Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/dsp/enc_sse2.c
9913 views
1
// Copyright 2011 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// SSE2 version of speed-critical encoding functions.
11
//
12
// Author: Christian Duvivier ([email protected])
13
14
#include "src/dsp/dsp.h"
15
16
#if defined(WEBP_USE_SSE2)
17
#include <assert.h>
18
#include <stdlib.h> // for abs()
19
#include <emmintrin.h>
20
21
#include "src/dsp/common_sse2.h"
22
#include "src/enc/cost_enc.h"
23
#include "src/enc/vp8i_enc.h"
24
25
//------------------------------------------------------------------------------
26
// Transforms (Paragraph 14.4)
27
28
// Does one inverse transform.
29
static void ITransform_One_SSE2(const uint8_t* WEBP_RESTRICT ref,
30
const int16_t* WEBP_RESTRICT in,
31
uint8_t* WEBP_RESTRICT dst) {
32
// This implementation makes use of 16-bit fixed point versions of two
33
// multiply constants:
34
// K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
35
// K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
36
//
37
// To be able to use signed 16-bit integers, we use the following trick to
38
// have constants within range:
39
// - Associated constants are obtained by subtracting the 16-bit fixed point
40
// version of one:
41
// k = K - (1 << 16) => K = k + (1 << 16)
42
// K1 = 85267 => k1 = 20091
43
// K2 = 35468 => k2 = -30068
44
// - The multiplication of a variable by a constant become the sum of the
45
// variable and the multiplication of that variable by the associated
46
// constant:
47
// (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
48
const __m128i k1k2 = _mm_set_epi16(-30068, -30068, -30068, -30068,
49
20091, 20091, 20091, 20091);
50
const __m128i k2k1 = _mm_set_epi16(20091, 20091, 20091, 20091,
51
-30068, -30068, -30068, -30068);
52
const __m128i zero = _mm_setzero_si128();
53
const __m128i zero_four = _mm_set_epi16(0, 0, 0, 0, 4, 4, 4, 4);
54
__m128i T01, T23;
55
56
// Load and concatenate the transform coefficients.
57
const __m128i in01 = _mm_loadu_si128((const __m128i*)&in[0]);
58
const __m128i in23 = _mm_loadu_si128((const __m128i*)&in[8]);
59
// a00 a10 a20 a30 a01 a11 a21 a31
60
// a02 a12 a22 a32 a03 a13 a23 a33
61
62
// Vertical pass and subsequent transpose.
63
{
64
const __m128i in1 = _mm_unpackhi_epi64(in01, in01);
65
const __m128i in3 = _mm_unpackhi_epi64(in23, in23);
66
67
// First pass, c and d calculations are longer because of the "trick"
68
// multiplications.
69
// c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
70
// d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
71
const __m128i a_d3 = _mm_add_epi16(in01, in23);
72
const __m128i b_c3 = _mm_sub_epi16(in01, in23);
73
const __m128i c1d1 = _mm_mulhi_epi16(in1, k2k1);
74
const __m128i c2d2 = _mm_mulhi_epi16(in3, k1k2);
75
const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
76
const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
77
const __m128i c = _mm_add_epi16(c3, c4);
78
const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
79
const __m128i du = _mm_add_epi16(a_d3, d4u);
80
const __m128i d = _mm_unpackhi_epi64(du, du);
81
82
// Second pass.
83
const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
84
const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
85
86
const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
87
const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
88
const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
89
90
const __m128i transpose_0 = _mm_unpacklo_epi16(tmp01, tmp23);
91
const __m128i transpose_1 = _mm_unpackhi_epi16(tmp01, tmp23);
92
// a00 a20 a01 a21 a02 a22 a03 a23
93
// a10 a30 a11 a31 a12 a32 a13 a33
94
95
T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
96
T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
97
// a00 a10 a20 a30 a01 a11 a21 a31
98
// a02 a12 a22 a32 a03 a13 a23 a33
99
}
100
101
// Horizontal pass and subsequent transpose.
102
{
103
const __m128i T1 = _mm_unpackhi_epi64(T01, T01);
104
const __m128i T3 = _mm_unpackhi_epi64(T23, T23);
105
106
// First pass, c and d calculations are longer because of the "trick"
107
// multiplications.
108
const __m128i dc = _mm_add_epi16(T01, zero_four);
109
110
// c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
111
// d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
112
const __m128i a_d3 = _mm_add_epi16(dc, T23);
113
const __m128i b_c3 = _mm_sub_epi16(dc, T23);
114
const __m128i c1d1 = _mm_mulhi_epi16(T1, k2k1);
115
const __m128i c2d2 = _mm_mulhi_epi16(T3, k1k2);
116
const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
117
const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
118
const __m128i c = _mm_add_epi16(c3, c4);
119
const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
120
const __m128i du = _mm_add_epi16(a_d3, d4u);
121
const __m128i d = _mm_unpackhi_epi64(du, du);
122
123
// Second pass.
124
const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
125
const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
126
127
const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
128
const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
129
const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
130
131
const __m128i shifted01 = _mm_srai_epi16(tmp01, 3);
132
const __m128i shifted23 = _mm_srai_epi16(tmp23, 3);
133
// a00 a01 a02 a03 a10 a11 a12 a13
134
// a20 a21 a22 a23 a30 a31 a32 a33
135
136
const __m128i transpose_0 = _mm_unpacklo_epi16(shifted01, shifted23);
137
const __m128i transpose_1 = _mm_unpackhi_epi16(shifted01, shifted23);
138
// a00 a20 a01 a21 a02 a22 a03 a23
139
// a10 a30 a11 a31 a12 a32 a13 a33
140
141
T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
142
T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
143
// a00 a10 a20 a30 a01 a11 a21 a31
144
// a02 a12 a22 a32 a03 a13 a23 a33
145
}
146
147
// Add inverse transform to 'ref' and store.
148
{
149
// Load the reference(s).
150
__m128i ref01, ref23, ref0123;
151
int32_t buf[4];
152
153
// Load four bytes/pixels per line.
154
const __m128i ref0 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[0 * BPS]));
155
const __m128i ref1 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[1 * BPS]));
156
const __m128i ref2 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[2 * BPS]));
157
const __m128i ref3 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[3 * BPS]));
158
ref01 = _mm_unpacklo_epi32(ref0, ref1);
159
ref23 = _mm_unpacklo_epi32(ref2, ref3);
160
161
// Convert to 16b.
162
ref01 = _mm_unpacklo_epi8(ref01, zero);
163
ref23 = _mm_unpacklo_epi8(ref23, zero);
164
// Add the inverse transform(s).
165
ref01 = _mm_add_epi16(ref01, T01);
166
ref23 = _mm_add_epi16(ref23, T23);
167
// Unsigned saturate to 8b.
168
ref0123 = _mm_packus_epi16(ref01, ref23);
169
170
_mm_storeu_si128((__m128i *)buf, ref0123);
171
172
// Store four bytes/pixels per line.
173
WebPInt32ToMem(&dst[0 * BPS], buf[0]);
174
WebPInt32ToMem(&dst[1 * BPS], buf[1]);
175
WebPInt32ToMem(&dst[2 * BPS], buf[2]);
176
WebPInt32ToMem(&dst[3 * BPS], buf[3]);
177
}
178
}
179
180
// Does two inverse transforms.
181
static void ITransform_Two_SSE2(const uint8_t* WEBP_RESTRICT ref,
182
const int16_t* WEBP_RESTRICT in,
183
uint8_t* WEBP_RESTRICT dst) {
184
// This implementation makes use of 16-bit fixed point versions of two
185
// multiply constants:
186
// K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
187
// K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
188
//
189
// To be able to use signed 16-bit integers, we use the following trick to
190
// have constants within range:
191
// - Associated constants are obtained by subtracting the 16-bit fixed point
192
// version of one:
193
// k = K - (1 << 16) => K = k + (1 << 16)
194
// K1 = 85267 => k1 = 20091
195
// K2 = 35468 => k2 = -30068
196
// - The multiplication of a variable by a constant become the sum of the
197
// variable and the multiplication of that variable by the associated
198
// constant:
199
// (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
200
const __m128i k1 = _mm_set1_epi16(20091);
201
const __m128i k2 = _mm_set1_epi16(-30068);
202
__m128i T0, T1, T2, T3;
203
204
// Load and concatenate the transform coefficients (we'll do two inverse
205
// transforms in parallel).
206
__m128i in0, in1, in2, in3;
207
{
208
const __m128i tmp0 = _mm_loadu_si128((const __m128i*)&in[0]);
209
const __m128i tmp1 = _mm_loadu_si128((const __m128i*)&in[8]);
210
const __m128i tmp2 = _mm_loadu_si128((const __m128i*)&in[16]);
211
const __m128i tmp3 = _mm_loadu_si128((const __m128i*)&in[24]);
212
in0 = _mm_unpacklo_epi64(tmp0, tmp2);
213
in1 = _mm_unpackhi_epi64(tmp0, tmp2);
214
in2 = _mm_unpacklo_epi64(tmp1, tmp3);
215
in3 = _mm_unpackhi_epi64(tmp1, tmp3);
216
// a00 a10 a20 a30 b00 b10 b20 b30
217
// a01 a11 a21 a31 b01 b11 b21 b31
218
// a02 a12 a22 a32 b02 b12 b22 b32
219
// a03 a13 a23 a33 b03 b13 b23 b33
220
}
221
222
// Vertical pass and subsequent transpose.
223
{
224
// First pass, c and d calculations are longer because of the "trick"
225
// multiplications.
226
const __m128i a = _mm_add_epi16(in0, in2);
227
const __m128i b = _mm_sub_epi16(in0, in2);
228
// c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
229
const __m128i c1 = _mm_mulhi_epi16(in1, k2);
230
const __m128i c2 = _mm_mulhi_epi16(in3, k1);
231
const __m128i c3 = _mm_sub_epi16(in1, in3);
232
const __m128i c4 = _mm_sub_epi16(c1, c2);
233
const __m128i c = _mm_add_epi16(c3, c4);
234
// d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
235
const __m128i d1 = _mm_mulhi_epi16(in1, k1);
236
const __m128i d2 = _mm_mulhi_epi16(in3, k2);
237
const __m128i d3 = _mm_add_epi16(in1, in3);
238
const __m128i d4 = _mm_add_epi16(d1, d2);
239
const __m128i d = _mm_add_epi16(d3, d4);
240
241
// Second pass.
242
const __m128i tmp0 = _mm_add_epi16(a, d);
243
const __m128i tmp1 = _mm_add_epi16(b, c);
244
const __m128i tmp2 = _mm_sub_epi16(b, c);
245
const __m128i tmp3 = _mm_sub_epi16(a, d);
246
247
// Transpose the two 4x4.
248
VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
249
}
250
251
// Horizontal pass and subsequent transpose.
252
{
253
// First pass, c and d calculations are longer because of the "trick"
254
// multiplications.
255
const __m128i four = _mm_set1_epi16(4);
256
const __m128i dc = _mm_add_epi16(T0, four);
257
const __m128i a = _mm_add_epi16(dc, T2);
258
const __m128i b = _mm_sub_epi16(dc, T2);
259
// c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
260
const __m128i c1 = _mm_mulhi_epi16(T1, k2);
261
const __m128i c2 = _mm_mulhi_epi16(T3, k1);
262
const __m128i c3 = _mm_sub_epi16(T1, T3);
263
const __m128i c4 = _mm_sub_epi16(c1, c2);
264
const __m128i c = _mm_add_epi16(c3, c4);
265
// d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
266
const __m128i d1 = _mm_mulhi_epi16(T1, k1);
267
const __m128i d2 = _mm_mulhi_epi16(T3, k2);
268
const __m128i d3 = _mm_add_epi16(T1, T3);
269
const __m128i d4 = _mm_add_epi16(d1, d2);
270
const __m128i d = _mm_add_epi16(d3, d4);
271
272
// Second pass.
273
const __m128i tmp0 = _mm_add_epi16(a, d);
274
const __m128i tmp1 = _mm_add_epi16(b, c);
275
const __m128i tmp2 = _mm_sub_epi16(b, c);
276
const __m128i tmp3 = _mm_sub_epi16(a, d);
277
const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
278
const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
279
const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
280
const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
281
282
// Transpose the two 4x4.
283
VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
284
&T2, &T3);
285
}
286
287
// Add inverse transform to 'ref' and store.
288
{
289
const __m128i zero = _mm_setzero_si128();
290
// Load the reference(s).
291
__m128i ref0, ref1, ref2, ref3;
292
// Load eight bytes/pixels per line.
293
ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
294
ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
295
ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
296
ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
297
// Convert to 16b.
298
ref0 = _mm_unpacklo_epi8(ref0, zero);
299
ref1 = _mm_unpacklo_epi8(ref1, zero);
300
ref2 = _mm_unpacklo_epi8(ref2, zero);
301
ref3 = _mm_unpacklo_epi8(ref3, zero);
302
// Add the inverse transform(s).
303
ref0 = _mm_add_epi16(ref0, T0);
304
ref1 = _mm_add_epi16(ref1, T1);
305
ref2 = _mm_add_epi16(ref2, T2);
306
ref3 = _mm_add_epi16(ref3, T3);
307
// Unsigned saturate to 8b.
308
ref0 = _mm_packus_epi16(ref0, ref0);
309
ref1 = _mm_packus_epi16(ref1, ref1);
310
ref2 = _mm_packus_epi16(ref2, ref2);
311
ref3 = _mm_packus_epi16(ref3, ref3);
312
// Store eight bytes/pixels per line.
313
_mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
314
_mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
315
_mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
316
_mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
317
}
318
}
319
320
// Does one or two inverse transforms.
321
static void ITransform_SSE2(const uint8_t* WEBP_RESTRICT ref,
322
const int16_t* WEBP_RESTRICT in,
323
uint8_t* WEBP_RESTRICT dst,
324
int do_two) {
325
if (do_two) {
326
ITransform_Two_SSE2(ref, in, dst);
327
} else {
328
ITransform_One_SSE2(ref, in, dst);
329
}
330
}
331
332
static void FTransformPass1_SSE2(const __m128i* const in01,
333
const __m128i* const in23,
334
__m128i* const out01,
335
__m128i* const out32) {
336
const __m128i k937 = _mm_set1_epi32(937);
337
const __m128i k1812 = _mm_set1_epi32(1812);
338
339
const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
340
const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
341
const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
342
2217, 5352, 2217, 5352);
343
const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
344
-5352, 2217, -5352, 2217);
345
346
// *in01 = 00 01 10 11 02 03 12 13
347
// *in23 = 20 21 30 31 22 23 32 33
348
const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
349
const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
350
// 00 01 10 11 03 02 13 12
351
// 20 21 30 31 23 22 33 32
352
const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
353
const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
354
// 00 01 10 11 20 21 30 31
355
// 03 02 13 12 23 22 33 32
356
const __m128i a01 = _mm_add_epi16(s01, s32);
357
const __m128i a32 = _mm_sub_epi16(s01, s32);
358
// [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
359
// [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
360
361
const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ]
362
const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ]
363
const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
364
const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
365
const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
366
const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
367
const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9);
368
const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9);
369
const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
370
const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
371
const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1...
372
const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3
373
const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
374
*out01 = _mm_unpacklo_epi32(s_lo, s_hi);
375
*out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2..
376
}
377
378
static void FTransformPass2_SSE2(const __m128i* const v01,
379
const __m128i* const v32,
380
int16_t* WEBP_RESTRICT out) {
381
const __m128i zero = _mm_setzero_si128();
382
const __m128i seven = _mm_set1_epi16(7);
383
const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217,
384
5352, 2217, 5352, 2217);
385
const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
386
2217, -5352, 2217, -5352);
387
const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
388
const __m128i k51000 = _mm_set1_epi32(51000);
389
390
// Same operations are done on the (0,3) and (1,2) pairs.
391
// a3 = v0 - v3
392
// a2 = v1 - v2
393
const __m128i a32 = _mm_sub_epi16(*v01, *v32);
394
const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
395
396
const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
397
const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
398
const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
399
const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
400
const __m128i d3 = _mm_add_epi32(c3, k51000);
401
const __m128i e1 = _mm_srai_epi32(d1, 16);
402
const __m128i e3 = _mm_srai_epi32(d3, 16);
403
// f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
404
// f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
405
const __m128i f1 = _mm_packs_epi32(e1, e1);
406
const __m128i f3 = _mm_packs_epi32(e3, e3);
407
// g1 = f1 + (a3 != 0);
408
// The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
409
// desired (0, 1), we add one earlier through k12000_plus_one.
410
// -> g1 = f1 + 1 - (a3 == 0)
411
const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
412
413
// a0 = v0 + v3
414
// a1 = v1 + v2
415
const __m128i a01 = _mm_add_epi16(*v01, *v32);
416
const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
417
const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
418
const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
419
const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
420
// d0 = (a0 + a1 + 7) >> 4;
421
// d2 = (a0 - a1 + 7) >> 4;
422
const __m128i d0 = _mm_srai_epi16(c0, 4);
423
const __m128i d2 = _mm_srai_epi16(c2, 4);
424
425
const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
426
const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
427
_mm_storeu_si128((__m128i*)&out[0], d0_g1);
428
_mm_storeu_si128((__m128i*)&out[8], d2_f3);
429
}
430
431
static void FTransform_SSE2(const uint8_t* WEBP_RESTRICT src,
432
const uint8_t* WEBP_RESTRICT ref,
433
int16_t* WEBP_RESTRICT out) {
434
const __m128i zero = _mm_setzero_si128();
435
// Load src.
436
const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
437
const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
438
const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
439
const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
440
// 00 01 02 03 *
441
// 10 11 12 13 *
442
// 20 21 22 23 *
443
// 30 31 32 33 *
444
// Shuffle.
445
const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
446
const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
447
// 00 01 10 11 02 03 12 13 * * ...
448
// 20 21 30 31 22 22 32 33 * * ...
449
450
// Load ref.
451
const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
452
const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
453
const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
454
const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
455
const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
456
const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);
457
458
// Convert both to 16 bit.
459
const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
460
const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
461
const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
462
const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);
463
464
// Compute the difference.
465
const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
466
const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
467
__m128i v01, v32;
468
469
// First pass
470
FTransformPass1_SSE2(&row01, &row23, &v01, &v32);
471
472
// Second pass
473
FTransformPass2_SSE2(&v01, &v32, out);
474
}
475
476
static void FTransform2_SSE2(const uint8_t* WEBP_RESTRICT src,
477
const uint8_t* WEBP_RESTRICT ref,
478
int16_t* WEBP_RESTRICT out) {
479
const __m128i zero = _mm_setzero_si128();
480
481
// Load src and convert to 16b.
482
const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
483
const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
484
const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
485
const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
486
const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
487
const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
488
const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
489
const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
490
// Load ref and convert to 16b.
491
const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
492
const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
493
const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
494
const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
495
const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
496
const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
497
const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
498
const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
499
// Compute difference. -> 00 01 02 03 00' 01' 02' 03'
500
const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
501
const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
502
const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
503
const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
504
505
// Unpack and shuffle
506
// 00 01 02 03 0 0 0 0
507
// 10 11 12 13 0 0 0 0
508
// 20 21 22 23 0 0 0 0
509
// 30 31 32 33 0 0 0 0
510
const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
511
const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
512
const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
513
const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
514
__m128i v01l, v32l;
515
__m128i v01h, v32h;
516
517
// First pass
518
FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l);
519
FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h);
520
521
// Second pass
522
FTransformPass2_SSE2(&v01l, &v32l, out + 0);
523
FTransformPass2_SSE2(&v01h, &v32h, out + 16);
524
}
525
526
static void FTransformWHTRow_SSE2(const int16_t* WEBP_RESTRICT const in,
527
__m128i* const out) {
528
const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
529
const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
530
const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
531
const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
532
const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
533
const __m128i A01 = _mm_unpacklo_epi16(src0, src1); // A0 A1 | ...
534
const __m128i A23 = _mm_unpacklo_epi16(src2, src3); // A2 A3 | ...
535
const __m128i B0 = _mm_adds_epi16(A01, A23); // a0 | a1 | ...
536
const __m128i B1 = _mm_subs_epi16(A01, A23); // a3 | a2 | ...
537
const __m128i C0 = _mm_unpacklo_epi32(B0, B1); // a0 | a1 | a3 | a2 | ...
538
const __m128i C1 = _mm_unpacklo_epi32(B1, B0); // a3 | a2 | a0 | a1 | ...
539
const __m128i D = _mm_unpacklo_epi64(C0, C1); // a0 a1 a3 a2 a3 a2 a0 a1
540
*out = _mm_madd_epi16(D, kMult);
541
}
542
543
static void FTransformWHT_SSE2(const int16_t* WEBP_RESTRICT in,
544
int16_t* WEBP_RESTRICT out) {
545
// Input is 12b signed.
546
__m128i row0, row1, row2, row3;
547
// Rows are 14b signed.
548
FTransformWHTRow_SSE2(in + 0 * 64, &row0);
549
FTransformWHTRow_SSE2(in + 1 * 64, &row1);
550
FTransformWHTRow_SSE2(in + 2 * 64, &row2);
551
FTransformWHTRow_SSE2(in + 3 * 64, &row3);
552
553
{
554
// The a* are 15b signed.
555
const __m128i a0 = _mm_add_epi32(row0, row2);
556
const __m128i a1 = _mm_add_epi32(row1, row3);
557
const __m128i a2 = _mm_sub_epi32(row1, row3);
558
const __m128i a3 = _mm_sub_epi32(row0, row2);
559
const __m128i a0a3 = _mm_packs_epi32(a0, a3);
560
const __m128i a1a2 = _mm_packs_epi32(a1, a2);
561
562
// The b* are 16b signed.
563
const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
564
const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
565
const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
566
const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);
567
568
_mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
569
_mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
570
}
571
}
572
573
//------------------------------------------------------------------------------
574
// Compute susceptibility based on DCT-coeff histograms:
575
// the higher, the "easier" the macroblock is to compress.
576
577
static void CollectHistogram_SSE2(const uint8_t* WEBP_RESTRICT ref,
578
const uint8_t* WEBP_RESTRICT pred,
579
int start_block, int end_block,
580
VP8Histogram* WEBP_RESTRICT const histo) {
581
const __m128i zero = _mm_setzero_si128();
582
const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
583
int j;
584
int distribution[MAX_COEFF_THRESH + 1] = { 0 };
585
for (j = start_block; j < end_block; ++j) {
586
int16_t out[16];
587
int k;
588
589
FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
590
591
// Convert coefficients to bin (within out[]).
592
{
593
// Load.
594
const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
595
const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
596
const __m128i d0 = _mm_sub_epi16(zero, out0);
597
const __m128i d1 = _mm_sub_epi16(zero, out1);
598
const __m128i abs0 = _mm_max_epi16(out0, d0); // abs(v), 16b
599
const __m128i abs1 = _mm_max_epi16(out1, d1);
600
// v = abs(out) >> 3
601
const __m128i v0 = _mm_srai_epi16(abs0, 3);
602
const __m128i v1 = _mm_srai_epi16(abs1, 3);
603
// bin = min(v, MAX_COEFF_THRESH)
604
const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
605
const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
606
// Store.
607
_mm_storeu_si128((__m128i*)&out[0], bin0);
608
_mm_storeu_si128((__m128i*)&out[8], bin1);
609
}
610
611
// Convert coefficients to bin.
612
for (k = 0; k < 16; ++k) {
613
++distribution[out[k]];
614
}
615
}
616
VP8SetHistogramData(distribution, histo);
617
}
618
619
//------------------------------------------------------------------------------
620
// Intra predictions
621
622
// helper for chroma-DC predictions
623
static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
624
int j;
625
const __m128i values = _mm_set1_epi8((char)v);
626
for (j = 0; j < 8; ++j) {
627
_mm_storel_epi64((__m128i*)(dst + j * BPS), values);
628
}
629
}
630
631
static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
632
int j;
633
const __m128i values = _mm_set1_epi8((char)v);
634
for (j = 0; j < 16; ++j) {
635
_mm_store_si128((__m128i*)(dst + j * BPS), values);
636
}
637
}
638
639
static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) {
640
if (size == 4) {
641
int j;
642
for (j = 0; j < 4; ++j) {
643
memset(dst + j * BPS, value, 4);
644
}
645
} else if (size == 8) {
646
Put8x8uv_SSE2(value, dst);
647
} else {
648
Put16_SSE2(value, dst);
649
}
650
}
651
652
static WEBP_INLINE void VE8uv_SSE2(uint8_t* WEBP_RESTRICT dst,
653
const uint8_t* WEBP_RESTRICT top) {
654
int j;
655
const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
656
for (j = 0; j < 8; ++j) {
657
_mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
658
}
659
}
660
661
static WEBP_INLINE void VE16_SSE2(uint8_t* WEBP_RESTRICT dst,
662
const uint8_t* WEBP_RESTRICT top) {
663
const __m128i top_values = _mm_load_si128((const __m128i*)top);
664
int j;
665
for (j = 0; j < 16; ++j) {
666
_mm_store_si128((__m128i*)(dst + j * BPS), top_values);
667
}
668
}
669
670
static WEBP_INLINE void VerticalPred_SSE2(uint8_t* WEBP_RESTRICT dst,
671
const uint8_t* WEBP_RESTRICT top,
672
int size) {
673
if (top != NULL) {
674
if (size == 8) {
675
VE8uv_SSE2(dst, top);
676
} else {
677
VE16_SSE2(dst, top);
678
}
679
} else {
680
Fill_SSE2(dst, 127, size);
681
}
682
}
683
684
static WEBP_INLINE void HE8uv_SSE2(uint8_t* WEBP_RESTRICT dst,
685
const uint8_t* WEBP_RESTRICT left) {
686
int j;
687
for (j = 0; j < 8; ++j) {
688
const __m128i values = _mm_set1_epi8((char)left[j]);
689
_mm_storel_epi64((__m128i*)dst, values);
690
dst += BPS;
691
}
692
}
693
694
static WEBP_INLINE void HE16_SSE2(uint8_t* WEBP_RESTRICT dst,
695
const uint8_t* WEBP_RESTRICT left) {
696
int j;
697
for (j = 0; j < 16; ++j) {
698
const __m128i values = _mm_set1_epi8((char)left[j]);
699
_mm_store_si128((__m128i*)dst, values);
700
dst += BPS;
701
}
702
}
703
704
static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* WEBP_RESTRICT dst,
705
const uint8_t* WEBP_RESTRICT left,
706
int size) {
707
if (left != NULL) {
708
if (size == 8) {
709
HE8uv_SSE2(dst, left);
710
} else {
711
HE16_SSE2(dst, left);
712
}
713
} else {
714
Fill_SSE2(dst, 129, size);
715
}
716
}
717
718
static WEBP_INLINE void TM_SSE2(uint8_t* WEBP_RESTRICT dst,
719
const uint8_t* WEBP_RESTRICT left,
720
const uint8_t* WEBP_RESTRICT top, int size) {
721
const __m128i zero = _mm_setzero_si128();
722
int y;
723
if (size == 8) {
724
const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
725
const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
726
for (y = 0; y < 8; ++y, dst += BPS) {
727
const int val = left[y] - left[-1];
728
const __m128i base = _mm_set1_epi16(val);
729
const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
730
_mm_storel_epi64((__m128i*)dst, out);
731
}
732
} else {
733
const __m128i top_values = _mm_load_si128((const __m128i*)top);
734
const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
735
const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
736
for (y = 0; y < 16; ++y, dst += BPS) {
737
const int val = left[y] - left[-1];
738
const __m128i base = _mm_set1_epi16(val);
739
const __m128i out_0 = _mm_add_epi16(base, top_base_0);
740
const __m128i out_1 = _mm_add_epi16(base, top_base_1);
741
const __m128i out = _mm_packus_epi16(out_0, out_1);
742
_mm_store_si128((__m128i*)dst, out);
743
}
744
}
745
}
746
747
static WEBP_INLINE void TrueMotion_SSE2(uint8_t* WEBP_RESTRICT dst,
748
const uint8_t* WEBP_RESTRICT left,
749
const uint8_t* WEBP_RESTRICT top,
750
int size) {
751
if (left != NULL) {
752
if (top != NULL) {
753
TM_SSE2(dst, left, top, size);
754
} else {
755
HorizontalPred_SSE2(dst, left, size);
756
}
757
} else {
758
// true motion without left samples (hence: with default 129 value)
759
// is equivalent to VE prediction where you just copy the top samples.
760
// Note that if top samples are not available, the default value is
761
// then 129, and not 127 as in the VerticalPred case.
762
if (top != NULL) {
763
VerticalPred_SSE2(dst, top, size);
764
} else {
765
Fill_SSE2(dst, 129, size);
766
}
767
}
768
}
769
770
static WEBP_INLINE void DC8uv_SSE2(uint8_t* WEBP_RESTRICT dst,
771
const uint8_t* WEBP_RESTRICT left,
772
const uint8_t* WEBP_RESTRICT top) {
773
const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
774
const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
775
const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
776
const int DC = VP8HorizontalAdd8b(&combined) + 8;
777
Put8x8uv_SSE2(DC >> 4, dst);
778
}
779
780
static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* WEBP_RESTRICT dst,
781
const uint8_t* WEBP_RESTRICT top) {
782
const __m128i zero = _mm_setzero_si128();
783
const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
784
const __m128i sum = _mm_sad_epu8(top_values, zero);
785
const int DC = _mm_cvtsi128_si32(sum) + 4;
786
Put8x8uv_SSE2(DC >> 3, dst);
787
}
788
789
static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* WEBP_RESTRICT dst,
790
const uint8_t* WEBP_RESTRICT left) {
791
// 'left' is contiguous so we can reuse the top summation.
792
DC8uvNoLeft_SSE2(dst, left);
793
}
794
795
static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) {
796
Put8x8uv_SSE2(0x80, dst);
797
}
798
799
static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* WEBP_RESTRICT dst,
800
const uint8_t* WEBP_RESTRICT left,
801
const uint8_t* WEBP_RESTRICT top) {
802
if (top != NULL) {
803
if (left != NULL) { // top and left present
804
DC8uv_SSE2(dst, left, top);
805
} else { // top, but no left
806
DC8uvNoLeft_SSE2(dst, top);
807
}
808
} else if (left != NULL) { // left but no top
809
DC8uvNoTop_SSE2(dst, left);
810
} else { // no top, no left, nothing.
811
DC8uvNoTopLeft_SSE2(dst);
812
}
813
}
814
815
static WEBP_INLINE void DC16_SSE2(uint8_t* WEBP_RESTRICT dst,
816
const uint8_t* WEBP_RESTRICT left,
817
const uint8_t* WEBP_RESTRICT top) {
818
const __m128i top_row = _mm_load_si128((const __m128i*)top);
819
const __m128i left_row = _mm_load_si128((const __m128i*)left);
820
const int DC =
821
VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
822
Put16_SSE2(DC >> 5, dst);
823
}
824
825
static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* WEBP_RESTRICT dst,
826
const uint8_t* WEBP_RESTRICT top) {
827
const __m128i top_row = _mm_load_si128((const __m128i*)top);
828
const int DC = VP8HorizontalAdd8b(&top_row) + 8;
829
Put16_SSE2(DC >> 4, dst);
830
}
831
832
static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* WEBP_RESTRICT dst,
833
const uint8_t* WEBP_RESTRICT left) {
834
// 'left' is contiguous so we can reuse the top summation.
835
DC16NoLeft_SSE2(dst, left);
836
}
837
838
static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) {
839
Put16_SSE2(0x80, dst);
840
}
841
842
static WEBP_INLINE void DC16Mode_SSE2(uint8_t* WEBP_RESTRICT dst,
843
const uint8_t* WEBP_RESTRICT left,
844
const uint8_t* WEBP_RESTRICT top) {
845
if (top != NULL) {
846
if (left != NULL) { // top and left present
847
DC16_SSE2(dst, left, top);
848
} else { // top, but no left
849
DC16NoLeft_SSE2(dst, top);
850
}
851
} else if (left != NULL) { // left but no top
852
DC16NoTop_SSE2(dst, left);
853
} else { // no top, no left, nothing.
854
DC16NoTopLeft_SSE2(dst);
855
}
856
}
857
858
//------------------------------------------------------------------------------
859
// 4x4 predictions
860
861
#define DST(x, y) dst[(x) + (y) * BPS]
862
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
863
#define AVG2(a, b) (((a) + (b) + 1) >> 1)
864
865
// We use the following 8b-arithmetic tricks:
866
// (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
867
// where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
868
// and:
869
// (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
870
// where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1
871
// and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
872
873
// vertical
874
static WEBP_INLINE void VE4_SSE2(uint8_t* WEBP_RESTRICT dst,
875
const uint8_t* WEBP_RESTRICT top) {
876
const __m128i one = _mm_set1_epi8(1);
877
const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
878
const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
879
const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
880
const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
881
const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
882
const __m128i b = _mm_subs_epu8(a, lsb);
883
const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
884
const int vals = _mm_cvtsi128_si32(avg);
885
int i;
886
for (i = 0; i < 4; ++i) {
887
WebPInt32ToMem(dst + i * BPS, vals);
888
}
889
}
890
891
// horizontal
892
static WEBP_INLINE void HE4_SSE2(uint8_t* WEBP_RESTRICT dst,
893
const uint8_t* WEBP_RESTRICT top) {
894
const int X = top[-1];
895
const int I = top[-2];
896
const int J = top[-3];
897
const int K = top[-4];
898
const int L = top[-5];
899
WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
900
WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
901
WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
902
WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
903
}
904
905
static WEBP_INLINE void DC4_SSE2(uint8_t* WEBP_RESTRICT dst,
906
const uint8_t* WEBP_RESTRICT top) {
907
uint32_t dc = 4;
908
int i;
909
for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
910
Fill_SSE2(dst, dc >> 3, 4);
911
}
912
913
// Down-Left
914
static WEBP_INLINE void LD4_SSE2(uint8_t* WEBP_RESTRICT dst,
915
const uint8_t* WEBP_RESTRICT top) {
916
const __m128i one = _mm_set1_epi8(1);
917
const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
918
const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
919
const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
920
const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
921
const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
922
const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
923
const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
924
const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
925
WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg ));
926
WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
927
WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
928
WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
929
}
930
931
// Vertical-Right
932
static WEBP_INLINE void VR4_SSE2(uint8_t* WEBP_RESTRICT dst,
933
const uint8_t* WEBP_RESTRICT top) {
934
const __m128i one = _mm_set1_epi8(1);
935
const int I = top[-2];
936
const int J = top[-3];
937
const int K = top[-4];
938
const int X = top[-1];
939
const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
940
const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
941
const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
942
const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
943
const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0);
944
const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
945
const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
946
const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
947
const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
948
WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd ));
949
WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh ));
950
WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
951
WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
952
953
// these two are hard to implement in SSE2, so we keep the C-version:
954
DST(0, 2) = AVG3(J, I, X);
955
DST(0, 3) = AVG3(K, J, I);
956
}
957
958
// Vertical-Left
959
static WEBP_INLINE void VL4_SSE2(uint8_t* WEBP_RESTRICT dst,
960
const uint8_t* WEBP_RESTRICT top) {
961
const __m128i one = _mm_set1_epi8(1);
962
const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
963
const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
964
const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
965
const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
966
const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
967
const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
968
const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
969
const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
970
const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
971
const __m128i abbc = _mm_or_si128(ab, bc);
972
const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
973
const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
974
const uint32_t extra_out =
975
(uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
976
WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 ));
977
WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 ));
978
WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
979
WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
980
981
// these two are hard to get and irregular
982
DST(3, 2) = (extra_out >> 0) & 0xff;
983
DST(3, 3) = (extra_out >> 8) & 0xff;
984
}
985
986
// Down-right
987
static WEBP_INLINE void RD4_SSE2(uint8_t* WEBP_RESTRICT dst,
988
const uint8_t* WEBP_RESTRICT top) {
989
const __m128i one = _mm_set1_epi8(1);
990
const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
991
const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
992
const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
993
const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
994
const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
995
const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
996
const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
997
const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
998
WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg ));
999
WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1000
WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1001
WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1002
}
1003
1004
static WEBP_INLINE void HU4_SSE2(uint8_t* WEBP_RESTRICT dst,
1005
const uint8_t* WEBP_RESTRICT top) {
1006
const int I = top[-2];
1007
const int J = top[-3];
1008
const int K = top[-4];
1009
const int L = top[-5];
1010
DST(0, 0) = AVG2(I, J);
1011
DST(2, 0) = DST(0, 1) = AVG2(J, K);
1012
DST(2, 1) = DST(0, 2) = AVG2(K, L);
1013
DST(1, 0) = AVG3(I, J, K);
1014
DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
1015
DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
1016
DST(3, 2) = DST(2, 2) =
1017
DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
1018
}
1019
1020
static WEBP_INLINE void HD4_SSE2(uint8_t* WEBP_RESTRICT dst,
1021
const uint8_t* WEBP_RESTRICT top) {
1022
const int X = top[-1];
1023
const int I = top[-2];
1024
const int J = top[-3];
1025
const int K = top[-4];
1026
const int L = top[-5];
1027
const int A = top[0];
1028
const int B = top[1];
1029
const int C = top[2];
1030
1031
DST(0, 0) = DST(2, 1) = AVG2(I, X);
1032
DST(0, 1) = DST(2, 2) = AVG2(J, I);
1033
DST(0, 2) = DST(2, 3) = AVG2(K, J);
1034
DST(0, 3) = AVG2(L, K);
1035
1036
DST(3, 0) = AVG3(A, B, C);
1037
DST(2, 0) = AVG3(X, A, B);
1038
DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
1039
DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
1040
DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
1041
DST(1, 3) = AVG3(L, K, J);
1042
}
1043
1044
static WEBP_INLINE void TM4_SSE2(uint8_t* WEBP_RESTRICT dst,
1045
const uint8_t* WEBP_RESTRICT top) {
1046
const __m128i zero = _mm_setzero_si128();
1047
const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top));
1048
const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1049
int y;
1050
for (y = 0; y < 4; ++y, dst += BPS) {
1051
const int val = top[-2 - y] - top[-1];
1052
const __m128i base = _mm_set1_epi16(val);
1053
const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1054
WebPInt32ToMem(dst, _mm_cvtsi128_si32(out));
1055
}
1056
}
1057
1058
#undef DST
1059
#undef AVG3
1060
#undef AVG2
1061
1062
//------------------------------------------------------------------------------
1063
// luma 4x4 prediction
1064
1065
// Left samples are top[-5 .. -2], top_left is top[-1], top are
1066
// located at top[0..3], and top right is top[4..7]
1067
static void Intra4Preds_SSE2(uint8_t* WEBP_RESTRICT dst,
1068
const uint8_t* WEBP_RESTRICT top) {
1069
DC4_SSE2(I4DC4 + dst, top);
1070
TM4_SSE2(I4TM4 + dst, top);
1071
VE4_SSE2(I4VE4 + dst, top);
1072
HE4_SSE2(I4HE4 + dst, top);
1073
RD4_SSE2(I4RD4 + dst, top);
1074
VR4_SSE2(I4VR4 + dst, top);
1075
LD4_SSE2(I4LD4 + dst, top);
1076
VL4_SSE2(I4VL4 + dst, top);
1077
HD4_SSE2(I4HD4 + dst, top);
1078
HU4_SSE2(I4HU4 + dst, top);
1079
}
1080
1081
//------------------------------------------------------------------------------
1082
// Chroma 8x8 prediction (paragraph 12.2)
1083
1084
static void IntraChromaPreds_SSE2(uint8_t* WEBP_RESTRICT dst,
1085
const uint8_t* WEBP_RESTRICT left,
1086
const uint8_t* WEBP_RESTRICT top) {
1087
// U block
1088
DC8uvMode_SSE2(C8DC8 + dst, left, top);
1089
VerticalPred_SSE2(C8VE8 + dst, top, 8);
1090
HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1091
TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1092
// V block
1093
dst += 8;
1094
if (top != NULL) top += 8;
1095
if (left != NULL) left += 16;
1096
DC8uvMode_SSE2(C8DC8 + dst, left, top);
1097
VerticalPred_SSE2(C8VE8 + dst, top, 8);
1098
HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1099
TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1100
}
1101
1102
//------------------------------------------------------------------------------
1103
// luma 16x16 prediction (paragraph 12.3)
1104
1105
static void Intra16Preds_SSE2(uint8_t* WEBP_RESTRICT dst,
1106
const uint8_t* WEBP_RESTRICT left,
1107
const uint8_t* WEBP_RESTRICT top) {
1108
DC16Mode_SSE2(I16DC16 + dst, left, top);
1109
VerticalPred_SSE2(I16VE16 + dst, top, 16);
1110
HorizontalPred_SSE2(I16HE16 + dst, left, 16);
1111
TrueMotion_SSE2(I16TM16 + dst, left, top, 16);
1112
}
1113
1114
//------------------------------------------------------------------------------
1115
// Metric
1116
1117
static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a,
1118
const __m128i b,
1119
__m128i* const sum) {
1120
// take abs(a-b) in 8b
1121
const __m128i a_b = _mm_subs_epu8(a, b);
1122
const __m128i b_a = _mm_subs_epu8(b, a);
1123
const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
1124
// zero-extend to 16b
1125
const __m128i zero = _mm_setzero_si128();
1126
const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
1127
const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
1128
// multiply with self
1129
const __m128i sum1 = _mm_madd_epi16(C0, C0);
1130
const __m128i sum2 = _mm_madd_epi16(C1, C1);
1131
*sum = _mm_add_epi32(sum1, sum2);
1132
}
1133
1134
static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* WEBP_RESTRICT a,
1135
const uint8_t* WEBP_RESTRICT b,
1136
int num_pairs) {
1137
__m128i sum = _mm_setzero_si128();
1138
int32_t tmp[4];
1139
int i;
1140
1141
for (i = 0; i < num_pairs; ++i) {
1142
const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
1143
const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
1144
const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
1145
const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
1146
__m128i sum1, sum2;
1147
SubtractAndAccumulate_SSE2(a0, b0, &sum1);
1148
SubtractAndAccumulate_SSE2(a1, b1, &sum2);
1149
sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
1150
a += 2 * BPS;
1151
b += 2 * BPS;
1152
}
1153
_mm_storeu_si128((__m128i*)tmp, sum);
1154
return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1155
}
1156
1157
static int SSE16x16_SSE2(const uint8_t* WEBP_RESTRICT a,
1158
const uint8_t* WEBP_RESTRICT b) {
1159
return SSE_16xN_SSE2(a, b, 8);
1160
}
1161
1162
static int SSE16x8_SSE2(const uint8_t* WEBP_RESTRICT a,
1163
const uint8_t* WEBP_RESTRICT b) {
1164
return SSE_16xN_SSE2(a, b, 4);
1165
}
1166
1167
#define LOAD_8x16b(ptr) \
1168
_mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
1169
1170
static int SSE8x8_SSE2(const uint8_t* WEBP_RESTRICT a,
1171
const uint8_t* WEBP_RESTRICT b) {
1172
const __m128i zero = _mm_setzero_si128();
1173
int num_pairs = 4;
1174
__m128i sum = zero;
1175
int32_t tmp[4];
1176
while (num_pairs-- > 0) {
1177
const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
1178
const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
1179
const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
1180
const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
1181
// subtract
1182
const __m128i c0 = _mm_subs_epi16(a0, b0);
1183
const __m128i c1 = _mm_subs_epi16(a1, b1);
1184
// multiply/accumulate with self
1185
const __m128i d0 = _mm_madd_epi16(c0, c0);
1186
const __m128i d1 = _mm_madd_epi16(c1, c1);
1187
// collect
1188
const __m128i sum01 = _mm_add_epi32(d0, d1);
1189
sum = _mm_add_epi32(sum, sum01);
1190
a += 2 * BPS;
1191
b += 2 * BPS;
1192
}
1193
_mm_storeu_si128((__m128i*)tmp, sum);
1194
return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1195
}
1196
#undef LOAD_8x16b
1197
1198
static int SSE4x4_SSE2(const uint8_t* WEBP_RESTRICT a,
1199
const uint8_t* WEBP_RESTRICT b) {
1200
const __m128i zero = _mm_setzero_si128();
1201
1202
// Load values. Note that we read 8 pixels instead of 4,
1203
// but the a/b buffers are over-allocated to that effect.
1204
const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
1205
const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
1206
const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
1207
const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
1208
const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
1209
const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
1210
const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
1211
const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
1212
// Combine pair of lines.
1213
const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
1214
const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
1215
const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
1216
const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
1217
// Convert to 16b.
1218
const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
1219
const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
1220
const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
1221
const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
1222
// subtract, square and accumulate
1223
const __m128i d0 = _mm_subs_epi16(a01s, b01s);
1224
const __m128i d1 = _mm_subs_epi16(a23s, b23s);
1225
const __m128i e0 = _mm_madd_epi16(d0, d0);
1226
const __m128i e1 = _mm_madd_epi16(d1, d1);
1227
const __m128i sum = _mm_add_epi32(e0, e1);
1228
1229
int32_t tmp[4];
1230
_mm_storeu_si128((__m128i*)tmp, sum);
1231
return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1232
}
1233
1234
//------------------------------------------------------------------------------
1235
1236
static void Mean16x4_SSE2(const uint8_t* WEBP_RESTRICT ref, uint32_t dc[4]) {
1237
const __m128i mask = _mm_set1_epi16(0x00ff);
1238
const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
1239
const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
1240
const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
1241
const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
1242
const __m128i b0 = _mm_srli_epi16(a0, 8); // hi byte
1243
const __m128i b1 = _mm_srli_epi16(a1, 8);
1244
const __m128i b2 = _mm_srli_epi16(a2, 8);
1245
const __m128i b3 = _mm_srli_epi16(a3, 8);
1246
const __m128i c0 = _mm_and_si128(a0, mask); // lo byte
1247
const __m128i c1 = _mm_and_si128(a1, mask);
1248
const __m128i c2 = _mm_and_si128(a2, mask);
1249
const __m128i c3 = _mm_and_si128(a3, mask);
1250
const __m128i d0 = _mm_add_epi32(b0, c0);
1251
const __m128i d1 = _mm_add_epi32(b1, c1);
1252
const __m128i d2 = _mm_add_epi32(b2, c2);
1253
const __m128i d3 = _mm_add_epi32(b3, c3);
1254
const __m128i e0 = _mm_add_epi32(d0, d1);
1255
const __m128i e1 = _mm_add_epi32(d2, d3);
1256
const __m128i f0 = _mm_add_epi32(e0, e1);
1257
uint16_t tmp[8];
1258
_mm_storeu_si128((__m128i*)tmp, f0);
1259
dc[0] = tmp[0] + tmp[1];
1260
dc[1] = tmp[2] + tmp[3];
1261
dc[2] = tmp[4] + tmp[5];
1262
dc[3] = tmp[6] + tmp[7];
1263
}
1264
1265
//------------------------------------------------------------------------------
1266
// Texture distortion
1267
//
1268
// We try to match the spectral content (weighted) between source and
1269
// reconstructed samples.
1270
1271
// Hadamard transform
1272
// Returns the weighted sum of the absolute value of transformed coefficients.
1273
// w[] contains a row-major 4 by 4 symmetric matrix.
1274
static int TTransform_SSE2(const uint8_t* WEBP_RESTRICT inA,
1275
const uint8_t* WEBP_RESTRICT inB,
1276
const uint16_t* WEBP_RESTRICT const w) {
1277
int32_t sum[4];
1278
__m128i tmp_0, tmp_1, tmp_2, tmp_3;
1279
const __m128i zero = _mm_setzero_si128();
1280
1281
// Load and combine inputs.
1282
{
1283
const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
1284
const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
1285
const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
1286
const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
1287
const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
1288
const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
1289
const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
1290
const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
1291
1292
// Combine inA and inB (we'll do two transforms in parallel).
1293
const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
1294
const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
1295
const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
1296
const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
1297
tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
1298
tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
1299
tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
1300
tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
1301
// a00 a01 a02 a03 b00 b01 b02 b03
1302
// a10 a11 a12 a13 b10 b11 b12 b13
1303
// a20 a21 a22 a23 b20 b21 b22 b23
1304
// a30 a31 a32 a33 b30 b31 b32 b33
1305
}
1306
1307
// Vertical pass first to avoid a transpose (vertical and horizontal passes
1308
// are commutative because w/kWeightY is symmetric) and subsequent transpose.
1309
{
1310
// Calculate a and b (two 4x4 at once).
1311
const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1312
const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1313
const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1314
const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1315
const __m128i b0 = _mm_add_epi16(a0, a1);
1316
const __m128i b1 = _mm_add_epi16(a3, a2);
1317
const __m128i b2 = _mm_sub_epi16(a3, a2);
1318
const __m128i b3 = _mm_sub_epi16(a0, a1);
1319
// a00 a01 a02 a03 b00 b01 b02 b03
1320
// a10 a11 a12 a13 b10 b11 b12 b13
1321
// a20 a21 a22 a23 b20 b21 b22 b23
1322
// a30 a31 a32 a33 b30 b31 b32 b33
1323
1324
// Transpose the two 4x4.
1325
VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
1326
}
1327
1328
// Horizontal pass and difference of weighted sums.
1329
{
1330
// Load all inputs.
1331
const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
1332
const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
1333
1334
// Calculate a and b (two 4x4 at once).
1335
const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1336
const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1337
const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1338
const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1339
const __m128i b0 = _mm_add_epi16(a0, a1);
1340
const __m128i b1 = _mm_add_epi16(a3, a2);
1341
const __m128i b2 = _mm_sub_epi16(a3, a2);
1342
const __m128i b3 = _mm_sub_epi16(a0, a1);
1343
1344
// Separate the transforms of inA and inB.
1345
__m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
1346
__m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
1347
__m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
1348
__m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
1349
1350
{
1351
const __m128i d0 = _mm_sub_epi16(zero, A_b0);
1352
const __m128i d1 = _mm_sub_epi16(zero, A_b2);
1353
const __m128i d2 = _mm_sub_epi16(zero, B_b0);
1354
const __m128i d3 = _mm_sub_epi16(zero, B_b2);
1355
A_b0 = _mm_max_epi16(A_b0, d0); // abs(v), 16b
1356
A_b2 = _mm_max_epi16(A_b2, d1);
1357
B_b0 = _mm_max_epi16(B_b0, d2);
1358
B_b2 = _mm_max_epi16(B_b2, d3);
1359
}
1360
1361
// weighted sums
1362
A_b0 = _mm_madd_epi16(A_b0, w_0);
1363
A_b2 = _mm_madd_epi16(A_b2, w_8);
1364
B_b0 = _mm_madd_epi16(B_b0, w_0);
1365
B_b2 = _mm_madd_epi16(B_b2, w_8);
1366
A_b0 = _mm_add_epi32(A_b0, A_b2);
1367
B_b0 = _mm_add_epi32(B_b0, B_b2);
1368
1369
// difference of weighted sums
1370
A_b0 = _mm_sub_epi32(A_b0, B_b0);
1371
_mm_storeu_si128((__m128i*)&sum[0], A_b0);
1372
}
1373
return sum[0] + sum[1] + sum[2] + sum[3];
1374
}
1375
1376
static int Disto4x4_SSE2(const uint8_t* WEBP_RESTRICT const a,
1377
const uint8_t* WEBP_RESTRICT const b,
1378
const uint16_t* WEBP_RESTRICT const w) {
1379
const int diff_sum = TTransform_SSE2(a, b, w);
1380
return abs(diff_sum) >> 5;
1381
}
1382
1383
static int Disto16x16_SSE2(const uint8_t* WEBP_RESTRICT const a,
1384
const uint8_t* WEBP_RESTRICT const b,
1385
const uint16_t* WEBP_RESTRICT const w) {
1386
int D = 0;
1387
int x, y;
1388
for (y = 0; y < 16 * BPS; y += 4 * BPS) {
1389
for (x = 0; x < 16; x += 4) {
1390
D += Disto4x4_SSE2(a + x + y, b + x + y, w);
1391
}
1392
}
1393
return D;
1394
}
1395
1396
//------------------------------------------------------------------------------
1397
// Quantization
1398
//
1399
1400
static WEBP_INLINE int DoQuantizeBlock_SSE2(
1401
int16_t in[16], int16_t out[16],
1402
const uint16_t* WEBP_RESTRICT const sharpen,
1403
const VP8Matrix* WEBP_RESTRICT const mtx) {
1404
const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
1405
const __m128i zero = _mm_setzero_si128();
1406
__m128i coeff0, coeff8;
1407
__m128i out0, out8;
1408
__m128i packed_out;
1409
1410
// Load all inputs.
1411
__m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
1412
__m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
1413
const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
1414
const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
1415
const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
1416
const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
1417
1418
// extract sign(in) (0x0000 if positive, 0xffff if negative)
1419
const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
1420
const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
1421
1422
// coeff = abs(in) = (in ^ sign) - sign
1423
coeff0 = _mm_xor_si128(in0, sign0);
1424
coeff8 = _mm_xor_si128(in8, sign8);
1425
coeff0 = _mm_sub_epi16(coeff0, sign0);
1426
coeff8 = _mm_sub_epi16(coeff8, sign8);
1427
1428
// coeff = abs(in) + sharpen
1429
if (sharpen != NULL) {
1430
const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
1431
const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
1432
coeff0 = _mm_add_epi16(coeff0, sharpen0);
1433
coeff8 = _mm_add_epi16(coeff8, sharpen8);
1434
}
1435
1436
// out = (coeff * iQ + B) >> QFIX
1437
{
1438
// doing calculations with 32b precision (QFIX=17)
1439
// out = (coeff * iQ)
1440
const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
1441
const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
1442
const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
1443
const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
1444
__m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
1445
__m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
1446
__m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
1447
__m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
1448
// out = (coeff * iQ + B)
1449
const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
1450
const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
1451
const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
1452
const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
1453
out_00 = _mm_add_epi32(out_00, bias_00);
1454
out_04 = _mm_add_epi32(out_04, bias_04);
1455
out_08 = _mm_add_epi32(out_08, bias_08);
1456
out_12 = _mm_add_epi32(out_12, bias_12);
1457
// out = QUANTDIV(coeff, iQ, B, QFIX)
1458
out_00 = _mm_srai_epi32(out_00, QFIX);
1459
out_04 = _mm_srai_epi32(out_04, QFIX);
1460
out_08 = _mm_srai_epi32(out_08, QFIX);
1461
out_12 = _mm_srai_epi32(out_12, QFIX);
1462
1463
// pack result as 16b
1464
out0 = _mm_packs_epi32(out_00, out_04);
1465
out8 = _mm_packs_epi32(out_08, out_12);
1466
1467
// if (coeff > 2047) coeff = 2047
1468
out0 = _mm_min_epi16(out0, max_coeff_2047);
1469
out8 = _mm_min_epi16(out8, max_coeff_2047);
1470
}
1471
1472
// get sign back (if (sign[j]) out_n = -out_n)
1473
out0 = _mm_xor_si128(out0, sign0);
1474
out8 = _mm_xor_si128(out8, sign8);
1475
out0 = _mm_sub_epi16(out0, sign0);
1476
out8 = _mm_sub_epi16(out8, sign8);
1477
1478
// in = out * Q
1479
in0 = _mm_mullo_epi16(out0, q0);
1480
in8 = _mm_mullo_epi16(out8, q8);
1481
1482
_mm_storeu_si128((__m128i*)&in[0], in0);
1483
_mm_storeu_si128((__m128i*)&in[8], in8);
1484
1485
// zigzag the output before storing it.
1486
//
1487
// The zigzag pattern can almost be reproduced with a small sequence of
1488
// shuffles. After it, we only need to swap the 7th (ending up in third
1489
// position instead of twelfth) and 8th values.
1490
{
1491
__m128i outZ0, outZ8;
1492
outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0));
1493
outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
1494
outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
1495
outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1));
1496
outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
1497
outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
1498
_mm_storeu_si128((__m128i*)&out[0], outZ0);
1499
_mm_storeu_si128((__m128i*)&out[8], outZ8);
1500
packed_out = _mm_packs_epi16(outZ0, outZ8);
1501
}
1502
{
1503
const int16_t outZ_12 = out[12];
1504
const int16_t outZ_3 = out[3];
1505
out[3] = outZ_12;
1506
out[12] = outZ_3;
1507
}
1508
1509
// detect if all 'out' values are zeroes or not
1510
return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
1511
}
1512
1513
static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1514
const VP8Matrix* WEBP_RESTRICT const mtx) {
1515
return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx);
1516
}
1517
1518
static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16],
1519
const VP8Matrix* WEBP_RESTRICT const mtx) {
1520
return DoQuantizeBlock_SSE2(in, out, NULL, mtx);
1521
}
1522
1523
static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32],
1524
const VP8Matrix* WEBP_RESTRICT const mtx) {
1525
int nz;
1526
const uint16_t* const sharpen = &mtx->sharpen_[0];
1527
nz = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
1528
nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
1529
return nz;
1530
}
1531
1532
//------------------------------------------------------------------------------
1533
// Entry point
1534
1535
extern void VP8EncDspInitSSE2(void);
1536
1537
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
1538
VP8CollectHistogram = CollectHistogram_SSE2;
1539
VP8EncPredLuma16 = Intra16Preds_SSE2;
1540
VP8EncPredChroma8 = IntraChromaPreds_SSE2;
1541
VP8EncPredLuma4 = Intra4Preds_SSE2;
1542
VP8EncQuantizeBlock = QuantizeBlock_SSE2;
1543
VP8EncQuantize2Blocks = Quantize2Blocks_SSE2;
1544
VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2;
1545
VP8ITransform = ITransform_SSE2;
1546
VP8FTransform = FTransform_SSE2;
1547
VP8FTransform2 = FTransform2_SSE2;
1548
VP8FTransformWHT = FTransformWHT_SSE2;
1549
VP8SSE16x16 = SSE16x16_SSE2;
1550
VP8SSE16x8 = SSE16x8_SSE2;
1551
VP8SSE8x8 = SSE8x8_SSE2;
1552
VP8SSE4x4 = SSE4x4_SSE2;
1553
VP8TDisto4x4 = Disto4x4_SSE2;
1554
VP8TDisto16x16 = Disto16x16_SSE2;
1555
VP8Mean16x4 = Mean16x4_SSE2;
1556
}
1557
1558
#else // !WEBP_USE_SSE2
1559
1560
WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
1561
1562
#endif // WEBP_USE_SSE2
1563
1564