Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/dsp/lossless_neon.c
9913 views
1
// Copyright 2014 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// NEON variant of methods for lossless decoder
11
//
12
// Author: Skal ([email protected])
13
14
#include "src/dsp/dsp.h"
15
16
#if defined(WEBP_USE_NEON)
17
18
#include <arm_neon.h>
19
20
#include "src/dsp/lossless.h"
21
#include "src/dsp/neon.h"
22
23
//------------------------------------------------------------------------------
24
// Colorspace conversion functions
25
26
#if !defined(WORK_AROUND_GCC)
27
// gcc 4.6.0 had some trouble (NDK-r9) with this code. We only use it for
28
// gcc-4.8.x at least.
29
static void ConvertBGRAToRGBA_NEON(const uint32_t* WEBP_RESTRICT src,
30
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
31
const uint32_t* const end = src + (num_pixels & ~15);
32
for (; src < end; src += 16) {
33
uint8x16x4_t pixel = vld4q_u8((uint8_t*)src);
34
// swap B and R. (VSWP d0,d2 has no intrinsics equivalent!)
35
const uint8x16_t tmp = pixel.val[0];
36
pixel.val[0] = pixel.val[2];
37
pixel.val[2] = tmp;
38
vst4q_u8(dst, pixel);
39
dst += 64;
40
}
41
VP8LConvertBGRAToRGBA_C(src, num_pixels & 15, dst); // left-overs
42
}
43
44
static void ConvertBGRAToBGR_NEON(const uint32_t* WEBP_RESTRICT src,
45
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
46
const uint32_t* const end = src + (num_pixels & ~15);
47
for (; src < end; src += 16) {
48
const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src);
49
const uint8x16x3_t tmp = { { pixel.val[0], pixel.val[1], pixel.val[2] } };
50
vst3q_u8(dst, tmp);
51
dst += 48;
52
}
53
VP8LConvertBGRAToBGR_C(src, num_pixels & 15, dst); // left-overs
54
}
55
56
static void ConvertBGRAToRGB_NEON(const uint32_t* WEBP_RESTRICT src,
57
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
58
const uint32_t* const end = src + (num_pixels & ~15);
59
for (; src < end; src += 16) {
60
const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src);
61
const uint8x16x3_t tmp = { { pixel.val[2], pixel.val[1], pixel.val[0] } };
62
vst3q_u8(dst, tmp);
63
dst += 48;
64
}
65
VP8LConvertBGRAToRGB_C(src, num_pixels & 15, dst); // left-overs
66
}
67
68
#else // WORK_AROUND_GCC
69
70
// gcc-4.6.0 fallback
71
72
static const uint8_t kRGBAShuffle[8] = { 2, 1, 0, 3, 6, 5, 4, 7 };
73
74
static void ConvertBGRAToRGBA_NEON(const uint32_t* WEBP_RESTRICT src,
75
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
76
const uint32_t* const end = src + (num_pixels & ~1);
77
const uint8x8_t shuffle = vld1_u8(kRGBAShuffle);
78
for (; src < end; src += 2) {
79
const uint8x8_t pixels = vld1_u8((uint8_t*)src);
80
vst1_u8(dst, vtbl1_u8(pixels, shuffle));
81
dst += 8;
82
}
83
VP8LConvertBGRAToRGBA_C(src, num_pixels & 1, dst); // left-overs
84
}
85
86
static const uint8_t kBGRShuffle[3][8] = {
87
{ 0, 1, 2, 4, 5, 6, 8, 9 },
88
{ 10, 12, 13, 14, 16, 17, 18, 20 },
89
{ 21, 22, 24, 25, 26, 28, 29, 30 }
90
};
91
92
static void ConvertBGRAToBGR_NEON(const uint32_t* WEBP_RESTRICT src,
93
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
94
const uint32_t* const end = src + (num_pixels & ~7);
95
const uint8x8_t shuffle0 = vld1_u8(kBGRShuffle[0]);
96
const uint8x8_t shuffle1 = vld1_u8(kBGRShuffle[1]);
97
const uint8x8_t shuffle2 = vld1_u8(kBGRShuffle[2]);
98
for (; src < end; src += 8) {
99
uint8x8x4_t pixels;
100
INIT_VECTOR4(pixels,
101
vld1_u8((const uint8_t*)(src + 0)),
102
vld1_u8((const uint8_t*)(src + 2)),
103
vld1_u8((const uint8_t*)(src + 4)),
104
vld1_u8((const uint8_t*)(src + 6)));
105
vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0));
106
vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1));
107
vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2));
108
dst += 8 * 3;
109
}
110
VP8LConvertBGRAToBGR_C(src, num_pixels & 7, dst); // left-overs
111
}
112
113
static const uint8_t kRGBShuffle[3][8] = {
114
{ 2, 1, 0, 6, 5, 4, 10, 9 },
115
{ 8, 14, 13, 12, 18, 17, 16, 22 },
116
{ 21, 20, 26, 25, 24, 30, 29, 28 }
117
};
118
119
static void ConvertBGRAToRGB_NEON(const uint32_t* WEBP_RESTRICT src,
120
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
121
const uint32_t* const end = src + (num_pixels & ~7);
122
const uint8x8_t shuffle0 = vld1_u8(kRGBShuffle[0]);
123
const uint8x8_t shuffle1 = vld1_u8(kRGBShuffle[1]);
124
const uint8x8_t shuffle2 = vld1_u8(kRGBShuffle[2]);
125
for (; src < end; src += 8) {
126
uint8x8x4_t pixels;
127
INIT_VECTOR4(pixels,
128
vld1_u8((const uint8_t*)(src + 0)),
129
vld1_u8((const uint8_t*)(src + 2)),
130
vld1_u8((const uint8_t*)(src + 4)),
131
vld1_u8((const uint8_t*)(src + 6)));
132
vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0));
133
vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1));
134
vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2));
135
dst += 8 * 3;
136
}
137
VP8LConvertBGRAToRGB_C(src, num_pixels & 7, dst); // left-overs
138
}
139
140
#endif // !WORK_AROUND_GCC
141
142
//------------------------------------------------------------------------------
143
// Predictor Transform
144
145
#define LOAD_U32_AS_U8(IN) vreinterpret_u8_u32(vdup_n_u32((IN)))
146
#define LOAD_U32P_AS_U8(IN) vreinterpret_u8_u32(vld1_u32((IN)))
147
#define LOADQ_U32_AS_U8(IN) vreinterpretq_u8_u32(vdupq_n_u32((IN)))
148
#define LOADQ_U32P_AS_U8(IN) vreinterpretq_u8_u32(vld1q_u32((IN)))
149
#define GET_U8_AS_U32(IN) vget_lane_u32(vreinterpret_u32_u8((IN)), 0)
150
#define GETQ_U8_AS_U32(IN) vgetq_lane_u32(vreinterpretq_u32_u8((IN)), 0)
151
#define STOREQ_U8_AS_U32P(OUT, IN) vst1q_u32((OUT), vreinterpretq_u32_u8((IN)))
152
#define ROTATE32_LEFT(L) vextq_u8((L), (L), 12) // D|C|B|A -> C|B|A|D
153
154
static WEBP_INLINE uint8x8_t Average2_u8_NEON(uint32_t a0, uint32_t a1) {
155
const uint8x8_t A0 = LOAD_U32_AS_U8(a0);
156
const uint8x8_t A1 = LOAD_U32_AS_U8(a1);
157
return vhadd_u8(A0, A1);
158
}
159
160
static WEBP_INLINE uint32_t ClampedAddSubtractHalf_NEON(uint32_t c0,
161
uint32_t c1,
162
uint32_t c2) {
163
const uint8x8_t avg = Average2_u8_NEON(c0, c1);
164
// Remove one to c2 when bigger than avg.
165
const uint8x8_t C2 = LOAD_U32_AS_U8(c2);
166
const uint8x8_t cmp = vcgt_u8(C2, avg);
167
const uint8x8_t C2_1 = vadd_u8(C2, cmp);
168
// Compute half of the difference between avg and c2.
169
const int8x8_t diff_avg = vreinterpret_s8_u8(vhsub_u8(avg, C2_1));
170
// Compute the sum with avg and saturate.
171
const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(avg));
172
const uint8x8_t res = vqmovun_s16(vaddw_s8(avg_16, diff_avg));
173
const uint32_t output = GET_U8_AS_U32(res);
174
return output;
175
}
176
177
static WEBP_INLINE uint32_t Average2_NEON(uint32_t a0, uint32_t a1) {
178
const uint8x8_t avg_u8x8 = Average2_u8_NEON(a0, a1);
179
const uint32_t avg = GET_U8_AS_U32(avg_u8x8);
180
return avg;
181
}
182
183
static WEBP_INLINE uint32_t Average3_NEON(uint32_t a0, uint32_t a1,
184
uint32_t a2) {
185
const uint8x8_t avg0 = Average2_u8_NEON(a0, a2);
186
const uint8x8_t A1 = LOAD_U32_AS_U8(a1);
187
const uint32_t avg = GET_U8_AS_U32(vhadd_u8(avg0, A1));
188
return avg;
189
}
190
191
static uint32_t Predictor5_NEON(const uint32_t* const left,
192
const uint32_t* const top) {
193
return Average3_NEON(*left, top[0], top[1]);
194
}
195
static uint32_t Predictor6_NEON(const uint32_t* const left,
196
const uint32_t* const top) {
197
return Average2_NEON(*left, top[-1]);
198
}
199
static uint32_t Predictor7_NEON(const uint32_t* const left,
200
const uint32_t* const top) {
201
return Average2_NEON(*left, top[0]);
202
}
203
static uint32_t Predictor13_NEON(const uint32_t* const left,
204
const uint32_t* const top) {
205
return ClampedAddSubtractHalf_NEON(*left, top[0], top[-1]);
206
}
207
208
// Batch versions of those functions.
209
210
// Predictor0: ARGB_BLACK.
211
static void PredictorAdd0_NEON(const uint32_t* in, const uint32_t* upper,
212
int num_pixels, uint32_t* WEBP_RESTRICT out) {
213
int i;
214
const uint8x16_t black = vreinterpretq_u8_u32(vdupq_n_u32(ARGB_BLACK));
215
for (i = 0; i + 4 <= num_pixels; i += 4) {
216
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
217
const uint8x16_t res = vaddq_u8(src, black);
218
STOREQ_U8_AS_U32P(&out[i], res);
219
}
220
VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i);
221
}
222
223
// Predictor1: left.
224
static void PredictorAdd1_NEON(const uint32_t* in, const uint32_t* upper,
225
int num_pixels, uint32_t* WEBP_RESTRICT out) {
226
int i;
227
const uint8x16_t zero = LOADQ_U32_AS_U8(0);
228
for (i = 0; i + 4 <= num_pixels; i += 4) {
229
// a | b | c | d
230
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
231
// 0 | a | b | c
232
const uint8x16_t shift0 = vextq_u8(zero, src, 12);
233
// a | a + b | b + c | c + d
234
const uint8x16_t sum0 = vaddq_u8(src, shift0);
235
// 0 | 0 | a | a + b
236
const uint8x16_t shift1 = vextq_u8(zero, sum0, 8);
237
// a | a + b | a + b + c | a + b + c + d
238
const uint8x16_t sum1 = vaddq_u8(sum0, shift1);
239
const uint8x16_t prev = LOADQ_U32_AS_U8(out[i - 1]);
240
const uint8x16_t res = vaddq_u8(sum1, prev);
241
STOREQ_U8_AS_U32P(&out[i], res);
242
}
243
VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
244
}
245
246
// Macro that adds 32-bit integers from IN using mod 256 arithmetic
247
// per 8 bit channel.
248
#define GENERATE_PREDICTOR_1(X, IN) \
249
static void PredictorAdd##X##_NEON(const uint32_t* in, \
250
const uint32_t* upper, int num_pixels, \
251
uint32_t* WEBP_RESTRICT out) { \
252
int i; \
253
for (i = 0; i + 4 <= num_pixels; i += 4) { \
254
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \
255
const uint8x16_t other = LOADQ_U32P_AS_U8(&(IN)); \
256
const uint8x16_t res = vaddq_u8(src, other); \
257
STOREQ_U8_AS_U32P(&out[i], res); \
258
} \
259
VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
260
}
261
// Predictor2: Top.
262
GENERATE_PREDICTOR_1(2, upper[i])
263
// Predictor3: Top-right.
264
GENERATE_PREDICTOR_1(3, upper[i + 1])
265
// Predictor4: Top-left.
266
GENERATE_PREDICTOR_1(4, upper[i - 1])
267
#undef GENERATE_PREDICTOR_1
268
269
// Predictor5: average(average(left, TR), T)
270
#define DO_PRED5(LANE) do { \
271
const uint8x16_t avgLTR = vhaddq_u8(L, TR); \
272
const uint8x16_t avg = vhaddq_u8(avgLTR, T); \
273
const uint8x16_t res = vaddq_u8(avg, src); \
274
vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
275
L = ROTATE32_LEFT(res); \
276
} while (0)
277
278
static void PredictorAdd5_NEON(const uint32_t* in, const uint32_t* upper,
279
int num_pixels, uint32_t* WEBP_RESTRICT out) {
280
int i;
281
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
282
for (i = 0; i + 4 <= num_pixels; i += 4) {
283
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
284
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i + 0]);
285
const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]);
286
DO_PRED5(0);
287
DO_PRED5(1);
288
DO_PRED5(2);
289
DO_PRED5(3);
290
}
291
VP8LPredictorsAdd_C[5](in + i, upper + i, num_pixels - i, out + i);
292
}
293
#undef DO_PRED5
294
295
#define DO_PRED67(LANE) do { \
296
const uint8x16_t avg = vhaddq_u8(L, top); \
297
const uint8x16_t res = vaddq_u8(avg, src); \
298
vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
299
L = ROTATE32_LEFT(res); \
300
} while (0)
301
302
// Predictor6: average(left, TL)
303
static void PredictorAdd6_NEON(const uint32_t* in, const uint32_t* upper,
304
int num_pixels, uint32_t* WEBP_RESTRICT out) {
305
int i;
306
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
307
for (i = 0; i + 4 <= num_pixels; i += 4) {
308
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
309
const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i - 1]);
310
DO_PRED67(0);
311
DO_PRED67(1);
312
DO_PRED67(2);
313
DO_PRED67(3);
314
}
315
VP8LPredictorsAdd_C[6](in + i, upper + i, num_pixels - i, out + i);
316
}
317
318
// Predictor7: average(left, T)
319
static void PredictorAdd7_NEON(const uint32_t* in, const uint32_t* upper,
320
int num_pixels, uint32_t* WEBP_RESTRICT out) {
321
int i;
322
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
323
for (i = 0; i + 4 <= num_pixels; i += 4) {
324
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
325
const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i]);
326
DO_PRED67(0);
327
DO_PRED67(1);
328
DO_PRED67(2);
329
DO_PRED67(3);
330
}
331
VP8LPredictorsAdd_C[7](in + i, upper + i, num_pixels - i, out + i);
332
}
333
#undef DO_PRED67
334
335
#define GENERATE_PREDICTOR_2(X, IN) \
336
static void PredictorAdd##X##_NEON(const uint32_t* in, \
337
const uint32_t* upper, int num_pixels, \
338
uint32_t* WEBP_RESTRICT out) { \
339
int i; \
340
for (i = 0; i + 4 <= num_pixels; i += 4) { \
341
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \
342
const uint8x16_t Tother = LOADQ_U32P_AS_U8(&(IN)); \
343
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); \
344
const uint8x16_t avg = vhaddq_u8(T, Tother); \
345
const uint8x16_t res = vaddq_u8(avg, src); \
346
STOREQ_U8_AS_U32P(&out[i], res); \
347
} \
348
VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
349
}
350
// Predictor8: average TL T.
351
GENERATE_PREDICTOR_2(8, upper[i - 1])
352
// Predictor9: average T TR.
353
GENERATE_PREDICTOR_2(9, upper[i + 1])
354
#undef GENERATE_PREDICTOR_2
355
356
// Predictor10: average of (average of (L,TL), average of (T, TR)).
357
#define DO_PRED10(LANE) do { \
358
const uint8x16_t avgLTL = vhaddq_u8(L, TL); \
359
const uint8x16_t avg = vhaddq_u8(avgTTR, avgLTL); \
360
const uint8x16_t res = vaddq_u8(avg, src); \
361
vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
362
L = ROTATE32_LEFT(res); \
363
} while (0)
364
365
static void PredictorAdd10_NEON(const uint32_t* in, const uint32_t* upper,
366
int num_pixels, uint32_t* WEBP_RESTRICT out) {
367
int i;
368
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
369
for (i = 0; i + 4 <= num_pixels; i += 4) {
370
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
371
const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
372
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
373
const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]);
374
const uint8x16_t avgTTR = vhaddq_u8(T, TR);
375
DO_PRED10(0);
376
DO_PRED10(1);
377
DO_PRED10(2);
378
DO_PRED10(3);
379
}
380
VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
381
}
382
#undef DO_PRED10
383
384
// Predictor11: select.
385
#define DO_PRED11(LANE) do { \
386
const uint8x16_t sumLin = vaddq_u8(L, src); /* in + L */ \
387
const uint8x16_t pLTL = vabdq_u8(L, TL); /* |L - TL| */ \
388
const uint16x8_t sum_LTL = vpaddlq_u8(pLTL); \
389
const uint32x4_t pa = vpaddlq_u16(sum_LTL); \
390
const uint32x4_t mask = vcleq_u32(pa, pb); \
391
const uint8x16_t res = vbslq_u8(vreinterpretq_u8_u32(mask), sumTin, sumLin); \
392
vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
393
L = ROTATE32_LEFT(res); \
394
} while (0)
395
396
static void PredictorAdd11_NEON(const uint32_t* in, const uint32_t* upper,
397
int num_pixels, uint32_t* WEBP_RESTRICT out) {
398
int i;
399
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
400
for (i = 0; i + 4 <= num_pixels; i += 4) {
401
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
402
const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
403
const uint8x16_t pTTL = vabdq_u8(T, TL); // |T - TL|
404
const uint16x8_t sum_TTL = vpaddlq_u8(pTTL);
405
const uint32x4_t pb = vpaddlq_u16(sum_TTL);
406
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
407
const uint8x16_t sumTin = vaddq_u8(T, src); // in + T
408
DO_PRED11(0);
409
DO_PRED11(1);
410
DO_PRED11(2);
411
DO_PRED11(3);
412
}
413
VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
414
}
415
#undef DO_PRED11
416
417
// Predictor12: ClampedAddSubtractFull.
418
#define DO_PRED12(DIFF, LANE) do { \
419
const uint8x8_t pred = \
420
vqmovun_s16(vaddq_s16(vreinterpretq_s16_u16(L), (DIFF))); \
421
const uint8x8_t res = \
422
vadd_u8(pred, (LANE <= 1) ? vget_low_u8(src) : vget_high_u8(src)); \
423
const uint16x8_t res16 = vmovl_u8(res); \
424
vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \
425
/* rotate in the left predictor for next iteration */ \
426
L = vextq_u16(res16, res16, 4); \
427
} while (0)
428
429
static void PredictorAdd12_NEON(const uint32_t* in, const uint32_t* upper,
430
int num_pixels, uint32_t* WEBP_RESTRICT out) {
431
int i;
432
uint16x8_t L = vmovl_u8(LOAD_U32_AS_U8(out[-1]));
433
for (i = 0; i + 4 <= num_pixels; i += 4) {
434
// load four pixels of source
435
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
436
// precompute the difference T - TL once for all, stored as s16
437
const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
438
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
439
const int16x8_t diff_lo =
440
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(T), vget_low_u8(TL)));
441
const int16x8_t diff_hi =
442
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(T), vget_high_u8(TL)));
443
// loop over the four reconstructed pixels
444
DO_PRED12(diff_lo, 0);
445
DO_PRED12(diff_lo, 1);
446
DO_PRED12(diff_hi, 2);
447
DO_PRED12(diff_hi, 3);
448
}
449
VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
450
}
451
#undef DO_PRED12
452
453
// Predictor13: ClampedAddSubtractHalf
454
#define DO_PRED13(LANE, LOW_OR_HI) do { \
455
const uint8x16_t avg = vhaddq_u8(L, T); \
456
const uint8x16_t cmp = vcgtq_u8(TL, avg); \
457
const uint8x16_t TL_1 = vaddq_u8(TL, cmp); \
458
/* Compute half of the difference between avg and TL'. */ \
459
const int8x8_t diff_avg = \
460
vreinterpret_s8_u8(LOW_OR_HI(vhsubq_u8(avg, TL_1))); \
461
/* Compute the sum with avg and saturate. */ \
462
const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(LOW_OR_HI(avg))); \
463
const uint8x8_t delta = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); \
464
const uint8x8_t res = vadd_u8(LOW_OR_HI(src), delta); \
465
const uint8x16_t res2 = vcombine_u8(res, res); \
466
vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \
467
L = ROTATE32_LEFT(res2); \
468
} while (0)
469
470
static void PredictorAdd13_NEON(const uint32_t* in, const uint32_t* upper,
471
int num_pixels, uint32_t* WEBP_RESTRICT out) {
472
int i;
473
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
474
for (i = 0; i + 4 <= num_pixels; i += 4) {
475
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
476
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
477
const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
478
DO_PRED13(0, vget_low_u8);
479
DO_PRED13(1, vget_low_u8);
480
DO_PRED13(2, vget_high_u8);
481
DO_PRED13(3, vget_high_u8);
482
}
483
VP8LPredictorsAdd_C[13](in + i, upper + i, num_pixels - i, out + i);
484
}
485
#undef DO_PRED13
486
487
#undef LOAD_U32_AS_U8
488
#undef LOAD_U32P_AS_U8
489
#undef LOADQ_U32_AS_U8
490
#undef LOADQ_U32P_AS_U8
491
#undef GET_U8_AS_U32
492
#undef GETQ_U8_AS_U32
493
#undef STOREQ_U8_AS_U32P
494
#undef ROTATE32_LEFT
495
496
//------------------------------------------------------------------------------
497
// Subtract-Green Transform
498
499
// vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use
500
// non-standard versions there.
501
#if defined(__APPLE__) && WEBP_AARCH64 && \
502
defined(__apple_build_version__) && (__apple_build_version__< 6020037)
503
#define USE_VTBLQ
504
#endif
505
506
#ifdef USE_VTBLQ
507
// 255 = byte will be zeroed
508
static const uint8_t kGreenShuffle[16] = {
509
1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13, 255
510
};
511
512
static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb,
513
const uint8x16_t shuffle) {
514
return vcombine_u8(vtbl1q_u8(argb, vget_low_u8(shuffle)),
515
vtbl1q_u8(argb, vget_high_u8(shuffle)));
516
}
517
#else // !USE_VTBLQ
518
// 255 = byte will be zeroed
519
static const uint8_t kGreenShuffle[8] = { 1, 255, 1, 255, 5, 255, 5, 255 };
520
521
static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb,
522
const uint8x8_t shuffle) {
523
return vcombine_u8(vtbl1_u8(vget_low_u8(argb), shuffle),
524
vtbl1_u8(vget_high_u8(argb), shuffle));
525
}
526
#endif // USE_VTBLQ
527
528
static void AddGreenToBlueAndRed_NEON(const uint32_t* src, int num_pixels,
529
uint32_t* dst) {
530
const uint32_t* const end = src + (num_pixels & ~3);
531
#ifdef USE_VTBLQ
532
const uint8x16_t shuffle = vld1q_u8(kGreenShuffle);
533
#else
534
const uint8x8_t shuffle = vld1_u8(kGreenShuffle);
535
#endif
536
for (; src < end; src += 4, dst += 4) {
537
const uint8x16_t argb = vld1q_u8((const uint8_t*)src);
538
const uint8x16_t greens = DoGreenShuffle_NEON(argb, shuffle);
539
vst1q_u8((uint8_t*)dst, vaddq_u8(argb, greens));
540
}
541
// fallthrough and finish off with plain-C
542
VP8LAddGreenToBlueAndRed_C(src, num_pixels & 3, dst);
543
}
544
545
//------------------------------------------------------------------------------
546
// Color Transform
547
548
static void TransformColorInverse_NEON(const VP8LMultipliers* const m,
549
const uint32_t* const src,
550
int num_pixels, uint32_t* dst) {
551
// sign-extended multiplying constants, pre-shifted by 6.
552
#define CST(X) (((int16_t)(m->X << 8)) >> 6)
553
const int16_t rb[8] = {
554
CST(green_to_blue_), CST(green_to_red_),
555
CST(green_to_blue_), CST(green_to_red_),
556
CST(green_to_blue_), CST(green_to_red_),
557
CST(green_to_blue_), CST(green_to_red_)
558
};
559
const int16x8_t mults_rb = vld1q_s16(rb);
560
const int16_t b2[8] = {
561
0, CST(red_to_blue_), 0, CST(red_to_blue_),
562
0, CST(red_to_blue_), 0, CST(red_to_blue_),
563
};
564
const int16x8_t mults_b2 = vld1q_s16(b2);
565
#undef CST
566
#ifdef USE_VTBLQ
567
static const uint8_t kg0g0[16] = {
568
255, 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13
569
};
570
const uint8x16_t shuffle = vld1q_u8(kg0g0);
571
#else
572
static const uint8_t k0g0g[8] = { 255, 1, 255, 1, 255, 5, 255, 5 };
573
const uint8x8_t shuffle = vld1_u8(k0g0g);
574
#endif
575
const uint32x4_t mask_ag = vdupq_n_u32(0xff00ff00u);
576
int i;
577
for (i = 0; i + 4 <= num_pixels; i += 4) {
578
const uint8x16_t in = vld1q_u8((const uint8_t*)(src + i));
579
const uint32x4_t a0g0 = vandq_u32(vreinterpretq_u32_u8(in), mask_ag);
580
// 0 g 0 g
581
const uint8x16_t greens = DoGreenShuffle_NEON(in, shuffle);
582
// x dr x db1
583
const int16x8_t A = vqdmulhq_s16(vreinterpretq_s16_u8(greens), mults_rb);
584
// x r' x b'
585
const int8x16_t B = vaddq_s8(vreinterpretq_s8_u8(in),
586
vreinterpretq_s8_s16(A));
587
// r' 0 b' 0
588
const int16x8_t C = vshlq_n_s16(vreinterpretq_s16_s8(B), 8);
589
// x db2 0 0
590
const int16x8_t D = vqdmulhq_s16(C, mults_b2);
591
// 0 x db2 0
592
const uint32x4_t E = vshrq_n_u32(vreinterpretq_u32_s16(D), 8);
593
// r' x b'' 0
594
const int8x16_t F = vaddq_s8(vreinterpretq_s8_u32(E),
595
vreinterpretq_s8_s16(C));
596
// 0 r' 0 b''
597
const uint16x8_t G = vshrq_n_u16(vreinterpretq_u16_s8(F), 8);
598
const uint32x4_t out = vorrq_u32(vreinterpretq_u32_u16(G), a0g0);
599
vst1q_u32(dst + i, out);
600
}
601
// Fall-back to C-version for left-overs.
602
VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
603
}
604
605
#undef USE_VTBLQ
606
607
//------------------------------------------------------------------------------
608
// Entry point
609
610
extern void VP8LDspInitNEON(void);
611
612
WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitNEON(void) {
613
VP8LPredictors[5] = Predictor5_NEON;
614
VP8LPredictors[6] = Predictor6_NEON;
615
VP8LPredictors[7] = Predictor7_NEON;
616
VP8LPredictors[13] = Predictor13_NEON;
617
618
VP8LPredictorsAdd[0] = PredictorAdd0_NEON;
619
VP8LPredictorsAdd[1] = PredictorAdd1_NEON;
620
VP8LPredictorsAdd[2] = PredictorAdd2_NEON;
621
VP8LPredictorsAdd[3] = PredictorAdd3_NEON;
622
VP8LPredictorsAdd[4] = PredictorAdd4_NEON;
623
VP8LPredictorsAdd[5] = PredictorAdd5_NEON;
624
VP8LPredictorsAdd[6] = PredictorAdd6_NEON;
625
VP8LPredictorsAdd[7] = PredictorAdd7_NEON;
626
VP8LPredictorsAdd[8] = PredictorAdd8_NEON;
627
VP8LPredictorsAdd[9] = PredictorAdd9_NEON;
628
VP8LPredictorsAdd[10] = PredictorAdd10_NEON;
629
VP8LPredictorsAdd[11] = PredictorAdd11_NEON;
630
VP8LPredictorsAdd[12] = PredictorAdd12_NEON;
631
VP8LPredictorsAdd[13] = PredictorAdd13_NEON;
632
633
VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_NEON;
634
VP8LConvertBGRAToBGR = ConvertBGRAToBGR_NEON;
635
VP8LConvertBGRAToRGB = ConvertBGRAToRGB_NEON;
636
637
VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_NEON;
638
VP8LTransformColorInverse = TransformColorInverse_NEON;
639
}
640
641
#else // !WEBP_USE_NEON
642
643
WEBP_DSP_INIT_STUB(VP8LDspInitNEON)
644
645
#endif // WEBP_USE_NEON
646
647