Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/dsp/enc_sse41.c
21661 views
1
// Copyright 2015 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// SSE4 version of some encoding functions.
11
//
12
// Author: Skal ([email protected])
13
14
#include "src/dsp/dsp.h"
15
16
#if defined(WEBP_USE_SSE41)
17
#include <emmintrin.h>
18
#include <smmintrin.h>
19
20
#include <stdlib.h> // for abs()
21
22
#include "src/dsp/common_sse2.h"
23
#include "src/dsp/cpu.h"
24
#include "src/enc/vp8i_enc.h"
25
#include "src/webp/types.h"
26
27
//------------------------------------------------------------------------------
28
// Compute susceptibility based on DCT-coeff histograms.
29
30
static void CollectHistogram_SSE41(const uint8_t* WEBP_RESTRICT ref,
31
const uint8_t* WEBP_RESTRICT pred,
32
int start_block, int end_block,
33
VP8Histogram* WEBP_RESTRICT const histo) {
34
const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
35
int j;
36
int distribution[MAX_COEFF_THRESH + 1] = { 0 };
37
for (j = start_block; j < end_block; ++j) {
38
int16_t out[16];
39
int k;
40
41
VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
42
43
// Convert coefficients to bin (within out[]).
44
{
45
// Load.
46
const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
47
const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
48
// v = abs(out) >> 3
49
const __m128i abs0 = _mm_abs_epi16(out0);
50
const __m128i abs1 = _mm_abs_epi16(out1);
51
const __m128i v0 = _mm_srai_epi16(abs0, 3);
52
const __m128i v1 = _mm_srai_epi16(abs1, 3);
53
// bin = min(v, MAX_COEFF_THRESH)
54
const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
55
const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
56
// Store.
57
_mm_storeu_si128((__m128i*)&out[0], bin0);
58
_mm_storeu_si128((__m128i*)&out[8], bin1);
59
}
60
61
// Convert coefficients to bin.
62
for (k = 0; k < 16; ++k) {
63
++distribution[out[k]];
64
}
65
}
66
VP8SetHistogramData(distribution, histo);
67
}
68
69
//------------------------------------------------------------------------------
70
// Texture distortion
71
//
72
// We try to match the spectral content (weighted) between source and
73
// reconstructed samples.
74
75
// Hadamard transform
76
// Returns the weighted sum of the absolute value of transformed coefficients.
77
// w[] contains a row-major 4 by 4 symmetric matrix.
78
static int TTransform_SSE41(const uint8_t* inA, const uint8_t* inB,
79
const uint16_t* const w) {
80
int32_t sum[4];
81
__m128i tmp_0, tmp_1, tmp_2, tmp_3;
82
83
// Load and combine inputs.
84
{
85
const __m128i inA_0 = _mm_loadu_si128((const __m128i*)&inA[BPS * 0]);
86
const __m128i inA_1 = _mm_loadu_si128((const __m128i*)&inA[BPS * 1]);
87
const __m128i inA_2 = _mm_loadu_si128((const __m128i*)&inA[BPS * 2]);
88
// In SSE4.1, with gcc 4.8 at least (maybe other versions),
89
// _mm_loadu_si128 is faster than _mm_loadl_epi64. But for the last lump
90
// of inA and inB, _mm_loadl_epi64 is still used not to have an out of
91
// bound read.
92
const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
93
const __m128i inB_0 = _mm_loadu_si128((const __m128i*)&inB[BPS * 0]);
94
const __m128i inB_1 = _mm_loadu_si128((const __m128i*)&inB[BPS * 1]);
95
const __m128i inB_2 = _mm_loadu_si128((const __m128i*)&inB[BPS * 2]);
96
const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
97
98
// Combine inA and inB (we'll do two transforms in parallel).
99
const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
100
const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
101
const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
102
const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
103
tmp_0 = _mm_cvtepu8_epi16(inAB_0);
104
tmp_1 = _mm_cvtepu8_epi16(inAB_1);
105
tmp_2 = _mm_cvtepu8_epi16(inAB_2);
106
tmp_3 = _mm_cvtepu8_epi16(inAB_3);
107
// a00 a01 a02 a03 b00 b01 b02 b03
108
// a10 a11 a12 a13 b10 b11 b12 b13
109
// a20 a21 a22 a23 b20 b21 b22 b23
110
// a30 a31 a32 a33 b30 b31 b32 b33
111
}
112
113
// Vertical pass first to avoid a transpose (vertical and horizontal passes
114
// are commutative because w/kWeightY is symmetric) and subsequent transpose.
115
{
116
// Calculate a and b (two 4x4 at once).
117
const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
118
const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
119
const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
120
const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
121
const __m128i b0 = _mm_add_epi16(a0, a1);
122
const __m128i b1 = _mm_add_epi16(a3, a2);
123
const __m128i b2 = _mm_sub_epi16(a3, a2);
124
const __m128i b3 = _mm_sub_epi16(a0, a1);
125
// a00 a01 a02 a03 b00 b01 b02 b03
126
// a10 a11 a12 a13 b10 b11 b12 b13
127
// a20 a21 a22 a23 b20 b21 b22 b23
128
// a30 a31 a32 a33 b30 b31 b32 b33
129
130
// Transpose the two 4x4.
131
VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
132
}
133
134
// Horizontal pass and difference of weighted sums.
135
{
136
// Load all inputs.
137
const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
138
const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
139
140
// Calculate a and b (two 4x4 at once).
141
const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
142
const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
143
const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
144
const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
145
const __m128i b0 = _mm_add_epi16(a0, a1);
146
const __m128i b1 = _mm_add_epi16(a3, a2);
147
const __m128i b2 = _mm_sub_epi16(a3, a2);
148
const __m128i b3 = _mm_sub_epi16(a0, a1);
149
150
// Separate the transforms of inA and inB.
151
__m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
152
__m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
153
__m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
154
__m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
155
156
A_b0 = _mm_abs_epi16(A_b0);
157
A_b2 = _mm_abs_epi16(A_b2);
158
B_b0 = _mm_abs_epi16(B_b0);
159
B_b2 = _mm_abs_epi16(B_b2);
160
161
// weighted sums
162
A_b0 = _mm_madd_epi16(A_b0, w_0);
163
A_b2 = _mm_madd_epi16(A_b2, w_8);
164
B_b0 = _mm_madd_epi16(B_b0, w_0);
165
B_b2 = _mm_madd_epi16(B_b2, w_8);
166
A_b0 = _mm_add_epi32(A_b0, A_b2);
167
B_b0 = _mm_add_epi32(B_b0, B_b2);
168
169
// difference of weighted sums
170
A_b2 = _mm_sub_epi32(A_b0, B_b0);
171
_mm_storeu_si128((__m128i*)&sum[0], A_b2);
172
}
173
return sum[0] + sum[1] + sum[2] + sum[3];
174
}
175
176
static int Disto4x4_SSE41(const uint8_t* WEBP_RESTRICT const a,
177
const uint8_t* WEBP_RESTRICT const b,
178
const uint16_t* WEBP_RESTRICT const w) {
179
const int diff_sum = TTransform_SSE41(a, b, w);
180
return abs(diff_sum) >> 5;
181
}
182
183
static int Disto16x16_SSE41(const uint8_t* WEBP_RESTRICT const a,
184
const uint8_t* WEBP_RESTRICT const b,
185
const uint16_t* WEBP_RESTRICT const w) {
186
int D = 0;
187
int x, y;
188
for (y = 0; y < 16 * BPS; y += 4 * BPS) {
189
for (x = 0; x < 16; x += 4) {
190
D += Disto4x4_SSE41(a + x + y, b + x + y, w);
191
}
192
}
193
return D;
194
}
195
196
//------------------------------------------------------------------------------
197
// Quantization
198
//
199
200
// Generates a pshufb constant for shuffling 16b words.
201
#define PSHUFB_CST(A,B,C,D,E,F,G,H) \
202
_mm_set_epi8(2 * (H) + 1, 2 * (H) + 0, 2 * (G) + 1, 2 * (G) + 0, \
203
2 * (F) + 1, 2 * (F) + 0, 2 * (E) + 1, 2 * (E) + 0, \
204
2 * (D) + 1, 2 * (D) + 0, 2 * (C) + 1, 2 * (C) + 0, \
205
2 * (B) + 1, 2 * (B) + 0, 2 * (A) + 1, 2 * (A) + 0)
206
207
static WEBP_INLINE int DoQuantizeBlock_SSE41(int16_t in[16], int16_t out[16],
208
const uint16_t* const sharpen,
209
const VP8Matrix* const mtx) {
210
const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
211
const __m128i zero = _mm_setzero_si128();
212
__m128i out0, out8;
213
__m128i packed_out;
214
215
// Load all inputs.
216
__m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
217
__m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
218
const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq[0]);
219
const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq[8]);
220
const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q[0]);
221
const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q[8]);
222
223
// coeff = abs(in)
224
__m128i coeff0 = _mm_abs_epi16(in0);
225
__m128i coeff8 = _mm_abs_epi16(in8);
226
227
// coeff = abs(in) + sharpen
228
if (sharpen != NULL) {
229
const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
230
const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
231
coeff0 = _mm_add_epi16(coeff0, sharpen0);
232
coeff8 = _mm_add_epi16(coeff8, sharpen8);
233
}
234
235
// out = (coeff * iQ + B) >> QFIX
236
{
237
// doing calculations with 32b precision (QFIX=17)
238
// out = (coeff * iQ)
239
const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
240
const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
241
const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
242
const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
243
__m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
244
__m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
245
__m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
246
__m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
247
// out = (coeff * iQ + B)
248
const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias[0]);
249
const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias[4]);
250
const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias[8]);
251
const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias[12]);
252
out_00 = _mm_add_epi32(out_00, bias_00);
253
out_04 = _mm_add_epi32(out_04, bias_04);
254
out_08 = _mm_add_epi32(out_08, bias_08);
255
out_12 = _mm_add_epi32(out_12, bias_12);
256
// out = QUANTDIV(coeff, iQ, B, QFIX)
257
out_00 = _mm_srai_epi32(out_00, QFIX);
258
out_04 = _mm_srai_epi32(out_04, QFIX);
259
out_08 = _mm_srai_epi32(out_08, QFIX);
260
out_12 = _mm_srai_epi32(out_12, QFIX);
261
262
// pack result as 16b
263
out0 = _mm_packs_epi32(out_00, out_04);
264
out8 = _mm_packs_epi32(out_08, out_12);
265
266
// if (coeff > 2047) coeff = 2047
267
out0 = _mm_min_epi16(out0, max_coeff_2047);
268
out8 = _mm_min_epi16(out8, max_coeff_2047);
269
}
270
271
// put sign back
272
out0 = _mm_sign_epi16(out0, in0);
273
out8 = _mm_sign_epi16(out8, in8);
274
275
// in = out * Q
276
in0 = _mm_mullo_epi16(out0, q0);
277
in8 = _mm_mullo_epi16(out8, q8);
278
279
_mm_storeu_si128((__m128i*)&in[0], in0);
280
_mm_storeu_si128((__m128i*)&in[8], in8);
281
282
// zigzag the output before storing it. The re-ordering is:
283
// 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15
284
// -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15
285
// There's only two misplaced entries ([8] and [7]) that are crossing the
286
// reg's boundaries.
287
// We use pshufb instead of pshuflo/pshufhi.
288
{
289
const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6);
290
const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1);
291
const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo);
292
const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7); // extract #7
293
const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7);
294
const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1);
295
const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi);
296
const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8); // extract #8
297
const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8);
298
const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7);
299
_mm_storeu_si128((__m128i*)&out[0], out_z0);
300
_mm_storeu_si128((__m128i*)&out[8], out_z8);
301
packed_out = _mm_packs_epi16(out_z0, out_z8);
302
}
303
304
// detect if all 'out' values are zeroes or not
305
return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
306
}
307
308
#undef PSHUFB_CST
309
310
static int QuantizeBlock_SSE41(int16_t in[16], int16_t out[16],
311
const VP8Matrix* WEBP_RESTRICT const mtx) {
312
return DoQuantizeBlock_SSE41(in, out, &mtx->sharpen[0], mtx);
313
}
314
315
static int QuantizeBlockWHT_SSE41(int16_t in[16], int16_t out[16],
316
const VP8Matrix* WEBP_RESTRICT const mtx) {
317
return DoQuantizeBlock_SSE41(in, out, NULL, mtx);
318
}
319
320
static int Quantize2Blocks_SSE41(int16_t in[32], int16_t out[32],
321
const VP8Matrix* WEBP_RESTRICT const mtx) {
322
int nz;
323
const uint16_t* const sharpen = &mtx->sharpen[0];
324
nz = DoQuantizeBlock_SSE41(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
325
nz |= DoQuantizeBlock_SSE41(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
326
return nz;
327
}
328
329
//------------------------------------------------------------------------------
330
// Entry point
331
332
extern void VP8EncDspInitSSE41(void);
333
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE41(void) {
334
VP8CollectHistogram = CollectHistogram_SSE41;
335
VP8EncQuantizeBlock = QuantizeBlock_SSE41;
336
VP8EncQuantize2Blocks = Quantize2Blocks_SSE41;
337
VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE41;
338
VP8TDisto4x4 = Disto4x4_SSE41;
339
VP8TDisto16x16 = Disto16x16_SSE41;
340
}
341
342
#else // !WEBP_USE_SSE41
343
344
WEBP_DSP_INIT_STUB(VP8EncDspInitSSE41)
345
346
#endif // WEBP_USE_SSE41
347
348