Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/enc/analysis_enc.c
9913 views
1
// Copyright 2011 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Macroblock analysis
11
//
12
// Author: Skal ([email protected])
13
14
#include <stdlib.h>
15
#include <string.h>
16
#include <assert.h>
17
18
#include "src/enc/vp8i_enc.h"
19
#include "src/enc/cost_enc.h"
20
#include "src/utils/utils.h"
21
22
#define MAX_ITERS_K_MEANS 6
23
24
//------------------------------------------------------------------------------
25
// Smooth the segment map by replacing isolated block by the majority of its
26
// neighbours.
27
28
static void SmoothSegmentMap(VP8Encoder* const enc) {
29
int n, x, y;
30
const int w = enc->mb_w_;
31
const int h = enc->mb_h_;
32
const int majority_cnt_3_x_3_grid = 5;
33
uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
34
assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec
35
36
if (tmp == NULL) return;
37
for (y = 1; y < h - 1; ++y) {
38
for (x = 1; x < w - 1; ++x) {
39
int cnt[NUM_MB_SEGMENTS] = { 0 };
40
const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
41
int majority_seg = mb->segment_;
42
// Check the 8 neighbouring segment values.
43
cnt[mb[-w - 1].segment_]++; // top-left
44
cnt[mb[-w + 0].segment_]++; // top
45
cnt[mb[-w + 1].segment_]++; // top-right
46
cnt[mb[ - 1].segment_]++; // left
47
cnt[mb[ + 1].segment_]++; // right
48
cnt[mb[ w - 1].segment_]++; // bottom-left
49
cnt[mb[ w + 0].segment_]++; // bottom
50
cnt[mb[ w + 1].segment_]++; // bottom-right
51
for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
52
if (cnt[n] >= majority_cnt_3_x_3_grid) {
53
majority_seg = n;
54
break;
55
}
56
}
57
tmp[x + y * w] = majority_seg;
58
}
59
}
60
for (y = 1; y < h - 1; ++y) {
61
for (x = 1; x < w - 1; ++x) {
62
VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
63
mb->segment_ = tmp[x + y * w];
64
}
65
}
66
WebPSafeFree(tmp);
67
}
68
69
//------------------------------------------------------------------------------
70
// set segment susceptibility alpha_ / beta_
71
72
static WEBP_INLINE int clip(int v, int m, int M) {
73
return (v < m) ? m : (v > M) ? M : v;
74
}
75
76
static void SetSegmentAlphas(VP8Encoder* const enc,
77
const int centers[NUM_MB_SEGMENTS],
78
int mid) {
79
const int nb = enc->segment_hdr_.num_segments_;
80
int min = centers[0], max = centers[0];
81
int n;
82
83
if (nb > 1) {
84
for (n = 0; n < nb; ++n) {
85
if (min > centers[n]) min = centers[n];
86
if (max < centers[n]) max = centers[n];
87
}
88
}
89
if (max == min) max = min + 1;
90
assert(mid <= max && mid >= min);
91
for (n = 0; n < nb; ++n) {
92
const int alpha = 255 * (centers[n] - mid) / (max - min);
93
const int beta = 255 * (centers[n] - min) / (max - min);
94
enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
95
enc->dqm_[n].beta_ = clip(beta, 0, 255);
96
}
97
}
98
99
//------------------------------------------------------------------------------
100
// Compute susceptibility based on DCT-coeff histograms:
101
// the higher, the "easier" the macroblock is to compress.
102
103
#define MAX_ALPHA 255 // 8b of precision for susceptibilities.
104
#define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha.
105
#define DEFAULT_ALPHA (-1)
106
#define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
107
108
static int FinalAlphaValue(int alpha) {
109
alpha = MAX_ALPHA - alpha;
110
return clip(alpha, 0, MAX_ALPHA);
111
}
112
113
static int GetAlpha(const VP8Histogram* const histo) {
114
// 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
115
// values which happen to be mostly noise. This leaves the maximum precision
116
// for handling the useful small values which contribute most.
117
const int max_value = histo->max_value;
118
const int last_non_zero = histo->last_non_zero;
119
const int alpha =
120
(max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
121
return alpha;
122
}
123
124
static void InitHistogram(VP8Histogram* const histo) {
125
histo->max_value = 0;
126
histo->last_non_zero = 1;
127
}
128
129
//------------------------------------------------------------------------------
130
// Simplified k-Means, to assign Nb segments based on alpha-histogram
131
132
static void AssignSegments(VP8Encoder* const enc,
133
const int alphas[MAX_ALPHA + 1]) {
134
// 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an
135
// explicit check is needed to avoid spurious warning about 'n + 1' exceeding
136
// array bounds of 'centers' with some compilers (noticed with gcc-4.9).
137
const int nb = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) ?
138
enc->segment_hdr_.num_segments_ : NUM_MB_SEGMENTS;
139
int centers[NUM_MB_SEGMENTS];
140
int weighted_average = 0;
141
int map[MAX_ALPHA + 1];
142
int a, n, k;
143
int min_a = 0, max_a = MAX_ALPHA, range_a;
144
// 'int' type is ok for histo, and won't overflow
145
int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
146
147
assert(nb >= 1);
148
assert(nb <= NUM_MB_SEGMENTS);
149
150
// bracket the input
151
for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
152
min_a = n;
153
for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
154
max_a = n;
155
range_a = max_a - min_a;
156
157
// Spread initial centers evenly
158
for (k = 0, n = 1; k < nb; ++k, n += 2) {
159
assert(n < 2 * nb);
160
centers[k] = min_a + (n * range_a) / (2 * nb);
161
}
162
163
for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough
164
int total_weight;
165
int displaced;
166
// Reset stats
167
for (n = 0; n < nb; ++n) {
168
accum[n] = 0;
169
dist_accum[n] = 0;
170
}
171
// Assign nearest center for each 'a'
172
n = 0; // track the nearest center for current 'a'
173
for (a = min_a; a <= max_a; ++a) {
174
if (alphas[a]) {
175
while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
176
n++;
177
}
178
map[a] = n;
179
// accumulate contribution into best centroid
180
dist_accum[n] += a * alphas[a];
181
accum[n] += alphas[a];
182
}
183
}
184
// All point are classified. Move the centroids to the
185
// center of their respective cloud.
186
displaced = 0;
187
weighted_average = 0;
188
total_weight = 0;
189
for (n = 0; n < nb; ++n) {
190
if (accum[n]) {
191
const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
192
displaced += abs(centers[n] - new_center);
193
centers[n] = new_center;
194
weighted_average += new_center * accum[n];
195
total_weight += accum[n];
196
}
197
}
198
weighted_average = (weighted_average + total_weight / 2) / total_weight;
199
if (displaced < 5) break; // no need to keep on looping...
200
}
201
202
// Map each original value to the closest centroid
203
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
204
VP8MBInfo* const mb = &enc->mb_info_[n];
205
const int alpha = mb->alpha_;
206
mb->segment_ = map[alpha];
207
mb->alpha_ = centers[map[alpha]]; // for the record.
208
}
209
210
if (nb > 1) {
211
const int smooth = (enc->config_->preprocessing & 1);
212
if (smooth) SmoothSegmentMap(enc);
213
}
214
215
SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas.
216
}
217
218
//------------------------------------------------------------------------------
219
// Macroblock analysis: collect histogram for each mode, deduce the maximal
220
// susceptibility and set best modes for this macroblock.
221
// Segment assignment is done later.
222
223
// Number of modes to inspect for alpha_ evaluation. We don't need to test all
224
// the possible modes during the analysis phase: we risk falling into a local
225
// optimum, or be subject to boundary effect
226
#define MAX_INTRA16_MODE 2
227
#define MAX_INTRA4_MODE 2
228
#define MAX_UV_MODE 2
229
230
static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
231
const int max_mode = MAX_INTRA16_MODE;
232
int mode;
233
int best_alpha = DEFAULT_ALPHA;
234
int best_mode = 0;
235
236
VP8MakeLuma16Preds(it);
237
for (mode = 0; mode < max_mode; ++mode) {
238
VP8Histogram histo;
239
int alpha;
240
241
InitHistogram(&histo);
242
VP8CollectHistogram(it->yuv_in_ + Y_OFF_ENC,
243
it->yuv_p_ + VP8I16ModeOffsets[mode],
244
0, 16, &histo);
245
alpha = GetAlpha(&histo);
246
if (IS_BETTER_ALPHA(alpha, best_alpha)) {
247
best_alpha = alpha;
248
best_mode = mode;
249
}
250
}
251
VP8SetIntra16Mode(it, best_mode);
252
return best_alpha;
253
}
254
255
static int FastMBAnalyze(VP8EncIterator* const it) {
256
// Empirical cut-off value, should be around 16 (~=block size). We use the
257
// [8-17] range and favor intra4 at high quality, intra16 for low quality.
258
const int q = (int)it->enc_->config_->quality;
259
const uint32_t kThreshold = 8 + (17 - 8) * q / 100;
260
int k;
261
uint32_t dc[16], m, m2;
262
for (k = 0; k < 16; k += 4) {
263
VP8Mean16x4(it->yuv_in_ + Y_OFF_ENC + k * BPS, &dc[k]);
264
}
265
for (m = 0, m2 = 0, k = 0; k < 16; ++k) {
266
m += dc[k];
267
m2 += dc[k] * dc[k];
268
}
269
if (kThreshold * m2 < m * m) {
270
VP8SetIntra16Mode(it, 0); // DC16
271
} else {
272
const uint8_t modes[16] = { 0 }; // DC4
273
VP8SetIntra4Mode(it, modes);
274
}
275
return 0;
276
}
277
278
static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
279
int best_alpha = DEFAULT_ALPHA;
280
int smallest_alpha = 0;
281
int best_mode = 0;
282
const int max_mode = MAX_UV_MODE;
283
int mode;
284
285
VP8MakeChroma8Preds(it);
286
for (mode = 0; mode < max_mode; ++mode) {
287
VP8Histogram histo;
288
int alpha;
289
InitHistogram(&histo);
290
VP8CollectHistogram(it->yuv_in_ + U_OFF_ENC,
291
it->yuv_p_ + VP8UVModeOffsets[mode],
292
16, 16 + 4 + 4, &histo);
293
alpha = GetAlpha(&histo);
294
if (IS_BETTER_ALPHA(alpha, best_alpha)) {
295
best_alpha = alpha;
296
}
297
// The best prediction mode tends to be the one with the smallest alpha.
298
if (mode == 0 || alpha < smallest_alpha) {
299
smallest_alpha = alpha;
300
best_mode = mode;
301
}
302
}
303
VP8SetIntraUVMode(it, best_mode);
304
return best_alpha;
305
}
306
307
static void MBAnalyze(VP8EncIterator* const it,
308
int alphas[MAX_ALPHA + 1],
309
int* const alpha, int* const uv_alpha) {
310
const VP8Encoder* const enc = it->enc_;
311
int best_alpha, best_uv_alpha;
312
313
VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED
314
VP8SetSkip(it, 0); // not skipped
315
VP8SetSegment(it, 0); // default segment, spec-wise.
316
317
if (enc->method_ <= 1) {
318
best_alpha = FastMBAnalyze(it);
319
} else {
320
best_alpha = MBAnalyzeBestIntra16Mode(it);
321
}
322
best_uv_alpha = MBAnalyzeBestUVMode(it);
323
324
// Final susceptibility mix
325
best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
326
best_alpha = FinalAlphaValue(best_alpha);
327
alphas[best_alpha]++;
328
it->mb_->alpha_ = best_alpha; // for later remapping.
329
330
// Accumulate for later complexity analysis.
331
*alpha += best_alpha; // mixed susceptibility (not just luma)
332
*uv_alpha += best_uv_alpha;
333
}
334
335
static void DefaultMBInfo(VP8MBInfo* const mb) {
336
mb->type_ = 1; // I16x16
337
mb->uv_mode_ = 0;
338
mb->skip_ = 0; // not skipped
339
mb->segment_ = 0; // default segment
340
mb->alpha_ = 0;
341
}
342
343
//------------------------------------------------------------------------------
344
// Main analysis loop:
345
// Collect all susceptibilities for each macroblock and record their
346
// distribution in alphas[]. Segments is assigned a-posteriori, based on
347
// this histogram.
348
// We also pick an intra16 prediction mode, which shouldn't be considered
349
// final except for fast-encode settings. We can also pick some intra4 modes
350
// and decide intra4/intra16, but that's usually almost always a bad choice at
351
// this stage.
352
353
static void ResetAllMBInfo(VP8Encoder* const enc) {
354
int n;
355
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
356
DefaultMBInfo(&enc->mb_info_[n]);
357
}
358
// Default susceptibilities.
359
enc->dqm_[0].alpha_ = 0;
360
enc->dqm_[0].beta_ = 0;
361
// Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
362
enc->alpha_ = 0;
363
enc->uv_alpha_ = 0;
364
WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
365
}
366
367
// struct used to collect job result
368
typedef struct {
369
WebPWorker worker;
370
int alphas[MAX_ALPHA + 1];
371
int alpha, uv_alpha;
372
VP8EncIterator it;
373
int delta_progress;
374
} SegmentJob;
375
376
// main work call
377
static int DoSegmentsJob(void* arg1, void* arg2) {
378
SegmentJob* const job = (SegmentJob*)arg1;
379
VP8EncIterator* const it = (VP8EncIterator*)arg2;
380
int ok = 1;
381
if (!VP8IteratorIsDone(it)) {
382
uint8_t tmp[32 + WEBP_ALIGN_CST];
383
uint8_t* const scratch = (uint8_t*)WEBP_ALIGN(tmp);
384
do {
385
// Let's pretend we have perfect lossless reconstruction.
386
VP8IteratorImport(it, scratch);
387
MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
388
ok = VP8IteratorProgress(it, job->delta_progress);
389
} while (ok && VP8IteratorNext(it));
390
}
391
return ok;
392
}
393
394
#ifdef WEBP_USE_THREAD
395
static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
396
int i;
397
for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
398
dst->alpha += src->alpha;
399
dst->uv_alpha += src->uv_alpha;
400
}
401
#endif
402
403
// initialize the job struct with some tasks to perform
404
static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
405
int start_row, int end_row) {
406
WebPGetWorkerInterface()->Init(&job->worker);
407
job->worker.data1 = job;
408
job->worker.data2 = &job->it;
409
job->worker.hook = DoSegmentsJob;
410
VP8IteratorInit(enc, &job->it);
411
VP8IteratorSetRow(&job->it, start_row);
412
VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
413
memset(job->alphas, 0, sizeof(job->alphas));
414
job->alpha = 0;
415
job->uv_alpha = 0;
416
// only one of both jobs can record the progress, since we don't
417
// expect the user's hook to be multi-thread safe
418
job->delta_progress = (start_row == 0) ? 20 : 0;
419
}
420
421
// main entry point
422
int VP8EncAnalyze(VP8Encoder* const enc) {
423
int ok = 1;
424
const int do_segments =
425
enc->config_->emulate_jpeg_size || // We need the complexity evaluation.
426
(enc->segment_hdr_.num_segments_ > 1) ||
427
(enc->method_ <= 1); // for method 0 - 1, we need preds_[] to be filled.
428
if (do_segments) {
429
const int last_row = enc->mb_h_;
430
const int total_mb = last_row * enc->mb_w_;
431
#ifdef WEBP_USE_THREAD
432
// We give a little more than a half work to the main thread.
433
const int split_row = (9 * last_row + 15) >> 4;
434
const int kMinSplitRow = 2; // minimal rows needed for mt to be worth it
435
const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
436
#else
437
const int do_mt = 0;
438
#endif
439
const WebPWorkerInterface* const worker_interface =
440
WebPGetWorkerInterface();
441
SegmentJob main_job;
442
if (do_mt) {
443
#ifdef WEBP_USE_THREAD
444
SegmentJob side_job;
445
// Note the use of '&' instead of '&&' because we must call the functions
446
// no matter what.
447
InitSegmentJob(enc, &main_job, 0, split_row);
448
InitSegmentJob(enc, &side_job, split_row, last_row);
449
// we don't need to call Reset() on main_job.worker, since we're calling
450
// WebPWorkerExecute() on it
451
ok &= worker_interface->Reset(&side_job.worker);
452
// launch the two jobs in parallel
453
if (ok) {
454
worker_interface->Launch(&side_job.worker);
455
worker_interface->Execute(&main_job.worker);
456
ok &= worker_interface->Sync(&side_job.worker);
457
ok &= worker_interface->Sync(&main_job.worker);
458
}
459
worker_interface->End(&side_job.worker);
460
if (ok) MergeJobs(&side_job, &main_job); // merge results together
461
#endif // WEBP_USE_THREAD
462
} else {
463
// Even for single-thread case, we use the generic Worker tools.
464
InitSegmentJob(enc, &main_job, 0, last_row);
465
worker_interface->Execute(&main_job.worker);
466
ok &= worker_interface->Sync(&main_job.worker);
467
}
468
worker_interface->End(&main_job.worker);
469
if (ok) {
470
enc->alpha_ = main_job.alpha / total_mb;
471
enc->uv_alpha_ = main_job.uv_alpha / total_mb;
472
AssignSegments(enc, main_job.alphas);
473
}
474
} else { // Use only one default segment.
475
ResetAllMBInfo(enc);
476
}
477
if (!ok) {
478
return WebPEncodingSetError(enc->pic_,
479
VP8_ENC_ERROR_OUT_OF_MEMORY); // imprecise
480
}
481
return ok;
482
}
483
484
485