
436
DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E);
437
DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F);
438
DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G);
439
DST(3, 2) = DST(2, 3) = AVG3(F, G, H);
440
DST(3, 3) = AVG3(G, H, H);
441
}
442
443
static void VR4(uint8_t* WEBP_RESTRICT dst, const uint8_t* WEBP_RESTRICT top) {
444
const int X = top[-1];
445
const int I = top[-2];
446
const int J = top[-3];
447
const int K = top[-4];
448
const int A = top[0];
449
const int B = top[1];
450
const int C = top[2];
451
const int D = top[3];
452
DST(0, 0) = DST(1, 2) = AVG2(X, A);
453
DST(1, 0) = DST(2, 2) = AVG2(A, B);
454
DST(2, 0) = DST(3, 2) = AVG2(B, C);
455
DST(3, 0) = AVG2(C, D);
456
457
DST(0, 3) = AVG3(K, J, I);
458
DST(0, 2) = AVG3(J, I, X);
459
DST(0, 1) = DST(1, 3) = AVG3(I, X, A);
460
DST(1, 1) = DST(2, 3) = AVG3(X, A, B);
461
DST(2, 1) = DST(3, 3) = AVG3(A, B, C);
462
DST(3, 1) = AVG3(B, C, D);
463
}
464
465
static void VL4(uint8_t* WEBP_RESTRICT dst, const uint8_t* WEBP_RESTRICT top) {
466
const int A = top[0];
467
const int B = top[1];
468
const int C = top[2];
469
const int D = top[3];
470
const int E = top[4];
471
const int F = top[5];
472
const int G = top[6];
473
const int H = top[7];
474
DST(0, 0) = AVG2(A, B);
475
DST(1, 0) = DST(0, 2) = AVG2(B, C);
476
DST(2, 0) = DST(1, 2) = AVG2(C, D);
477
DST(3, 0) = DST(2, 2) = AVG2(D, E);
478
479
DST(0, 1) = AVG3(A, B, C);
480
DST(1, 1) = DST(0, 3) = AVG3(B, C, D);
481
DST(2, 1) = DST(1, 3) = AVG3(C, D, E);
482
DST(3, 1) = DST(2, 3) = AVG3(D, E, F);
483
DST(3, 2) = AVG3(E, F, G);
484
DST(3, 3) = AVG3(F, G, H);
485
}
486
487
static void HU4(uint8_t* WEBP_RESTRICT dst, const uint8_t* WEBP_RESTRICT top) {
488
const int I = top[-2];
489
const int J = top[-3];
490
const int K = top[-4];
491
const int L = top[-5];
492
DST(0, 0) = AVG2(I, J);
493
DST(2, 0) = DST(0, 1) = AVG2(J, K);
494
DST(2, 1) = DST(0, 2) = AVG2(K, L);
495
DST(1, 0) = AVG3(I, J, K);
496
DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
497
DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
498
DST(3, 2) = DST(2, 2) =
499
DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
500
}
501
502
static void HD4(uint8_t* WEBP_RESTRICT dst, const uint8_t* WEBP_RESTRICT top) {
503
const int X = top[-1];
504
const int I = top[-2];
505
const int J = top[-3];
506
const int K = top[-4];
507
const int L = top[-5];
508
const int A = top[0];
509
const int B = top[1];
510
const int C = top[2];
511
512
DST(0, 0) = DST(2, 1) = AVG2(I, X);
513
DST(0, 1) = DST(2, 2) = AVG2(J, I);
514
DST(0, 2) = DST(2, 3) = AVG2(K, J);
515
DST(0, 3) = AVG2(L, K);
516
517
DST(3, 0) = AVG3(A, B, C);
518
DST(2, 0) = AVG3(X, A, B);
519
DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
520
DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
521
DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
522
DST(1, 3) = AVG3(L, K, J);
523
}
524
525
static void TM4(uint8_t* WEBP_RESTRICT dst, const uint8_t* WEBP_RESTRICT top) {
526
int x, y;
527
const uint8_t* const clip = clip1 + 255 - top[-1];
528
for (y = 0; y < 4; ++y) {
529
const uint8_t* const clip_table = clip + top[-2 - y];
530
for (x = 0; x < 4; ++x) {
531
dst[x] = clip_table[top[x]];
532
}
533
dst += BPS;
534
}
535
}
536
537
#undef DST
538
#undef AVG3
539
#undef AVG2
540
541
// Left samples are top[-5 .. -2], top_left is top[-1], top are
542
// located at top[0..3], and top right is top[4..7]
543
static void Intra4Preds_C(uint8_t* WEBP_RESTRICT dst,
544
const uint8_t* WEBP_RESTRICT top) {
545
DC4(I4DC4 + dst, top);
546
TM4(I4TM4 + dst, top);
547
VE4(I4VE4 + dst, top);
548
HE4(I4HE4 + dst, top);
549
RD4(I4RD4 + dst, top);
550
VR4(I4VR4 + dst, top);
551
LD4(I4LD4 + dst, top);
552
VL4(I4VL4 + dst, top);
553
HD4(I4HD4 + dst, top);
554
HU4(I4HU4 + dst, top);
555
}
556
557
#endif // !WEBP_NEON_OMIT_C_CODE || !WEBP_AARCH64 || BPS != 32
558
559
//------------------------------------------------------------------------------
560
// Metric
561
562
#if !WEBP_NEON_OMIT_C_CODE
563
static WEBP_INLINE int GetSSE(const uint8_t* WEBP_RESTRICT a,
564
const uint8_t* WEBP_RESTRICT b,
565
int w, int h) {
566
int count = 0;
567
int y, x;
568
for (y = 0; y < h; ++y) {
569
for (x = 0; x < w; ++x) {
570
const int diff = (int)a[x] - b[x];
571
count += diff * diff;
572
}
573
a += BPS;
574
b += BPS;
575
}
576
return count;
577
}
578
579
static int SSE16x16_C(const uint8_t* WEBP_RESTRICT a,
580
const uint8_t* WEBP_RESTRICT b) {
581
return GetSSE(a, b, 16, 16);
582
}
583
static int SSE16x8_C(const uint8_t* WEBP_RESTRICT a,
584
const uint8_t* WEBP_RESTRICT b) {
585
return GetSSE(a, b, 16, 8);
586
}
587
static int SSE8x8_C(const uint8_t* WEBP_RESTRICT a,
588
const uint8_t* WEBP_RESTRICT b) {
589
return GetSSE(a, b, 8, 8);
590
}
591
static int SSE4x4_C(const uint8_t* WEBP_RESTRICT a,
592
const uint8_t* WEBP_RESTRICT b) {
593
return GetSSE(a, b, 4, 4);
594
}
595
#endif // !WEBP_NEON_OMIT_C_CODE
596
597
static void Mean16x4_C(const uint8_t* WEBP_RESTRICT ref, uint32_t dc[4]) {
598
int k, x, y;
599
for (k = 0; k < 4; ++k) {
600
uint32_t avg = 0;
601
for (y = 0; y < 4; ++y) {
602
for (x = 0; x < 4; ++x) {
603
avg += ref[x + y * BPS];
604
}
605
}
606
dc[k] = avg;
607
ref += 4; // go to next 4x4 block.
608
}
609
}
610
611
//------------------------------------------------------------------------------
612
// Texture distortion
613
//
614
// We try to match the spectral content (weighted) between source and
615
// reconstructed samples.
616
617
#if !WEBP_NEON_OMIT_C_CODE
618
// Hadamard transform
619
// Returns the weighted sum of the absolute value of transformed coefficients.
620
// w[] contains a row-major 4 by 4 symmetric matrix.
621
static int TTransform(const uint8_t* WEBP_RESTRICT in,
622
const uint16_t* WEBP_RESTRICT w) {
623
int sum = 0;
624
int tmp[16];
625
int i;
626
// horizontal pass
627
for (i = 0; i < 4; ++i, in += BPS) {
628
const int a0 = in[0] + in[2];
629
const int a1 = in[1] + in[3];
630
const int a2 = in[1] - in[3];
631
const int a3 = in[0] - in[2];
632
tmp[0 + i * 4] = a0 + a1;
633
tmp[1 + i * 4] = a3 + a2;
634
tmp[2 + i * 4] = a3 - a2;
635
tmp[3 + i * 4] = a0 - a1;
636
}
637
// vertical pass
638
for (i = 0; i < 4; ++i, ++w) {
639
const int a0 = tmp[0 + i] + tmp[8 + i];
640
const int a1 = tmp[4 + i] + tmp[12+ i];
641
const int a2 = tmp[4 + i] - tmp[12+ i];
642
const int a3 = tmp[0 + i] - tmp[8 + i];
643
const int b0 = a0 + a1;
644
const int b1 = a3 + a2;
645
const int b2 = a3 - a2;
646
const int b3 = a0 - a1;
647
648
sum += w[ 0] * abs(b0);
649
sum += w[ 4] * abs(b1);
650
sum += w[ 8] * abs(b2);
651
sum += w[12] * abs(b3);
652
}
653
return sum;
654
}
655
656
static int Disto4x4_C(const uint8_t* WEBP_RESTRICT const a,
657
const uint8_t* WEBP_RESTRICT const b,
658
const uint16_t* WEBP_RESTRICT const w) {
659
const int sum1 = TTransform(a, w);
660
const int sum2 = TTransform(b, w);
661
return abs(sum2 - sum1) >> 5;
662
}
663
664
static int Disto16x16_C(const uint8_t* WEBP_RESTRICT const a,
665
const uint8_t* WEBP_RESTRICT const b,
666
const uint16_t* WEBP_RESTRICT const w) {
667
int D = 0;
668
int x, y;
669
for (y = 0; y < 16 * BPS; y += 4 * BPS) {
670
for (x = 0; x < 16; x += 4) {
671
D += Disto4x4_C(a + x + y, b + x + y, w);
672
}
673
}
674
return D;
675
}
676
#endif // !WEBP_NEON_OMIT_C_CODE
677
678
//------------------------------------------------------------------------------
679
// Quantization
680
//
681
682
#if !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC
683
static const uint8_t kZigzag[16] = {
684
0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
685
};
686
687
// Simple quantization
688
static int QuantizeBlock_C(int16_t in[16], int16_t out[16],
689
const VP8Matrix* WEBP_RESTRICT const mtx) {
690
int last = -1;
691
int n;
692
for (n = 0; n < 16; ++n) {
693
const int j = kZigzag[n];
694
const int sign = (in[j] < 0);
695
const uint32_t coeff = (sign ? -in[j] : in[j]) + mtx->sharpen[j];
696
if (coeff > mtx->zthresh[j]) {
697
const uint32_t Q = mtx->q[j];
698
const uint32_t iQ = mtx->iq[j];
699
const uint32_t B = mtx->bias[j];
700
int level = QUANTDIV(coeff, iQ, B);
701
if (level > MAX_LEVEL) level = MAX_LEVEL;
702
if (sign) level = -level;
703
in[j] = level * (int)Q;
704
out[n] = level;
705
if (level) last = n;
706
} else {
707
out[n] = 0;
708
in[j] = 0;
709
}
710
}
711
return (last >= 0);
712
}
713
714
static int Quantize2Blocks_C(int16_t in[32], int16_t out[32],
715
const VP8Matrix* WEBP_RESTRICT const mtx) {
716
int nz;
717
nz = VP8EncQuantizeBlock(in + 0 * 16, out + 0 * 16, mtx) << 0;
718
nz |= VP8EncQuantizeBlock(in + 1 * 16, out + 1 * 16, mtx) << 1;
719
return nz;
720
}
721
#endif // !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC
722
723
//------------------------------------------------------------------------------
724
// Block copy
725
726
static WEBP_INLINE void Copy(const uint8_t* WEBP_RESTRICT src,
727
uint8_t* WEBP_RESTRICT dst, int w, int h) {
728
int y;
729
for (y = 0; y < h; ++y) {
730
memcpy(dst, src, w);
731
src += BPS;
732
dst += BPS;
733
}
734
}
735
736
static void Copy4x4_C(const uint8_t* WEBP_RESTRICT src,
737
uint8_t* WEBP_RESTRICT dst) {
738
Copy(src, dst, 4, 4);
739
}
740
741
static void Copy16x8_C(const uint8_t* WEBP_RESTRICT src,
742
uint8_t* WEBP_RESTRICT dst) {
743
Copy(src, dst, 16, 8);
744
}
745
746
//------------------------------------------------------------------------------
747
// Initialization
748
749
// Speed-critical function pointers. We have to initialize them to the default
750
// implementations within VP8EncDspInit().
751
VP8CHisto VP8CollectHistogram;
752
VP8Idct VP8ITransform;
753
VP8Fdct VP8FTransform;
754
VP8Fdct VP8FTransform2;
755
VP8WHT VP8FTransformWHT;
756
VP8Intra4Preds VP8EncPredLuma4;
757
VP8IntraPreds VP8EncPredLuma16;
758
VP8IntraPreds VP8EncPredChroma8;
759
VP8Metric VP8SSE16x16;
760
VP8Metric VP8SSE8x8;
761
VP8Metric VP8SSE16x8;
762
VP8Metric VP8SSE4x4;
763
VP8WMetric VP8TDisto4x4;
764
VP8WMetric VP8TDisto16x16;
765
VP8MeanMetric VP8Mean16x4;
766
VP8QuantizeBlock VP8EncQuantizeBlock;
767
VP8Quantize2Blocks VP8EncQuantize2Blocks;
768
VP8QuantizeBlockWHT VP8EncQuantizeBlockWHT;
769
VP8BlockCopy VP8Copy4x4;
770
VP8BlockCopy VP8Copy16x8;
771
772
extern VP8CPUInfo VP8GetCPUInfo;
773
extern void VP8EncDspInitSSE2(void);
774
extern void VP8EncDspInitSSE41(void);
775
extern void VP8EncDspInitNEON(void);
776
extern void VP8EncDspInitMIPS32(void);
777
extern void VP8EncDspInitMIPSdspR2(void);
778
extern void VP8EncDspInitMSA(void);
779
780
WEBP_DSP_INIT_FUNC(VP8EncDspInit) {
781
VP8DspInit(); // common inverse transforms
782
InitTables();
783
784
// default C implementations
785
#if !WEBP_NEON_OMIT_C_CODE
786
VP8ITransform = ITransform_C;
787
VP8FTransform = FTransform_C;
788
VP8FTransformWHT = FTransformWHT_C;
789
VP8TDisto4x4 = Disto4x4_C;
790
VP8TDisto16x16 = Disto16x16_C;
791
VP8CollectHistogram = CollectHistogram_C;
792
VP8SSE16x16 = SSE16x16_C;
793
VP8SSE16x8 = SSE16x8_C;
794
VP8SSE8x8 = SSE8x8_C;
795
VP8SSE4x4 = SSE4x4_C;
796
#endif
797
798
#if !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC
799
VP8EncQuantizeBlock = QuantizeBlock_C;
800
VP8EncQuantize2Blocks = Quantize2Blocks_C;
801
VP8EncQuantizeBlockWHT = QuantizeBlock_C;
802
#endif
803
804
#if !WEBP_NEON_OMIT_C_CODE || !WEBP_AARCH64 || BPS != 32
805
VP8EncPredLuma4 = Intra4Preds_C;
806
#endif
807
#if !WEBP_NEON_OMIT_C_CODE || !WEBP_AARCH64
808
VP8EncPredLuma16 = Intra16Preds_C;
809
#endif
810
811
VP8FTransform2 = FTransform2_C;
812
VP8EncPredChroma8 = IntraChromaPreds_C;
813
VP8Mean16x4 = Mean16x4_C;
814
VP8Copy4x4 = Copy4x4_C;
815
VP8Copy16x8 = Copy16x8_C;
816
817
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
818
if (VP8GetCPUInfo != NULL) {
819
#if defined(WEBP_HAVE_SSE2)
820
if (VP8GetCPUInfo(kSSE2)) {
821
VP8EncDspInitSSE2();
822
#if defined(WEBP_HAVE_SSE41)
823
if (VP8GetCPUInfo(kSSE4_1)) {
824
VP8EncDspInitSSE41();
825
}
826
#endif
827
}
828
#endif
829
#if defined(WEBP_USE_MIPS32)
830
if (VP8GetCPUInfo(kMIPS32)) {
831
VP8EncDspInitMIPS32();
832
}
833
#endif
834
#if defined(WEBP_USE_MIPS_DSP_R2)
835
if (VP8GetCPUInfo(kMIPSdspR2)) {
836
VP8EncDspInitMIPSdspR2();
837
}
838
#endif
839
#if defined(WEBP_USE_MSA)
840
if (VP8GetCPUInfo(kMSA)) {
841
VP8EncDspInitMSA();
842
}
843
#endif
844
}
845
846
#if defined(WEBP_HAVE_NEON)
847
if (WEBP_NEON_OMIT_C_CODE ||
848
(VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) {
849
VP8EncDspInitNEON();
850
}
851
#endif
852
853
assert(VP8ITransform != NULL);
854
assert(VP8FTransform != NULL);
855
assert(VP8FTransformWHT != NULL);
856
assert(VP8TDisto4x4 != NULL);
857
assert(VP8TDisto16x16 != NULL);
858
assert(VP8CollectHistogram != NULL);
859
assert(VP8SSE16x16 != NULL);
860
assert(VP8SSE16x8 != NULL);
861
assert(VP8SSE8x8 != NULL);
862
assert(VP8SSE4x4 != NULL);
863
assert(VP8EncQuantizeBlock != NULL);
864
assert(VP8EncQuantize2Blocks != NULL);
865
assert(VP8FTransform2 != NULL);
866
assert(VP8EncPredLuma4 != NULL);
867
assert(VP8EncPredLuma16 != NULL);
868
assert(VP8EncPredChroma8 != NULL);
869
assert(VP8Mean16x4 != NULL);
870
assert(VP8EncQuantizeBlockWHT != NULL);
871
assert(VP8Copy4x4 != NULL);
872
assert(VP8Copy16x8 != NULL);
873
}
874
875