Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/dsp/lossless_enc_sse2.c
9914 views
1
// Copyright 2015 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// SSE2 variant of methods for lossless encoder
11
//
12
// Author: Skal ([email protected])
13
14
#include "src/dsp/dsp.h"
15
16
#if defined(WEBP_USE_SSE2)
17
#include <assert.h>
18
#include <emmintrin.h>
19
#include "src/dsp/lossless.h"
20
#include "src/dsp/common_sse2.h"
21
#include "src/dsp/lossless_common.h"
22
23
// For sign-extended multiplying constants, pre-shifted by 5:
24
#define CST_5b(X) (((int16_t)((uint16_t)(X) << 8)) >> 5)
25
26
//------------------------------------------------------------------------------
27
// Subtract-Green Transform
28
29
static void SubtractGreenFromBlueAndRed_SSE2(uint32_t* argb_data,
30
int num_pixels) {
31
int i;
32
for (i = 0; i + 4 <= num_pixels; i += 4) {
33
const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
34
const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g
35
const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
36
const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g
37
const __m128i out = _mm_sub_epi8(in, C);
38
_mm_storeu_si128((__m128i*)&argb_data[i], out);
39
}
40
// fallthrough and finish off with plain-C
41
if (i != num_pixels) {
42
VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
43
}
44
}
45
46
//------------------------------------------------------------------------------
47
// Color Transform
48
49
#define MK_CST_16(HI, LO) \
50
_mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
51
52
static void TransformColor_SSE2(const VP8LMultipliers* WEBP_RESTRICT const m,
53
uint32_t* WEBP_RESTRICT argb_data,
54
int num_pixels) {
55
const __m128i mults_rb = MK_CST_16(CST_5b(m->green_to_red_),
56
CST_5b(m->green_to_blue_));
57
const __m128i mults_b2 = MK_CST_16(CST_5b(m->red_to_blue_), 0);
58
const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00); // alpha-green masks
59
const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff); // red-blue masks
60
int i;
61
for (i = 0; i + 4 <= num_pixels; i += 4) {
62
const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
63
const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0
64
const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
65
const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0
66
const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1
67
const __m128i E = _mm_slli_epi16(in, 8); // r 0 b 0
68
const __m128i F = _mm_mulhi_epi16(E, mults_b2); // x db2 0 0
69
const __m128i G = _mm_srli_epi32(F, 16); // 0 0 x db2
70
const __m128i H = _mm_add_epi8(G, D); // x dr x db
71
const __m128i I = _mm_and_si128(H, mask_rb); // 0 dr 0 db
72
const __m128i out = _mm_sub_epi8(in, I);
73
_mm_storeu_si128((__m128i*)&argb_data[i], out);
74
}
75
// fallthrough and finish off with plain-C
76
if (i != num_pixels) {
77
VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
78
}
79
}
80
81
//------------------------------------------------------------------------------
82
#define SPAN 8
83
static void CollectColorBlueTransforms_SSE2(const uint32_t* WEBP_RESTRICT argb,
84
int stride,
85
int tile_width, int tile_height,
86
int green_to_blue, int red_to_blue,
87
uint32_t histo[]) {
88
const __m128i mults_r = MK_CST_16(CST_5b(red_to_blue), 0);
89
const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_blue));
90
const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask
91
const __m128i mask_b = _mm_set1_epi32(0x0000ff); // blue mask
92
int y;
93
for (y = 0; y < tile_height; ++y) {
94
const uint32_t* const src = argb + y * stride;
95
int i, x;
96
for (x = 0; x + SPAN <= tile_width; x += SPAN) {
97
uint16_t values[SPAN];
98
const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]);
99
const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
100
const __m128i A0 = _mm_slli_epi16(in0, 8); // r 0 | b 0
101
const __m128i A1 = _mm_slli_epi16(in1, 8);
102
const __m128i B0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0
103
const __m128i B1 = _mm_and_si128(in1, mask_g);
104
const __m128i C0 = _mm_mulhi_epi16(A0, mults_r); // x db | 0 0
105
const __m128i C1 = _mm_mulhi_epi16(A1, mults_r);
106
const __m128i D0 = _mm_mulhi_epi16(B0, mults_g); // 0 0 | x db
107
const __m128i D1 = _mm_mulhi_epi16(B1, mults_g);
108
const __m128i E0 = _mm_sub_epi8(in0, D0); // x x | x b'
109
const __m128i E1 = _mm_sub_epi8(in1, D1);
110
const __m128i F0 = _mm_srli_epi32(C0, 16); // 0 0 | x db
111
const __m128i F1 = _mm_srli_epi32(C1, 16);
112
const __m128i G0 = _mm_sub_epi8(E0, F0); // 0 0 | x b'
113
const __m128i G1 = _mm_sub_epi8(E1, F1);
114
const __m128i H0 = _mm_and_si128(G0, mask_b); // 0 0 | 0 b
115
const __m128i H1 = _mm_and_si128(G1, mask_b);
116
const __m128i I = _mm_packs_epi32(H0, H1); // 0 b' | 0 b'
117
_mm_storeu_si128((__m128i*)values, I);
118
for (i = 0; i < SPAN; ++i) ++histo[values[i]];
119
}
120
}
121
{
122
const int left_over = tile_width & (SPAN - 1);
123
if (left_over > 0) {
124
VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride,
125
left_over, tile_height,
126
green_to_blue, red_to_blue, histo);
127
}
128
}
129
}
130
131
static void CollectColorRedTransforms_SSE2(const uint32_t* WEBP_RESTRICT argb,
132
int stride,
133
int tile_width, int tile_height,
134
int green_to_red, uint32_t histo[]) {
135
const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_red));
136
const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask
137
const __m128i mask = _mm_set1_epi32(0xff);
138
139
int y;
140
for (y = 0; y < tile_height; ++y) {
141
const uint32_t* const src = argb + y * stride;
142
int i, x;
143
for (x = 0; x + SPAN <= tile_width; x += SPAN) {
144
uint16_t values[SPAN];
145
const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]);
146
const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
147
const __m128i A0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0
148
const __m128i A1 = _mm_and_si128(in1, mask_g);
149
const __m128i B0 = _mm_srli_epi32(in0, 16); // 0 0 | x r
150
const __m128i B1 = _mm_srli_epi32(in1, 16);
151
const __m128i C0 = _mm_mulhi_epi16(A0, mults_g); // 0 0 | x dr
152
const __m128i C1 = _mm_mulhi_epi16(A1, mults_g);
153
const __m128i E0 = _mm_sub_epi8(B0, C0); // x x | x r'
154
const __m128i E1 = _mm_sub_epi8(B1, C1);
155
const __m128i F0 = _mm_and_si128(E0, mask); // 0 0 | 0 r'
156
const __m128i F1 = _mm_and_si128(E1, mask);
157
const __m128i I = _mm_packs_epi32(F0, F1);
158
_mm_storeu_si128((__m128i*)values, I);
159
for (i = 0; i < SPAN; ++i) ++histo[values[i]];
160
}
161
}
162
{
163
const int left_over = tile_width & (SPAN - 1);
164
if (left_over > 0) {
165
VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride,
166
left_over, tile_height,
167
green_to_red, histo);
168
}
169
}
170
}
171
#undef SPAN
172
#undef MK_CST_16
173
174
//------------------------------------------------------------------------------
175
176
// Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But
177
// that's ok since the histogram values are less than 1<<28 (max picture size).
178
static void AddVector_SSE2(const uint32_t* WEBP_RESTRICT a,
179
const uint32_t* WEBP_RESTRICT b,
180
uint32_t* WEBP_RESTRICT out, int size) {
181
int i = 0;
182
int aligned_size = size & ~15;
183
// Size is, at minimum, NUM_DISTANCE_CODES (40) and may be as large as
184
// NUM_LITERAL_CODES (256) + NUM_LENGTH_CODES (24) + (0 or a non-zero power of
185
// 2). See the usage in VP8LHistogramAdd().
186
assert(size >= 16);
187
assert(size % 2 == 0);
188
189
do {
190
const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]);
191
const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]);
192
const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]);
193
const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
194
const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i + 0]);
195
const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i + 4]);
196
const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i + 8]);
197
const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]);
198
_mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0));
199
_mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1));
200
_mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2));
201
_mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
202
i += 16;
203
} while (i != aligned_size);
204
205
if ((size & 8) != 0) {
206
const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]);
207
const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]);
208
const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i + 0]);
209
const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i + 4]);
210
_mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0));
211
_mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1));
212
i += 8;
213
}
214
215
size &= 7;
216
if (size == 4) {
217
const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i]);
218
const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i]);
219
_mm_storeu_si128((__m128i*)&out[i], _mm_add_epi32(a0, b0));
220
} else if (size == 2) {
221
const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[i]);
222
const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[i]);
223
_mm_storel_epi64((__m128i*)&out[i], _mm_add_epi32(a0, b0));
224
}
225
}
226
227
static void AddVectorEq_SSE2(const uint32_t* WEBP_RESTRICT a,
228
uint32_t* WEBP_RESTRICT out, int size) {
229
int i = 0;
230
int aligned_size = size & ~15;
231
// Size is, at minimum, NUM_DISTANCE_CODES (40) and may be as large as
232
// NUM_LITERAL_CODES (256) + NUM_LENGTH_CODES (24) + (0 or a non-zero power of
233
// 2). See the usage in VP8LHistogramAdd().
234
assert(size >= 16);
235
assert(size % 2 == 0);
236
237
do {
238
const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]);
239
const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]);
240
const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]);
241
const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
242
const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i + 0]);
243
const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i + 4]);
244
const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i + 8]);
245
const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]);
246
_mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0));
247
_mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1));
248
_mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2));
249
_mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
250
i += 16;
251
} while (i != aligned_size);
252
253
if ((size & 8) != 0) {
254
const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]);
255
const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]);
256
const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i + 0]);
257
const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i + 4]);
258
_mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0));
259
_mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1));
260
i += 8;
261
}
262
263
size &= 7;
264
if (size == 4) {
265
const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i]);
266
const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i]);
267
_mm_storeu_si128((__m128i*)&out[i], _mm_add_epi32(a0, b0));
268
} else if (size == 2) {
269
const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[i]);
270
const __m128i b0 = _mm_loadl_epi64((const __m128i*)&out[i]);
271
_mm_storel_epi64((__m128i*)&out[i], _mm_add_epi32(a0, b0));
272
}
273
}
274
275
//------------------------------------------------------------------------------
276
// Entropy
277
278
#if !defined(WEBP_HAVE_SLOW_CLZ_CTZ)
279
280
static uint64_t CombinedShannonEntropy_SSE2(const uint32_t X[256],
281
const uint32_t Y[256]) {
282
int i;
283
uint64_t retval = 0;
284
uint32_t sumX = 0, sumXY = 0;
285
const __m128i zero = _mm_setzero_si128();
286
287
for (i = 0; i < 256; i += 16) {
288
const __m128i x0 = _mm_loadu_si128((const __m128i*)(X + i + 0));
289
const __m128i y0 = _mm_loadu_si128((const __m128i*)(Y + i + 0));
290
const __m128i x1 = _mm_loadu_si128((const __m128i*)(X + i + 4));
291
const __m128i y1 = _mm_loadu_si128((const __m128i*)(Y + i + 4));
292
const __m128i x2 = _mm_loadu_si128((const __m128i*)(X + i + 8));
293
const __m128i y2 = _mm_loadu_si128((const __m128i*)(Y + i + 8));
294
const __m128i x3 = _mm_loadu_si128((const __m128i*)(X + i + 12));
295
const __m128i y3 = _mm_loadu_si128((const __m128i*)(Y + i + 12));
296
const __m128i x4 = _mm_packs_epi16(_mm_packs_epi32(x0, x1),
297
_mm_packs_epi32(x2, x3));
298
const __m128i y4 = _mm_packs_epi16(_mm_packs_epi32(y0, y1),
299
_mm_packs_epi32(y2, y3));
300
const int32_t mx = _mm_movemask_epi8(_mm_cmpgt_epi8(x4, zero));
301
int32_t my = _mm_movemask_epi8(_mm_cmpgt_epi8(y4, zero)) | mx;
302
while (my) {
303
const int32_t j = BitsCtz(my);
304
uint32_t xy;
305
if ((mx >> j) & 1) {
306
const int x = X[i + j];
307
sumXY += x;
308
retval += VP8LFastSLog2(x);
309
}
310
xy = X[i + j] + Y[i + j];
311
sumX += xy;
312
retval += VP8LFastSLog2(xy);
313
my &= my - 1;
314
}
315
}
316
retval = VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY) - retval;
317
return retval;
318
}
319
320
#else
321
322
#define DONT_USE_COMBINED_SHANNON_ENTROPY_SSE2_FUNC // won't be faster
323
324
#endif
325
326
//------------------------------------------------------------------------------
327
328
static int VectorMismatch_SSE2(const uint32_t* const array1,
329
const uint32_t* const array2, int length) {
330
int match_len;
331
332
if (length >= 12) {
333
__m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]);
334
__m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]);
335
match_len = 0;
336
do {
337
// Loop unrolling and early load both provide a speedup of 10% for the
338
// current function. Also, max_limit can be MAX_LENGTH=4096 at most.
339
const __m128i cmpA = _mm_cmpeq_epi32(A0, A1);
340
const __m128i B0 =
341
_mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
342
const __m128i B1 =
343
_mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
344
if (_mm_movemask_epi8(cmpA) != 0xffff) break;
345
match_len += 4;
346
347
{
348
const __m128i cmpB = _mm_cmpeq_epi32(B0, B1);
349
A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
350
A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
351
if (_mm_movemask_epi8(cmpB) != 0xffff) break;
352
match_len += 4;
353
}
354
} while (match_len + 12 < length);
355
} else {
356
match_len = 0;
357
// Unroll the potential first two loops.
358
if (length >= 4 &&
359
_mm_movemask_epi8(_mm_cmpeq_epi32(
360
_mm_loadu_si128((const __m128i*)&array1[0]),
361
_mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) {
362
match_len = 4;
363
if (length >= 8 &&
364
_mm_movemask_epi8(_mm_cmpeq_epi32(
365
_mm_loadu_si128((const __m128i*)&array1[4]),
366
_mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) {
367
match_len = 8;
368
}
369
}
370
}
371
372
while (match_len < length && array1[match_len] == array2[match_len]) {
373
++match_len;
374
}
375
return match_len;
376
}
377
378
// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
379
static void BundleColorMap_SSE2(const uint8_t* WEBP_RESTRICT const row,
380
int width, int xbits,
381
uint32_t* WEBP_RESTRICT dst) {
382
int x;
383
assert(xbits >= 0);
384
assert(xbits <= 3);
385
switch (xbits) {
386
case 0: {
387
const __m128i ff = _mm_set1_epi16((short)0xff00);
388
const __m128i zero = _mm_setzero_si128();
389
// Store 0xff000000 | (row[x] << 8).
390
for (x = 0; x + 16 <= width; x += 16, dst += 16) {
391
const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
392
const __m128i in_lo = _mm_unpacklo_epi8(zero, in);
393
const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff);
394
const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff);
395
const __m128i in_hi = _mm_unpackhi_epi8(zero, in);
396
const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff);
397
const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff);
398
_mm_storeu_si128((__m128i*)&dst[0], dst0);
399
_mm_storeu_si128((__m128i*)&dst[4], dst1);
400
_mm_storeu_si128((__m128i*)&dst[8], dst2);
401
_mm_storeu_si128((__m128i*)&dst[12], dst3);
402
}
403
break;
404
}
405
case 1: {
406
const __m128i ff = _mm_set1_epi16((short)0xff00);
407
const __m128i mul = _mm_set1_epi16(0x110);
408
for (x = 0; x + 16 <= width; x += 16, dst += 8) {
409
// 0a0b | (where a/b are 4 bits).
410
const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
411
const __m128i tmp = _mm_mullo_epi16(in, mul); // aba0
412
const __m128i pack = _mm_and_si128(tmp, ff); // ab00
413
const __m128i dst0 = _mm_unpacklo_epi16(pack, ff);
414
const __m128i dst1 = _mm_unpackhi_epi16(pack, ff);
415
_mm_storeu_si128((__m128i*)&dst[0], dst0);
416
_mm_storeu_si128((__m128i*)&dst[4], dst1);
417
}
418
break;
419
}
420
case 2: {
421
const __m128i mask_or = _mm_set1_epi32((int)0xff000000);
422
const __m128i mul_cst = _mm_set1_epi16(0x0104);
423
const __m128i mask_mul = _mm_set1_epi16(0x0f00);
424
for (x = 0; x + 16 <= width; x += 16, dst += 4) {
425
// 000a000b000c000d | (where a/b/c/d are 2 bits).
426
const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
427
const __m128i mul = _mm_mullo_epi16(in, mul_cst); // 00ab00b000cd00d0
428
const __m128i tmp = _mm_and_si128(mul, mask_mul); // 00ab000000cd0000
429
const __m128i shift = _mm_srli_epi32(tmp, 12); // 00000000ab000000
430
const __m128i pack = _mm_or_si128(shift, tmp); // 00000000abcd0000
431
// Convert to 0xff00**00.
432
const __m128i res = _mm_or_si128(pack, mask_or);
433
_mm_storeu_si128((__m128i*)dst, res);
434
}
435
break;
436
}
437
default: {
438
assert(xbits == 3);
439
for (x = 0; x + 16 <= width; x += 16, dst += 2) {
440
// 0000000a00000000b... | (where a/b are 1 bit).
441
const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
442
const __m128i shift = _mm_slli_epi64(in, 7);
443
const uint32_t move = _mm_movemask_epi8(shift);
444
dst[0] = 0xff000000 | ((move & 0xff) << 8);
445
dst[1] = 0xff000000 | (move & 0xff00);
446
}
447
break;
448
}
449
}
450
if (x != width) {
451
VP8LBundleColorMap_C(row + x, width - x, xbits, dst);
452
}
453
}
454
455
//------------------------------------------------------------------------------
456
// Batch version of Predictor Transform subtraction
457
458
static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
459
const __m128i* const a1,
460
__m128i* const avg) {
461
// (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
462
const __m128i ones = _mm_set1_epi8(1);
463
const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
464
const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
465
*avg = _mm_sub_epi8(avg1, one);
466
}
467
468
// Predictor0: ARGB_BLACK.
469
static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper,
470
int num_pixels, uint32_t* WEBP_RESTRICT out) {
471
int i;
472
const __m128i black = _mm_set1_epi32((int)ARGB_BLACK);
473
for (i = 0; i + 4 <= num_pixels; i += 4) {
474
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
475
const __m128i res = _mm_sub_epi8(src, black);
476
_mm_storeu_si128((__m128i*)&out[i], res);
477
}
478
if (i != num_pixels) {
479
VP8LPredictorsSub_C[0](in + i, NULL, num_pixels - i, out + i);
480
}
481
(void)upper;
482
}
483
484
#define GENERATE_PREDICTOR_1(X, IN) \
485
static void PredictorSub##X##_SSE2(const uint32_t* const in, \
486
const uint32_t* const upper, \
487
int num_pixels, \
488
uint32_t* WEBP_RESTRICT const out) { \
489
int i; \
490
for (i = 0; i + 4 <= num_pixels; i += 4) { \
491
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
492
const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN)); \
493
const __m128i res = _mm_sub_epi8(src, pred); \
494
_mm_storeu_si128((__m128i*)&out[i], res); \
495
} \
496
if (i != num_pixels) { \
497
VP8LPredictorsSub_C[(X)](in + i, WEBP_OFFSET_PTR(upper, i), \
498
num_pixels - i, out + i); \
499
} \
500
}
501
502
GENERATE_PREDICTOR_1(1, in[i - 1]) // Predictor1: L
503
GENERATE_PREDICTOR_1(2, upper[i]) // Predictor2: T
504
GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor3: TR
505
GENERATE_PREDICTOR_1(4, upper[i - 1]) // Predictor4: TL
506
#undef GENERATE_PREDICTOR_1
507
508
// Predictor5: avg2(avg2(L, TR), T)
509
static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper,
510
int num_pixels, uint32_t* WEBP_RESTRICT out) {
511
int i;
512
for (i = 0; i + 4 <= num_pixels; i += 4) {
513
const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
514
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
515
const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
516
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
517
__m128i avg, pred, res;
518
Average2_m128i(&L, &TR, &avg);
519
Average2_m128i(&avg, &T, &pred);
520
res = _mm_sub_epi8(src, pred);
521
_mm_storeu_si128((__m128i*)&out[i], res);
522
}
523
if (i != num_pixels) {
524
VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i);
525
}
526
}
527
528
#define GENERATE_PREDICTOR_2(X, A, B) \
529
static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
530
int num_pixels, \
531
uint32_t* WEBP_RESTRICT out) { \
532
int i; \
533
for (i = 0; i + 4 <= num_pixels; i += 4) { \
534
const __m128i tA = _mm_loadu_si128((const __m128i*)&(A)); \
535
const __m128i tB = _mm_loadu_si128((const __m128i*)&(B)); \
536
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
537
__m128i pred, res; \
538
Average2_m128i(&tA, &tB, &pred); \
539
res = _mm_sub_epi8(src, pred); \
540
_mm_storeu_si128((__m128i*)&out[i], res); \
541
} \
542
if (i != num_pixels) { \
543
VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
544
} \
545
}
546
547
GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1]) // Predictor6: avg(L, TL)
548
GENERATE_PREDICTOR_2(7, in[i - 1], upper[i]) // Predictor7: avg(L, T)
549
GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i]) // Predictor8: avg(TL, T)
550
GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1]) // Predictor9: average(T, TR)
551
#undef GENERATE_PREDICTOR_2
552
553
// Predictor10: avg(avg(L,TL), avg(T, TR)).
554
static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper,
555
int num_pixels, uint32_t* WEBP_RESTRICT out) {
556
int i;
557
for (i = 0; i + 4 <= num_pixels; i += 4) {
558
const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
559
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
560
const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
561
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
562
const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
563
__m128i avgTTR, avgLTL, avg, res;
564
Average2_m128i(&T, &TR, &avgTTR);
565
Average2_m128i(&L, &TL, &avgLTL);
566
Average2_m128i(&avgTTR, &avgLTL, &avg);
567
res = _mm_sub_epi8(src, avg);
568
_mm_storeu_si128((__m128i*)&out[i], res);
569
}
570
if (i != num_pixels) {
571
VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i);
572
}
573
}
574
575
// Predictor11: select.
576
static void GetSumAbsDiff32_SSE2(const __m128i* const A, const __m128i* const B,
577
__m128i* const out) {
578
// We can unpack with any value on the upper 32 bits, provided it's the same
579
// on both operands (to that their sum of abs diff is zero). Here we use *A.
580
const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
581
const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
582
const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
583
const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
584
const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
585
const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
586
*out = _mm_packs_epi32(s_lo, s_hi);
587
}
588
589
static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper,
590
int num_pixels, uint32_t* WEBP_RESTRICT out) {
591
int i;
592
for (i = 0; i + 4 <= num_pixels; i += 4) {
593
const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
594
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
595
const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
596
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
597
__m128i pa, pb;
598
GetSumAbsDiff32_SSE2(&T, &TL, &pa); // pa = sum |T-TL|
599
GetSumAbsDiff32_SSE2(&L, &TL, &pb); // pb = sum |L-TL|
600
{
601
const __m128i mask = _mm_cmpgt_epi32(pb, pa);
602
const __m128i A = _mm_and_si128(mask, L);
603
const __m128i B = _mm_andnot_si128(mask, T);
604
const __m128i pred = _mm_or_si128(A, B); // pred = (L > T)? L : T
605
const __m128i res = _mm_sub_epi8(src, pred);
606
_mm_storeu_si128((__m128i*)&out[i], res);
607
}
608
}
609
if (i != num_pixels) {
610
VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i);
611
}
612
}
613
614
// Predictor12: ClampedSubSubtractFull.
615
static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper,
616
int num_pixels, uint32_t* WEBP_RESTRICT out) {
617
int i;
618
const __m128i zero = _mm_setzero_si128();
619
for (i = 0; i + 4 <= num_pixels; i += 4) {
620
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
621
const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
622
const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
623
const __m128i L_hi = _mm_unpackhi_epi8(L, zero);
624
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
625
const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
626
const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
627
const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
628
const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
629
const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
630
const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
631
const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
632
const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo);
633
const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi);
634
const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi);
635
const __m128i res = _mm_sub_epi8(src, pred);
636
_mm_storeu_si128((__m128i*)&out[i], res);
637
}
638
if (i != num_pixels) {
639
VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i);
640
}
641
}
642
643
// Predictors13: ClampedAddSubtractHalf
644
static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper,
645
int num_pixels, uint32_t* WEBP_RESTRICT out) {
646
int i;
647
const __m128i zero = _mm_setzero_si128();
648
for (i = 0; i + 2 <= num_pixels; i += 2) {
649
// we can only process two pixels at a time
650
const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]);
651
const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]);
652
const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]);
653
const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]);
654
const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
655
const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
656
const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
657
const __m128i sum = _mm_add_epi16(T_lo, L_lo);
658
const __m128i avg = _mm_srli_epi16(sum, 1);
659
const __m128i A1 = _mm_sub_epi16(avg, TL_lo);
660
const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg);
661
const __m128i A2 = _mm_sub_epi16(A1, bit_fix);
662
const __m128i A3 = _mm_srai_epi16(A2, 1);
663
const __m128i A4 = _mm_add_epi16(avg, A3);
664
const __m128i pred = _mm_packus_epi16(A4, A4);
665
const __m128i res = _mm_sub_epi8(src, pred);
666
_mm_storel_epi64((__m128i*)&out[i], res);
667
}
668
if (i != num_pixels) {
669
VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i);
670
}
671
}
672
673
//------------------------------------------------------------------------------
674
// Entry point
675
676
extern void VP8LEncDspInitSSE2(void);
677
678
WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
679
VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE2;
680
VP8LTransformColor = TransformColor_SSE2;
681
VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE2;
682
VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE2;
683
VP8LAddVector = AddVector_SSE2;
684
VP8LAddVectorEq = AddVectorEq_SSE2;
685
#if !defined(DONT_USE_COMBINED_SHANNON_ENTROPY_SSE2_FUNC)
686
VP8LCombinedShannonEntropy = CombinedShannonEntropy_SSE2;
687
#endif
688
VP8LVectorMismatch = VectorMismatch_SSE2;
689
VP8LBundleColorMap = BundleColorMap_SSE2;
690
691
VP8LPredictorsSub[0] = PredictorSub0_SSE2;
692
VP8LPredictorsSub[1] = PredictorSub1_SSE2;
693
VP8LPredictorsSub[2] = PredictorSub2_SSE2;
694
VP8LPredictorsSub[3] = PredictorSub3_SSE2;
695
VP8LPredictorsSub[4] = PredictorSub4_SSE2;
696
VP8LPredictorsSub[5] = PredictorSub5_SSE2;
697
VP8LPredictorsSub[6] = PredictorSub6_SSE2;
698
VP8LPredictorsSub[7] = PredictorSub7_SSE2;
699
VP8LPredictorsSub[8] = PredictorSub8_SSE2;
700
VP8LPredictorsSub[9] = PredictorSub9_SSE2;
701
VP8LPredictorsSub[10] = PredictorSub10_SSE2;
702
VP8LPredictorsSub[11] = PredictorSub11_SSE2;
703
VP8LPredictorsSub[12] = PredictorSub12_SSE2;
704
VP8LPredictorsSub[13] = PredictorSub13_SSE2;
705
VP8LPredictorsSub[14] = PredictorSub0_SSE2; // <- padding security sentinels
706
VP8LPredictorsSub[15] = PredictorSub0_SSE2;
707
}
708
709
#else // !WEBP_USE_SSE2
710
711
WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2)
712
713
#endif // WEBP_USE_SSE2
714
715