Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/dsp/lossless_sse2.c
21654 views
1
// Copyright 2014 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// SSE2 variant of methods for lossless decoder
11
//
12
// Author: Skal ([email protected])
13
14
#include "src/dsp/dsp.h"
15
16
#if defined(WEBP_USE_SSE2)
17
18
#include <emmintrin.h>
19
#include <string.h>
20
21
#include "src/dsp/common_sse2.h"
22
#include "src/dsp/cpu.h"
23
#include "src/dsp/lossless.h"
24
#include "src/dsp/lossless_common.h"
25
#include "src/webp/format_constants.h"
26
#include "src/webp/types.h"
27
28
//------------------------------------------------------------------------------
29
// Predictor Transform
30
31
static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0,
32
uint32_t c1,
33
uint32_t c2) {
34
const __m128i zero = _mm_setzero_si128();
35
const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero);
36
const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero);
37
const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero);
38
const __m128i V1 = _mm_add_epi16(C0, C1);
39
const __m128i V2 = _mm_sub_epi16(V1, C2);
40
const __m128i b = _mm_packus_epi16(V2, V2);
41
return (uint32_t)_mm_cvtsi128_si32(b);
42
}
43
44
static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0,
45
uint32_t c1,
46
uint32_t c2) {
47
const __m128i zero = _mm_setzero_si128();
48
const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero);
49
const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero);
50
const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero);
51
const __m128i avg = _mm_add_epi16(C1, C0);
52
const __m128i A0 = _mm_srli_epi16(avg, 1);
53
const __m128i A1 = _mm_sub_epi16(A0, B0);
54
const __m128i BgtA = _mm_cmpgt_epi16(B0, A0);
55
const __m128i A2 = _mm_sub_epi16(A1, BgtA);
56
const __m128i A3 = _mm_srai_epi16(A2, 1);
57
const __m128i A4 = _mm_add_epi16(A0, A3);
58
const __m128i A5 = _mm_packus_epi16(A4, A4);
59
return (uint32_t)_mm_cvtsi128_si32(A5);
60
}
61
62
static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) {
63
int pa_minus_pb;
64
const __m128i zero = _mm_setzero_si128();
65
const __m128i A0 = _mm_cvtsi32_si128((int)a);
66
const __m128i B0 = _mm_cvtsi32_si128((int)b);
67
const __m128i C0 = _mm_cvtsi32_si128((int)c);
68
const __m128i AC0 = _mm_subs_epu8(A0, C0);
69
const __m128i CA0 = _mm_subs_epu8(C0, A0);
70
const __m128i BC0 = _mm_subs_epu8(B0, C0);
71
const __m128i CB0 = _mm_subs_epu8(C0, B0);
72
const __m128i AC = _mm_or_si128(AC0, CA0);
73
const __m128i BC = _mm_or_si128(BC0, CB0);
74
const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c|
75
const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c|
76
const __m128i diff = _mm_sub_epi16(pb, pa);
77
{
78
int16_t out[8];
79
_mm_storeu_si128((__m128i*)out, diff);
80
pa_minus_pb = out[0] + out[1] + out[2] + out[3];
81
}
82
return (pa_minus_pb <= 0) ? a : b;
83
}
84
85
static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
86
const __m128i* const a1,
87
__m128i* const avg) {
88
// (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
89
const __m128i ones = _mm_set1_epi8(1);
90
const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
91
const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
92
*avg = _mm_sub_epi8(avg1, one);
93
}
94
95
static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0,
96
const uint32_t a1,
97
__m128i* const avg) {
98
// (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
99
const __m128i ones = _mm_set1_epi8(1);
100
const __m128i A0 = _mm_cvtsi32_si128((int)a0);
101
const __m128i A1 = _mm_cvtsi32_si128((int)a1);
102
const __m128i avg1 = _mm_avg_epu8(A0, A1);
103
const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones);
104
*avg = _mm_sub_epi8(avg1, one);
105
}
106
107
static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) {
108
const __m128i zero = _mm_setzero_si128();
109
const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a0), zero);
110
const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero);
111
const __m128i sum = _mm_add_epi16(A1, A0);
112
return _mm_srli_epi16(sum, 1);
113
}
114
115
static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) {
116
__m128i output;
117
Average2_uint32_SSE2(a0, a1, &output);
118
return (uint32_t)_mm_cvtsi128_si32(output);
119
}
120
121
static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1,
122
uint32_t a2) {
123
const __m128i zero = _mm_setzero_si128();
124
const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2);
125
const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero);
126
const __m128i sum = _mm_add_epi16(avg1, A1);
127
const __m128i avg2 = _mm_srli_epi16(sum, 1);
128
const __m128i A2 = _mm_packus_epi16(avg2, avg2);
129
return (uint32_t)_mm_cvtsi128_si32(A2);
130
}
131
132
static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1,
133
uint32_t a2, uint32_t a3) {
134
const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1);
135
const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3);
136
const __m128i sum = _mm_add_epi16(avg2, avg1);
137
const __m128i avg3 = _mm_srli_epi16(sum, 1);
138
const __m128i A0 = _mm_packus_epi16(avg3, avg3);
139
return (uint32_t)_mm_cvtsi128_si32(A0);
140
}
141
142
static uint32_t Predictor5_SSE2(const uint32_t* const left,
143
const uint32_t* const top) {
144
const uint32_t pred = Average3_SSE2(*left, top[0], top[1]);
145
return pred;
146
}
147
static uint32_t Predictor6_SSE2(const uint32_t* const left,
148
const uint32_t* const top) {
149
const uint32_t pred = Average2_SSE2(*left, top[-1]);
150
return pred;
151
}
152
static uint32_t Predictor7_SSE2(const uint32_t* const left,
153
const uint32_t* const top) {
154
const uint32_t pred = Average2_SSE2(*left, top[0]);
155
return pred;
156
}
157
static uint32_t Predictor8_SSE2(const uint32_t* const left,
158
const uint32_t* const top) {
159
const uint32_t pred = Average2_SSE2(top[-1], top[0]);
160
(void)left;
161
return pred;
162
}
163
static uint32_t Predictor9_SSE2(const uint32_t* const left,
164
const uint32_t* const top) {
165
const uint32_t pred = Average2_SSE2(top[0], top[1]);
166
(void)left;
167
return pred;
168
}
169
static uint32_t Predictor10_SSE2(const uint32_t* const left,
170
const uint32_t* const top) {
171
const uint32_t pred = Average4_SSE2(*left, top[-1], top[0], top[1]);
172
return pred;
173
}
174
static uint32_t Predictor11_SSE2(const uint32_t* const left,
175
const uint32_t* const top) {
176
const uint32_t pred = Select_SSE2(top[0], *left, top[-1]);
177
return pred;
178
}
179
static uint32_t Predictor12_SSE2(const uint32_t* const left,
180
const uint32_t* const top) {
181
const uint32_t pred = ClampedAddSubtractFull_SSE2(*left, top[0], top[-1]);
182
return pred;
183
}
184
static uint32_t Predictor13_SSE2(const uint32_t* const left,
185
const uint32_t* const top) {
186
const uint32_t pred = ClampedAddSubtractHalf_SSE2(*left, top[0], top[-1]);
187
return pred;
188
}
189
190
// Batch versions of those functions.
191
192
// Predictor0: ARGB_BLACK.
193
static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper,
194
int num_pixels, uint32_t* WEBP_RESTRICT out) {
195
int i;
196
const __m128i black = _mm_set1_epi32((int)ARGB_BLACK);
197
for (i = 0; i + 4 <= num_pixels; i += 4) {
198
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
199
const __m128i res = _mm_add_epi8(src, black);
200
_mm_storeu_si128((__m128i*)&out[i], res);
201
}
202
if (i != num_pixels) {
203
VP8LPredictorsAdd_C[0](in + i, NULL, num_pixels - i, out + i);
204
}
205
(void)upper;
206
}
207
208
// Predictor1: left.
209
static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper,
210
int num_pixels, uint32_t* WEBP_RESTRICT out) {
211
int i;
212
__m128i prev = _mm_set1_epi32((int)out[-1]);
213
for (i = 0; i + 4 <= num_pixels; i += 4) {
214
// a | b | c | d
215
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
216
// 0 | a | b | c
217
const __m128i shift0 = _mm_slli_si128(src, 4);
218
// a | a + b | b + c | c + d
219
const __m128i sum0 = _mm_add_epi8(src, shift0);
220
// 0 | 0 | a | a + b
221
const __m128i shift1 = _mm_slli_si128(sum0, 8);
222
// a | a + b | a + b + c | a + b + c + d
223
const __m128i sum1 = _mm_add_epi8(sum0, shift1);
224
const __m128i res = _mm_add_epi8(sum1, prev);
225
_mm_storeu_si128((__m128i*)&out[i], res);
226
// replicate prev output on the four lanes
227
prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6));
228
}
229
if (i != num_pixels) {
230
VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
231
}
232
}
233
234
// Macro that adds 32-bit integers from IN using mod 256 arithmetic
235
// per 8 bit channel.
236
#define GENERATE_PREDICTOR_1(X, IN) \
237
static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
238
int num_pixels, \
239
uint32_t* WEBP_RESTRICT out) { \
240
int i; \
241
for (i = 0; i + 4 <= num_pixels; i += 4) { \
242
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
243
const __m128i other = _mm_loadu_si128((const __m128i*)&(IN)); \
244
const __m128i res = _mm_add_epi8(src, other); \
245
_mm_storeu_si128((__m128i*)&out[i], res); \
246
} \
247
if (i != num_pixels) { \
248
VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
249
} \
250
}
251
252
// Predictor2: Top.
253
GENERATE_PREDICTOR_1(2, upper[i])
254
// Predictor3: Top-right.
255
GENERATE_PREDICTOR_1(3, upper[i + 1])
256
// Predictor4: Top-left.
257
GENERATE_PREDICTOR_1(4, upper[i - 1])
258
#undef GENERATE_PREDICTOR_1
259
260
// Due to averages with integers, values cannot be accumulated in parallel for
261
// predictors 5 to 7.
262
GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2)
263
GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2)
264
GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2)
265
266
#define GENERATE_PREDICTOR_2(X, IN) \
267
static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
268
int num_pixels, \
269
uint32_t* WEBP_RESTRICT out) { \
270
int i; \
271
for (i = 0; i + 4 <= num_pixels; i += 4) { \
272
const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN)); \
273
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); \
274
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
275
__m128i avg, res; \
276
Average2_m128i(&T, &Tother, &avg); \
277
res = _mm_add_epi8(avg, src); \
278
_mm_storeu_si128((__m128i*)&out[i], res); \
279
} \
280
if (i != num_pixels) { \
281
VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
282
} \
283
}
284
// Predictor8: average TL T.
285
GENERATE_PREDICTOR_2(8, upper[i - 1])
286
// Predictor9: average T TR.
287
GENERATE_PREDICTOR_2(9, upper[i + 1])
288
#undef GENERATE_PREDICTOR_2
289
290
// Predictor10: average of (average of (L,TL), average of (T, TR)).
291
#define DO_PRED10(OUT) do { \
292
__m128i avgLTL, avg; \
293
Average2_m128i(&L, &TL, &avgLTL); \
294
Average2_m128i(&avgTTR, &avgLTL, &avg); \
295
L = _mm_add_epi8(avg, src); \
296
out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L); \
297
} while (0)
298
299
#define DO_PRED10_SHIFT do { \
300
/* Rotate the pre-computed values for the next iteration.*/ \
301
avgTTR = _mm_srli_si128(avgTTR, 4); \
302
TL = _mm_srli_si128(TL, 4); \
303
src = _mm_srli_si128(src, 4); \
304
} while (0)
305
306
static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper,
307
int num_pixels, uint32_t* WEBP_RESTRICT out) {
308
int i;
309
__m128i L = _mm_cvtsi32_si128((int)out[-1]);
310
for (i = 0; i + 4 <= num_pixels; i += 4) {
311
__m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
312
__m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
313
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
314
const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
315
__m128i avgTTR;
316
Average2_m128i(&T, &TR, &avgTTR);
317
DO_PRED10(0);
318
DO_PRED10_SHIFT;
319
DO_PRED10(1);
320
DO_PRED10_SHIFT;
321
DO_PRED10(2);
322
DO_PRED10_SHIFT;
323
DO_PRED10(3);
324
}
325
if (i != num_pixels) {
326
VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
327
}
328
}
329
#undef DO_PRED10
330
#undef DO_PRED10_SHIFT
331
332
// Predictor11: select.
333
#define DO_PRED11(OUT) do { \
334
const __m128i L_lo = _mm_unpacklo_epi32(L, T); \
335
const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); \
336
const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/ \
337
const __m128i mask = _mm_cmpgt_epi32(pb, pa); \
338
const __m128i A = _mm_and_si128(mask, L); \
339
const __m128i B = _mm_andnot_si128(mask, T); \
340
const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \
341
L = _mm_add_epi8(src, pred); \
342
out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L); \
343
} while (0)
344
345
#define DO_PRED11_SHIFT do { \
346
/* Shift the pre-computed value for the next iteration.*/ \
347
T = _mm_srli_si128(T, 4); \
348
TL = _mm_srli_si128(TL, 4); \
349
src = _mm_srli_si128(src, 4); \
350
pa = _mm_srli_si128(pa, 4); \
351
} while (0)
352
353
static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper,
354
int num_pixels, uint32_t* WEBP_RESTRICT out) {
355
int i;
356
__m128i pa;
357
__m128i L = _mm_cvtsi32_si128((int)out[-1]);
358
for (i = 0; i + 4 <= num_pixels; i += 4) {
359
__m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
360
__m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
361
__m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
362
{
363
// We can unpack with any value on the upper 32 bits, provided it's the
364
// same on both operands (so that their sum of abs diff is zero). Here we
365
// use T.
366
const __m128i T_lo = _mm_unpacklo_epi32(T, T);
367
const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);
368
const __m128i T_hi = _mm_unpackhi_epi32(T, T);
369
const __m128i TL_hi = _mm_unpackhi_epi32(TL, T);
370
const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo);
371
const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi);
372
pa = _mm_packs_epi32(s_lo, s_hi); // pa = sum |T-TL|
373
}
374
DO_PRED11(0);
375
DO_PRED11_SHIFT;
376
DO_PRED11(1);
377
DO_PRED11_SHIFT;
378
DO_PRED11(2);
379
DO_PRED11_SHIFT;
380
DO_PRED11(3);
381
}
382
if (i != num_pixels) {
383
VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
384
}
385
}
386
#undef DO_PRED11
387
#undef DO_PRED11_SHIFT
388
389
// Predictor12: ClampedAddSubtractFull.
390
#define DO_PRED12(DIFF, LANE, OUT) do { \
391
const __m128i all = _mm_add_epi16(L, (DIFF)); \
392
const __m128i alls = _mm_packus_epi16(all, all); \
393
const __m128i res = _mm_add_epi8(src, alls); \
394
out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(res); \
395
L = _mm_unpacklo_epi8(res, zero); \
396
} while (0)
397
398
#define DO_PRED12_SHIFT(DIFF, LANE) do { \
399
/* Shift the pre-computed value for the next iteration.*/ \
400
if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8); \
401
src = _mm_srli_si128(src, 4); \
402
} while (0)
403
404
static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper,
405
int num_pixels, uint32_t* WEBP_RESTRICT out) {
406
int i;
407
const __m128i zero = _mm_setzero_si128();
408
const __m128i L8 = _mm_cvtsi32_si128((int)out[-1]);
409
__m128i L = _mm_unpacklo_epi8(L8, zero);
410
for (i = 0; i + 4 <= num_pixels; i += 4) {
411
// Load 4 pixels at a time.
412
__m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
413
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
414
const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
415
const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
416
const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
417
const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
418
const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
419
__m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
420
__m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
421
DO_PRED12(diff_lo, 0, 0);
422
DO_PRED12_SHIFT(diff_lo, 0);
423
DO_PRED12(diff_lo, 1, 1);
424
DO_PRED12_SHIFT(diff_lo, 1);
425
DO_PRED12(diff_hi, 0, 2);
426
DO_PRED12_SHIFT(diff_hi, 0);
427
DO_PRED12(diff_hi, 1, 3);
428
}
429
if (i != num_pixels) {
430
VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
431
}
432
}
433
#undef DO_PRED12
434
#undef DO_PRED12_SHIFT
435
436
// Due to averages with integers, values cannot be accumulated in parallel for
437
// predictors 13.
438
GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2)
439
440
//------------------------------------------------------------------------------
441
// Subtract-Green Transform
442
443
static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels,
444
uint32_t* dst) {
445
int i;
446
for (i = 0; i + 4 <= num_pixels; i += 4) {
447
const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
448
const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g
449
const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
450
const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g
451
const __m128i out = _mm_add_epi8(in, C);
452
_mm_storeu_si128((__m128i*)&dst[i], out);
453
}
454
// fallthrough and finish off with plain-C
455
if (i != num_pixels) {
456
VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i);
457
}
458
}
459
460
//------------------------------------------------------------------------------
461
// Color Transform
462
463
static void TransformColorInverse_SSE2(const VP8LMultipliers* const m,
464
const uint32_t* const src,
465
int num_pixels, uint32_t* dst) {
466
// sign-extended multiplying constants, pre-shifted by 5.
467
#define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend
468
#define MK_CST_16(HI, LO) \
469
_mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
470
const __m128i mults_rb = MK_CST_16(CST(green_to_red), CST(green_to_blue));
471
const __m128i mults_b2 = MK_CST_16(CST(red_to_blue), 0);
472
#undef MK_CST_16
473
#undef CST
474
const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00); // alpha-green masks
475
int i;
476
for (i = 0; i + 4 <= num_pixels; i += 4) {
477
const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
478
const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0
479
const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
480
const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0
481
const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1
482
const __m128i E = _mm_add_epi8(in, D); // x r' x b'
483
const __m128i F = _mm_slli_epi16(E, 8); // r' 0 b' 0
484
const __m128i G = _mm_mulhi_epi16(F, mults_b2); // x db2 0 0
485
const __m128i H = _mm_srli_epi32(G, 8); // 0 x db2 0
486
const __m128i I = _mm_add_epi8(H, F); // r' x b'' 0
487
const __m128i J = _mm_srli_epi16(I, 8); // 0 r' 0 b''
488
const __m128i out = _mm_or_si128(J, A);
489
_mm_storeu_si128((__m128i*)&dst[i], out);
490
}
491
// Fall-back to C-version for left-overs.
492
if (i != num_pixels) {
493
VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
494
}
495
}
496
497
//------------------------------------------------------------------------------
498
// Color-space conversion functions
499
500
static void ConvertBGRAToRGB_SSE2(const uint32_t* WEBP_RESTRICT src,
501
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
502
const __m128i* in = (const __m128i*)src;
503
__m128i* out = (__m128i*)dst;
504
505
while (num_pixels >= 32) {
506
// Load the BGRA buffers.
507
__m128i in0 = _mm_loadu_si128(in + 0);
508
__m128i in1 = _mm_loadu_si128(in + 1);
509
__m128i in2 = _mm_loadu_si128(in + 2);
510
__m128i in3 = _mm_loadu_si128(in + 3);
511
__m128i in4 = _mm_loadu_si128(in + 4);
512
__m128i in5 = _mm_loadu_si128(in + 5);
513
__m128i in6 = _mm_loadu_si128(in + 6);
514
__m128i in7 = _mm_loadu_si128(in + 7);
515
VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3);
516
VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7);
517
// At this points, in1/in5 contains red only, in2/in6 green only ...
518
// Pack the colors in 24b RGB.
519
VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7);
520
_mm_storeu_si128(out + 0, in1);
521
_mm_storeu_si128(out + 1, in5);
522
_mm_storeu_si128(out + 2, in2);
523
_mm_storeu_si128(out + 3, in6);
524
_mm_storeu_si128(out + 4, in3);
525
_mm_storeu_si128(out + 5, in7);
526
in += 8;
527
out += 6;
528
num_pixels -= 32;
529
}
530
// left-overs
531
if (num_pixels > 0) {
532
VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
533
}
534
}
535
536
static void ConvertBGRAToRGBA_SSE2(const uint32_t* WEBP_RESTRICT src,
537
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
538
const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ff);
539
const __m128i* in = (const __m128i*)src;
540
__m128i* out = (__m128i*)dst;
541
while (num_pixels >= 8) {
542
const __m128i A1 = _mm_loadu_si128(in++);
543
const __m128i A2 = _mm_loadu_si128(in++);
544
const __m128i B1 = _mm_and_si128(A1, red_blue_mask); // R 0 B 0
545
const __m128i B2 = _mm_and_si128(A2, red_blue_mask); // R 0 B 0
546
const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1); // 0 G 0 A
547
const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2); // 0 G 0 A
548
const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1));
549
const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1));
550
const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1));
551
const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1));
552
const __m128i F1 = _mm_or_si128(E1, C1);
553
const __m128i F2 = _mm_or_si128(E2, C2);
554
_mm_storeu_si128(out++, F1);
555
_mm_storeu_si128(out++, F2);
556
num_pixels -= 8;
557
}
558
// left-overs
559
if (num_pixels > 0) {
560
VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
561
}
562
}
563
564
static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* WEBP_RESTRICT src,
565
int num_pixels,
566
uint8_t* WEBP_RESTRICT dst) {
567
const __m128i mask_0x0f = _mm_set1_epi8(0x0f);
568
const __m128i mask_0xf0 = _mm_set1_epi8((char)0xf0);
569
const __m128i* in = (const __m128i*)src;
570
__m128i* out = (__m128i*)dst;
571
while (num_pixels >= 8) {
572
const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
573
const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
574
const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4...
575
const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6...
576
const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6...
577
const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7...
578
const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7
579
const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7
580
const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7
581
const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7
582
const __m128i ga1 = _mm_srli_epi16(ga0, 4); // g0-|g1-|...|a6-|a7-
583
const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0); // -r0|-r1|...|-b6|-a7
584
const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f); // g0-|g1-|...|a6-|a7-
585
const __m128i rgba0 = _mm_or_si128(ga2, rb1); // rg0..rg7 | ba0..ba7
586
const __m128i rgba1 = _mm_srli_si128(rgba0, 8); // ba0..ba7 | 0
587
#if (WEBP_SWAP_16BIT_CSP == 1)
588
const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0); // barg0...barg7
589
#else
590
const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1); // rgba0...rgba7
591
#endif
592
_mm_storeu_si128(out++, rgba);
593
num_pixels -= 8;
594
}
595
// left-overs
596
if (num_pixels > 0) {
597
VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
598
}
599
}
600
601
static void ConvertBGRAToRGB565_SSE2(const uint32_t* WEBP_RESTRICT src,
602
int num_pixels,
603
uint8_t* WEBP_RESTRICT dst) {
604
const __m128i mask_0xe0 = _mm_set1_epi8((char)0xe0);
605
const __m128i mask_0xf8 = _mm_set1_epi8((char)0xf8);
606
const __m128i mask_0x07 = _mm_set1_epi8(0x07);
607
const __m128i* in = (const __m128i*)src;
608
__m128i* out = (__m128i*)dst;
609
while (num_pixels >= 8) {
610
const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
611
const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
612
const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4...
613
const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6...
614
const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6...
615
const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7...
616
const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7
617
const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7
618
const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7
619
const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7
620
const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8); // -r0..-r7|-b0..-b7
621
const __m128i g_lo1 = _mm_srli_epi16(ga0, 5);
622
const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07); // g0-...g7-|xx (3b)
623
const __m128i g_hi1 = _mm_slli_epi16(ga0, 3);
624
const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0); // -g0...-g7|xx (3b)
625
const __m128i b0 = _mm_srli_si128(rb1, 8); // -b0...-b7|0
626
const __m128i rg1 = _mm_or_si128(rb1, g_lo2); // gr0...gr7|xx
627
const __m128i b1 = _mm_srli_epi16(b0, 3);
628
const __m128i gb1 = _mm_or_si128(b1, g_hi2); // bg0...bg7|xx
629
#if (WEBP_SWAP_16BIT_CSP == 1)
630
const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1); // rggb0...rggb7
631
#else
632
const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1); // bgrb0...bgrb7
633
#endif
634
_mm_storeu_si128(out++, rgba);
635
num_pixels -= 8;
636
}
637
// left-overs
638
if (num_pixels > 0) {
639
VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
640
}
641
}
642
643
static void ConvertBGRAToBGR_SSE2(const uint32_t* WEBP_RESTRICT src,
644
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
645
const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff);
646
const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0);
647
const __m128i* in = (const __m128i*)src;
648
const uint8_t* const end = dst + num_pixels * 3;
649
// the last storel_epi64 below writes 8 bytes starting at offset 18
650
while (dst + 26 <= end) {
651
const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
652
const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
653
const __m128i a0l = _mm_and_si128(bgra0, mask_l); // bgr0|0|bgr0|0
654
const __m128i a4l = _mm_and_si128(bgra4, mask_l); // bgr0|0|bgr0|0
655
const __m128i a0h = _mm_and_si128(bgra0, mask_h); // 0|bgr0|0|bgr0
656
const __m128i a4h = _mm_and_si128(bgra4, mask_h); // 0|bgr0|0|bgr0
657
const __m128i b0h = _mm_srli_epi64(a0h, 8); // 000b|gr00|000b|gr00
658
const __m128i b4h = _mm_srli_epi64(a4h, 8); // 000b|gr00|000b|gr00
659
const __m128i c0 = _mm_or_si128(a0l, b0h); // rgbrgb00|rgbrgb00
660
const __m128i c4 = _mm_or_si128(a4l, b4h); // rgbrgb00|rgbrgb00
661
const __m128i c2 = _mm_srli_si128(c0, 8);
662
const __m128i c6 = _mm_srli_si128(c4, 8);
663
_mm_storel_epi64((__m128i*)(dst + 0), c0);
664
_mm_storel_epi64((__m128i*)(dst + 6), c2);
665
_mm_storel_epi64((__m128i*)(dst + 12), c4);
666
_mm_storel_epi64((__m128i*)(dst + 18), c6);
667
dst += 24;
668
num_pixels -= 8;
669
}
670
// left-overs
671
if (num_pixels > 0) {
672
VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst);
673
}
674
}
675
676
//------------------------------------------------------------------------------
677
// Entry point
678
679
extern void VP8LDspInitSSE2(void);
680
681
WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) {
682
VP8LPredictors[5] = Predictor5_SSE2;
683
VP8LPredictors[6] = Predictor6_SSE2;
684
VP8LPredictors[7] = Predictor7_SSE2;
685
VP8LPredictors[8] = Predictor8_SSE2;
686
VP8LPredictors[9] = Predictor9_SSE2;
687
VP8LPredictors[10] = Predictor10_SSE2;
688
VP8LPredictors[11] = Predictor11_SSE2;
689
VP8LPredictors[12] = Predictor12_SSE2;
690
VP8LPredictors[13] = Predictor13_SSE2;
691
692
VP8LPredictorsAdd[0] = PredictorAdd0_SSE2;
693
VP8LPredictorsAdd[1] = PredictorAdd1_SSE2;
694
VP8LPredictorsAdd[2] = PredictorAdd2_SSE2;
695
VP8LPredictorsAdd[3] = PredictorAdd3_SSE2;
696
VP8LPredictorsAdd[4] = PredictorAdd4_SSE2;
697
VP8LPredictorsAdd[5] = PredictorAdd5_SSE2;
698
VP8LPredictorsAdd[6] = PredictorAdd6_SSE2;
699
VP8LPredictorsAdd[7] = PredictorAdd7_SSE2;
700
VP8LPredictorsAdd[8] = PredictorAdd8_SSE2;
701
VP8LPredictorsAdd[9] = PredictorAdd9_SSE2;
702
VP8LPredictorsAdd[10] = PredictorAdd10_SSE2;
703
VP8LPredictorsAdd[11] = PredictorAdd11_SSE2;
704
VP8LPredictorsAdd[12] = PredictorAdd12_SSE2;
705
VP8LPredictorsAdd[13] = PredictorAdd13_SSE2;
706
707
VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2;
708
VP8LTransformColorInverse = TransformColorInverse_SSE2;
709
710
VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2;
711
VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2;
712
VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2;
713
VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2;
714
VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2;
715
716
// SSE exports for AVX and above.
717
memcpy(VP8LPredictorsAdd_SSE, VP8LPredictorsAdd, sizeof(VP8LPredictorsAdd));
718
719
VP8LAddGreenToBlueAndRed_SSE = AddGreenToBlueAndRed_SSE2;
720
VP8LTransformColorInverse_SSE = TransformColorInverse_SSE2;
721
722
VP8LConvertBGRAToRGB_SSE = ConvertBGRAToRGB_SSE2;
723
VP8LConvertBGRAToRGBA_SSE = ConvertBGRAToRGBA_SSE2;
724
}
725
726
#else // !WEBP_USE_SSE2
727
728
WEBP_DSP_INIT_STUB(VP8LDspInitSSE2)
729
730
#endif // WEBP_USE_SSE2
731
732