Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/dsp/lossless.c
9913 views
1
// Copyright 2012 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Image transforms and color space conversion methods for lossless decoder.
11
//
12
// Authors: Vikas Arora ([email protected])
13
// Jyrki Alakuijala ([email protected])
14
// Urvang Joshi ([email protected])
15
16
#include "src/dsp/dsp.h"
17
18
#include <assert.h>
19
#include <math.h>
20
#include <stdlib.h>
21
#include "src/dec/vp8li_dec.h"
22
#include "src/utils/endian_inl_utils.h"
23
#include "src/dsp/lossless.h"
24
#include "src/dsp/lossless_common.h"
25
26
//------------------------------------------------------------------------------
27
// Image transforms.
28
29
static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
30
return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1);
31
}
32
33
static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
34
return Average2(Average2(a0, a2), a1);
35
}
36
37
static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
38
uint32_t a2, uint32_t a3) {
39
return Average2(Average2(a0, a1), Average2(a2, a3));
40
}
41
42
static WEBP_INLINE uint32_t Clip255(uint32_t a) {
43
if (a < 256) {
44
return a;
45
}
46
// return 0, when a is a negative integer.
47
// return 255, when a is positive.
48
return ~a >> 24;
49
}
50
51
static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
52
return Clip255((uint32_t)(a + b - c));
53
}
54
55
static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
56
uint32_t c2) {
57
const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
58
const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
59
(c1 >> 16) & 0xff,
60
(c2 >> 16) & 0xff);
61
const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
62
(c1 >> 8) & 0xff,
63
(c2 >> 8) & 0xff);
64
const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
65
return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
66
}
67
68
static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
69
return Clip255((uint32_t)(a + (a - b) / 2));
70
}
71
72
static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
73
uint32_t c2) {
74
const uint32_t ave = Average2(c0, c1);
75
const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
76
const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
77
const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
78
const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
79
return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
80
}
81
82
// gcc <= 4.9 on ARM generates incorrect code in Select() when Sub3() is
83
// inlined.
84
#if defined(__arm__) && defined(__GNUC__) && LOCAL_GCC_VERSION <= 0x409
85
# define LOCAL_INLINE __attribute__ ((noinline))
86
#else
87
# define LOCAL_INLINE WEBP_INLINE
88
#endif
89
90
static LOCAL_INLINE int Sub3(int a, int b, int c) {
91
const int pb = b - c;
92
const int pa = a - c;
93
return abs(pb) - abs(pa);
94
}
95
96
#undef LOCAL_INLINE
97
98
static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
99
const int pa_minus_pb =
100
Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
101
Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
102
Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
103
Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
104
return (pa_minus_pb <= 0) ? a : b;
105
}
106
107
//------------------------------------------------------------------------------
108
// Predictors
109
110
static uint32_t VP8LPredictor0_C(const uint32_t* const left,
111
const uint32_t* const top) {
112
(void)top;
113
(void)left;
114
return ARGB_BLACK;
115
}
116
static uint32_t VP8LPredictor1_C(const uint32_t* const left,
117
const uint32_t* const top) {
118
(void)top;
119
return *left;
120
}
121
uint32_t VP8LPredictor2_C(const uint32_t* const left,
122
const uint32_t* const top) {
123
(void)left;
124
return top[0];
125
}
126
uint32_t VP8LPredictor3_C(const uint32_t* const left,
127
const uint32_t* const top) {
128
(void)left;
129
return top[1];
130
}
131
uint32_t VP8LPredictor4_C(const uint32_t* const left,
132
const uint32_t* const top) {
133
(void)left;
134
return top[-1];
135
}
136
uint32_t VP8LPredictor5_C(const uint32_t* const left,
137
const uint32_t* const top) {
138
const uint32_t pred = Average3(*left, top[0], top[1]);
139
return pred;
140
}
141
uint32_t VP8LPredictor6_C(const uint32_t* const left,
142
const uint32_t* const top) {
143
const uint32_t pred = Average2(*left, top[-1]);
144
return pred;
145
}
146
uint32_t VP8LPredictor7_C(const uint32_t* const left,
147
const uint32_t* const top) {
148
const uint32_t pred = Average2(*left, top[0]);
149
return pred;
150
}
151
uint32_t VP8LPredictor8_C(const uint32_t* const left,
152
const uint32_t* const top) {
153
const uint32_t pred = Average2(top[-1], top[0]);
154
(void)left;
155
return pred;
156
}
157
uint32_t VP8LPredictor9_C(const uint32_t* const left,
158
const uint32_t* const top) {
159
const uint32_t pred = Average2(top[0], top[1]);
160
(void)left;
161
return pred;
162
}
163
uint32_t VP8LPredictor10_C(const uint32_t* const left,
164
const uint32_t* const top) {
165
const uint32_t pred = Average4(*left, top[-1], top[0], top[1]);
166
return pred;
167
}
168
uint32_t VP8LPredictor11_C(const uint32_t* const left,
169
const uint32_t* const top) {
170
const uint32_t pred = Select(top[0], *left, top[-1]);
171
return pred;
172
}
173
uint32_t VP8LPredictor12_C(const uint32_t* const left,
174
const uint32_t* const top) {
175
const uint32_t pred = ClampedAddSubtractFull(*left, top[0], top[-1]);
176
return pred;
177
}
178
uint32_t VP8LPredictor13_C(const uint32_t* const left,
179
const uint32_t* const top) {
180
const uint32_t pred = ClampedAddSubtractHalf(*left, top[0], top[-1]);
181
return pred;
182
}
183
184
static void PredictorAdd0_C(const uint32_t* in, const uint32_t* upper,
185
int num_pixels, uint32_t* WEBP_RESTRICT out) {
186
int x;
187
(void)upper;
188
for (x = 0; x < num_pixels; ++x) out[x] = VP8LAddPixels(in[x], ARGB_BLACK);
189
}
190
static void PredictorAdd1_C(const uint32_t* in, const uint32_t* upper,
191
int num_pixels, uint32_t* WEBP_RESTRICT out) {
192
int i;
193
uint32_t left = out[-1];
194
(void)upper;
195
for (i = 0; i < num_pixels; ++i) {
196
out[i] = left = VP8LAddPixels(in[i], left);
197
}
198
}
199
GENERATE_PREDICTOR_ADD(VP8LPredictor2_C, PredictorAdd2_C)
200
GENERATE_PREDICTOR_ADD(VP8LPredictor3_C, PredictorAdd3_C)
201
GENERATE_PREDICTOR_ADD(VP8LPredictor4_C, PredictorAdd4_C)
202
GENERATE_PREDICTOR_ADD(VP8LPredictor5_C, PredictorAdd5_C)
203
GENERATE_PREDICTOR_ADD(VP8LPredictor6_C, PredictorAdd6_C)
204
GENERATE_PREDICTOR_ADD(VP8LPredictor7_C, PredictorAdd7_C)
205
GENERATE_PREDICTOR_ADD(VP8LPredictor8_C, PredictorAdd8_C)
206
GENERATE_PREDICTOR_ADD(VP8LPredictor9_C, PredictorAdd9_C)
207
GENERATE_PREDICTOR_ADD(VP8LPredictor10_C, PredictorAdd10_C)
208
GENERATE_PREDICTOR_ADD(VP8LPredictor11_C, PredictorAdd11_C)
209
GENERATE_PREDICTOR_ADD(VP8LPredictor12_C, PredictorAdd12_C)
210
GENERATE_PREDICTOR_ADD(VP8LPredictor13_C, PredictorAdd13_C)
211
212
//------------------------------------------------------------------------------
213
214
// Inverse prediction.
215
static void PredictorInverseTransform_C(const VP8LTransform* const transform,
216
int y_start, int y_end,
217
const uint32_t* in, uint32_t* out) {
218
const int width = transform->xsize_;
219
if (y_start == 0) { // First Row follows the L (mode=1) mode.
220
PredictorAdd0_C(in, NULL, 1, out);
221
PredictorAdd1_C(in + 1, NULL, width - 1, out + 1);
222
in += width;
223
out += width;
224
++y_start;
225
}
226
227
{
228
int y = y_start;
229
const int tile_width = 1 << transform->bits_;
230
const int mask = tile_width - 1;
231
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
232
const uint32_t* pred_mode_base =
233
transform->data_ + (y >> transform->bits_) * tiles_per_row;
234
235
while (y < y_end) {
236
const uint32_t* pred_mode_src = pred_mode_base;
237
int x = 1;
238
// First pixel follows the T (mode=2) mode.
239
PredictorAdd2_C(in, out - width, 1, out);
240
// .. the rest:
241
while (x < width) {
242
const VP8LPredictorAddSubFunc pred_func =
243
VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf];
244
int x_end = (x & ~mask) + tile_width;
245
if (x_end > width) x_end = width;
246
pred_func(in + x, out + x - width, x_end - x, out + x);
247
x = x_end;
248
}
249
in += width;
250
out += width;
251
++y;
252
if ((y & mask) == 0) { // Use the same mask, since tiles are squares.
253
pred_mode_base += tiles_per_row;
254
}
255
}
256
}
257
}
258
259
// Add green to blue and red channels (i.e. perform the inverse transform of
260
// 'subtract green').
261
void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels,
262
uint32_t* dst) {
263
int i;
264
for (i = 0; i < num_pixels; ++i) {
265
const uint32_t argb = src[i];
266
const uint32_t green = ((argb >> 8) & 0xff);
267
uint32_t red_blue = (argb & 0x00ff00ffu);
268
red_blue += (green << 16) | green;
269
red_blue &= 0x00ff00ffu;
270
dst[i] = (argb & 0xff00ff00u) | red_blue;
271
}
272
}
273
274
static WEBP_INLINE int ColorTransformDelta(int8_t color_pred,
275
int8_t color) {
276
return ((int)color_pred * color) >> 5;
277
}
278
279
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
280
VP8LMultipliers* const m) {
281
m->green_to_red_ = (color_code >> 0) & 0xff;
282
m->green_to_blue_ = (color_code >> 8) & 0xff;
283
m->red_to_blue_ = (color_code >> 16) & 0xff;
284
}
285
286
void VP8LTransformColorInverse_C(const VP8LMultipliers* const m,
287
const uint32_t* src, int num_pixels,
288
uint32_t* dst) {
289
int i;
290
for (i = 0; i < num_pixels; ++i) {
291
const uint32_t argb = src[i];
292
const int8_t green = (int8_t)(argb >> 8);
293
const uint32_t red = argb >> 16;
294
int new_red = red & 0xff;
295
int new_blue = argb & 0xff;
296
new_red += ColorTransformDelta((int8_t)m->green_to_red_, green);
297
new_red &= 0xff;
298
new_blue += ColorTransformDelta((int8_t)m->green_to_blue_, green);
299
new_blue += ColorTransformDelta((int8_t)m->red_to_blue_, (int8_t)new_red);
300
new_blue &= 0xff;
301
dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
302
}
303
}
304
305
// Color space inverse transform.
306
static void ColorSpaceInverseTransform_C(const VP8LTransform* const transform,
307
int y_start, int y_end,
308
const uint32_t* src, uint32_t* dst) {
309
const int width = transform->xsize_;
310
const int tile_width = 1 << transform->bits_;
311
const int mask = tile_width - 1;
312
const int safe_width = width & ~mask;
313
const int remaining_width = width - safe_width;
314
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
315
int y = y_start;
316
const uint32_t* pred_row =
317
transform->data_ + (y >> transform->bits_) * tiles_per_row;
318
319
while (y < y_end) {
320
const uint32_t* pred = pred_row;
321
VP8LMultipliers m = { 0, 0, 0 };
322
const uint32_t* const src_safe_end = src + safe_width;
323
const uint32_t* const src_end = src + width;
324
while (src < src_safe_end) {
325
ColorCodeToMultipliers(*pred++, &m);
326
VP8LTransformColorInverse(&m, src, tile_width, dst);
327
src += tile_width;
328
dst += tile_width;
329
}
330
if (src < src_end) { // Left-overs using C-version.
331
ColorCodeToMultipliers(*pred++, &m);
332
VP8LTransformColorInverse(&m, src, remaining_width, dst);
333
src += remaining_width;
334
dst += remaining_width;
335
}
336
++y;
337
if ((y & mask) == 0) pred_row += tiles_per_row;
338
}
339
}
340
341
// Separate out pixels packed together using pixel-bundling.
342
// We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t).
343
#define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \
344
GET_INDEX, GET_VALUE) \
345
static void F_NAME(const TYPE* src, const uint32_t* const color_map, \
346
TYPE* dst, int y_start, int y_end, int width) { \
347
int y; \
348
for (y = y_start; y < y_end; ++y) { \
349
int x; \
350
for (x = 0; x < width; ++x) { \
351
*dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \
352
} \
353
} \
354
} \
355
STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \
356
int y_start, int y_end, const TYPE* src, \
357
TYPE* dst) { \
358
int y; \
359
const int bits_per_pixel = 8 >> transform->bits_; \
360
const int width = transform->xsize_; \
361
const uint32_t* const color_map = transform->data_; \
362
if (bits_per_pixel < 8) { \
363
const int pixels_per_byte = 1 << transform->bits_; \
364
const int count_mask = pixels_per_byte - 1; \
365
const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \
366
for (y = y_start; y < y_end; ++y) { \
367
uint32_t packed_pixels = 0; \
368
int x; \
369
for (x = 0; x < width; ++x) { \
370
/* We need to load fresh 'packed_pixels' once every */ \
371
/* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \
372
/* is a power of 2, so can just use a mask for that, instead of */ \
373
/* decrementing a counter. */ \
374
if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \
375
*dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \
376
packed_pixels >>= bits_per_pixel; \
377
} \
378
} \
379
} else { \
380
VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \
381
} \
382
}
383
384
COLOR_INDEX_INVERSE(ColorIndexInverseTransform_C, MapARGB_C, static,
385
uint32_t, 32b, VP8GetARGBIndex, VP8GetARGBValue)
386
COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha_C, ,
387
uint8_t, 8b, VP8GetAlphaIndex, VP8GetAlphaValue)
388
389
#undef COLOR_INDEX_INVERSE
390
391
void VP8LInverseTransform(const VP8LTransform* const transform,
392
int row_start, int row_end,
393
const uint32_t* const in, uint32_t* const out) {
394
const int width = transform->xsize_;
395
assert(row_start < row_end);
396
assert(row_end <= transform->ysize_);
397
switch (transform->type_) {
398
case SUBTRACT_GREEN_TRANSFORM:
399
VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out);
400
break;
401
case PREDICTOR_TRANSFORM:
402
PredictorInverseTransform_C(transform, row_start, row_end, in, out);
403
if (row_end != transform->ysize_) {
404
// The last predicted row in this iteration will be the top-pred row
405
// for the first row in next iteration.
406
memcpy(out - width, out + (row_end - row_start - 1) * width,
407
width * sizeof(*out));
408
}
409
break;
410
case CROSS_COLOR_TRANSFORM:
411
ColorSpaceInverseTransform_C(transform, row_start, row_end, in, out);
412
break;
413
case COLOR_INDEXING_TRANSFORM:
414
if (in == out && transform->bits_ > 0) {
415
// Move packed pixels to the end of unpacked region, so that unpacking
416
// can occur seamlessly.
417
// Also, note that this is the only transform that applies on
418
// the effective width of VP8LSubSampleSize(xsize_, bits_). All other
419
// transforms work on effective width of xsize_.
420
const int out_stride = (row_end - row_start) * width;
421
const int in_stride = (row_end - row_start) *
422
VP8LSubSampleSize(transform->xsize_, transform->bits_);
423
uint32_t* const src = out + out_stride - in_stride;
424
memmove(src, out, in_stride * sizeof(*src));
425
ColorIndexInverseTransform_C(transform, row_start, row_end, src, out);
426
} else {
427
ColorIndexInverseTransform_C(transform, row_start, row_end, in, out);
428
}
429
break;
430
}
431
}
432
433
//------------------------------------------------------------------------------
434
// Color space conversion.
435
436
static int is_big_endian(void) {
437
static const union {
438
uint16_t w;
439
uint8_t b[2];
440
} tmp = { 1 };
441
return (tmp.b[0] != 1);
442
}
443
444
void VP8LConvertBGRAToRGB_C(const uint32_t* WEBP_RESTRICT src,
445
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
446
const uint32_t* const src_end = src + num_pixels;
447
while (src < src_end) {
448
const uint32_t argb = *src++;
449
*dst++ = (argb >> 16) & 0xff;
450
*dst++ = (argb >> 8) & 0xff;
451
*dst++ = (argb >> 0) & 0xff;
452
}
453
}
454
455
void VP8LConvertBGRAToRGBA_C(const uint32_t* WEBP_RESTRICT src,
456
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
457
const uint32_t* const src_end = src + num_pixels;
458
while (src < src_end) {
459
const uint32_t argb = *src++;
460
*dst++ = (argb >> 16) & 0xff;
461
*dst++ = (argb >> 8) & 0xff;
462
*dst++ = (argb >> 0) & 0xff;
463
*dst++ = (argb >> 24) & 0xff;
464
}
465
}
466
467
void VP8LConvertBGRAToRGBA4444_C(const uint32_t* WEBP_RESTRICT src,
468
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
469
const uint32_t* const src_end = src + num_pixels;
470
while (src < src_end) {
471
const uint32_t argb = *src++;
472
const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf);
473
const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf);
474
#if (WEBP_SWAP_16BIT_CSP == 1)
475
*dst++ = ba;
476
*dst++ = rg;
477
#else
478
*dst++ = rg;
479
*dst++ = ba;
480
#endif
481
}
482
}
483
484
void VP8LConvertBGRAToRGB565_C(const uint32_t* WEBP_RESTRICT src,
485
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
486
const uint32_t* const src_end = src + num_pixels;
487
while (src < src_end) {
488
const uint32_t argb = *src++;
489
const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7);
490
const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f);
491
#if (WEBP_SWAP_16BIT_CSP == 1)
492
*dst++ = gb;
493
*dst++ = rg;
494
#else
495
*dst++ = rg;
496
*dst++ = gb;
497
#endif
498
}
499
}
500
501
void VP8LConvertBGRAToBGR_C(const uint32_t* WEBP_RESTRICT src,
502
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
503
const uint32_t* const src_end = src + num_pixels;
504
while (src < src_end) {
505
const uint32_t argb = *src++;
506
*dst++ = (argb >> 0) & 0xff;
507
*dst++ = (argb >> 8) & 0xff;
508
*dst++ = (argb >> 16) & 0xff;
509
}
510
}
511
512
static void CopyOrSwap(const uint32_t* WEBP_RESTRICT src, int num_pixels,
513
uint8_t* WEBP_RESTRICT dst, int swap_on_big_endian) {
514
if (is_big_endian() == swap_on_big_endian) {
515
const uint32_t* const src_end = src + num_pixels;
516
while (src < src_end) {
517
const uint32_t argb = *src++;
518
WebPUint32ToMem(dst, BSwap32(argb));
519
dst += sizeof(argb);
520
}
521
} else {
522
memcpy(dst, src, num_pixels * sizeof(*src));
523
}
524
}
525
526
void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
527
WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) {
528
switch (out_colorspace) {
529
case MODE_RGB:
530
VP8LConvertBGRAToRGB(in_data, num_pixels, rgba);
531
break;
532
case MODE_RGBA:
533
VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
534
break;
535
case MODE_rgbA:
536
VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
537
WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
538
break;
539
case MODE_BGR:
540
VP8LConvertBGRAToBGR(in_data, num_pixels, rgba);
541
break;
542
case MODE_BGRA:
543
CopyOrSwap(in_data, num_pixels, rgba, 1);
544
break;
545
case MODE_bgrA:
546
CopyOrSwap(in_data, num_pixels, rgba, 1);
547
WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
548
break;
549
case MODE_ARGB:
550
CopyOrSwap(in_data, num_pixels, rgba, 0);
551
break;
552
case MODE_Argb:
553
CopyOrSwap(in_data, num_pixels, rgba, 0);
554
WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0);
555
break;
556
case MODE_RGBA_4444:
557
VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
558
break;
559
case MODE_rgbA_4444:
560
VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
561
WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0);
562
break;
563
case MODE_RGB_565:
564
VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba);
565
break;
566
default:
567
assert(0); // Code flow should not reach here.
568
}
569
}
570
571
//------------------------------------------------------------------------------
572
573
VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed;
574
VP8LPredictorAddSubFunc VP8LPredictorsAdd[16];
575
VP8LPredictorFunc VP8LPredictors[16];
576
577
// exposed plain-C implementations
578
VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16];
579
580
VP8LTransformColorInverseFunc VP8LTransformColorInverse;
581
582
VP8LConvertFunc VP8LConvertBGRAToRGB;
583
VP8LConvertFunc VP8LConvertBGRAToRGBA;
584
VP8LConvertFunc VP8LConvertBGRAToRGBA4444;
585
VP8LConvertFunc VP8LConvertBGRAToRGB565;
586
VP8LConvertFunc VP8LConvertBGRAToBGR;
587
588
VP8LMapARGBFunc VP8LMapColor32b;
589
VP8LMapAlphaFunc VP8LMapColor8b;
590
591
extern VP8CPUInfo VP8GetCPUInfo;
592
extern void VP8LDspInitSSE2(void);
593
extern void VP8LDspInitSSE41(void);
594
extern void VP8LDspInitNEON(void);
595
extern void VP8LDspInitMIPSdspR2(void);
596
extern void VP8LDspInitMSA(void);
597
598
#define COPY_PREDICTOR_ARRAY(IN, OUT) do { \
599
(OUT)[0] = IN##0_C; \
600
(OUT)[1] = IN##1_C; \
601
(OUT)[2] = IN##2_C; \
602
(OUT)[3] = IN##3_C; \
603
(OUT)[4] = IN##4_C; \
604
(OUT)[5] = IN##5_C; \
605
(OUT)[6] = IN##6_C; \
606
(OUT)[7] = IN##7_C; \
607
(OUT)[8] = IN##8_C; \
608
(OUT)[9] = IN##9_C; \
609
(OUT)[10] = IN##10_C; \
610
(OUT)[11] = IN##11_C; \
611
(OUT)[12] = IN##12_C; \
612
(OUT)[13] = IN##13_C; \
613
(OUT)[14] = IN##0_C; /* <- padding security sentinels*/ \
614
(OUT)[15] = IN##0_C; \
615
} while (0);
616
617
WEBP_DSP_INIT_FUNC(VP8LDspInit) {
618
COPY_PREDICTOR_ARRAY(VP8LPredictor, VP8LPredictors)
619
COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd)
620
COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C)
621
622
#if !WEBP_NEON_OMIT_C_CODE
623
VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C;
624
625
VP8LTransformColorInverse = VP8LTransformColorInverse_C;
626
627
VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C;
628
VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C;
629
VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C;
630
#endif
631
632
VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C;
633
VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C;
634
635
VP8LMapColor32b = MapARGB_C;
636
VP8LMapColor8b = MapAlpha_C;
637
638
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
639
if (VP8GetCPUInfo != NULL) {
640
#if defined(WEBP_HAVE_SSE2)
641
if (VP8GetCPUInfo(kSSE2)) {
642
VP8LDspInitSSE2();
643
#if defined(WEBP_HAVE_SSE41)
644
if (VP8GetCPUInfo(kSSE4_1)) {
645
VP8LDspInitSSE41();
646
}
647
#endif
648
}
649
#endif
650
#if defined(WEBP_USE_MIPS_DSP_R2)
651
if (VP8GetCPUInfo(kMIPSdspR2)) {
652
VP8LDspInitMIPSdspR2();
653
}
654
#endif
655
#if defined(WEBP_USE_MSA)
656
if (VP8GetCPUInfo(kMSA)) {
657
VP8LDspInitMSA();
658
}
659
#endif
660
}
661
662
#if defined(WEBP_HAVE_NEON)
663
if (WEBP_NEON_OMIT_C_CODE ||
664
(VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) {
665
VP8LDspInitNEON();
666
}
667
#endif
668
669
assert(VP8LAddGreenToBlueAndRed != NULL);
670
assert(VP8LTransformColorInverse != NULL);
671
assert(VP8LConvertBGRAToRGBA != NULL);
672
assert(VP8LConvertBGRAToRGB != NULL);
673
assert(VP8LConvertBGRAToBGR != NULL);
674
assert(VP8LConvertBGRAToRGBA4444 != NULL);
675
assert(VP8LConvertBGRAToRGB565 != NULL);
676
assert(VP8LMapColor32b != NULL);
677
assert(VP8LMapColor8b != NULL);
678
}
679
#undef COPY_PREDICTOR_ARRAY
680
681
//------------------------------------------------------------------------------
682
683