Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/enc/predictor_enc.c
9913 views
1
// Copyright 2016 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Image transform methods for lossless encoder.
11
//
12
// Authors: Vikas Arora ([email protected])
13
// Jyrki Alakuijala ([email protected])
14
// Urvang Joshi ([email protected])
15
// Vincent Rabaud ([email protected])
16
17
#include <assert.h>
18
#include <stdlib.h>
19
#include <string.h>
20
21
#include "src/dsp/lossless.h"
22
#include "src/dsp/lossless_common.h"
23
#include "src/enc/vp8i_enc.h"
24
#include "src/enc/vp8li_enc.h"
25
#include "src/utils/utils.h"
26
#include "src/webp/encode.h"
27
#include "src/webp/format_constants.h"
28
#include "src/webp/types.h"
29
30
#define HISTO_SIZE (4 * 256)
31
static const int64_t kSpatialPredictorBias = 15ll << LOG_2_PRECISION_BITS;
32
static const int kPredLowEffort = 11;
33
static const uint32_t kMaskAlpha = 0xff000000;
34
static const int kNumPredModes = 14;
35
36
// Mostly used to reduce code size + readability
37
static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
38
static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
39
40
//------------------------------------------------------------------------------
41
// Methods to calculate Entropy (Shannon).
42
43
// Compute a bias for prediction entropy using a global heuristic to favor
44
// values closer to 0. Hence the final negative sign.
45
// 'exp_val' has a scaling factor of 1/100.
46
static int64_t PredictionCostBias(const uint32_t counts[256], uint64_t weight_0,
47
uint64_t exp_val) {
48
const int significant_symbols = 256 >> 4;
49
const uint64_t exp_decay_factor = 6; // has a scaling factor of 1/10
50
uint64_t bits = (weight_0 * counts[0]) << LOG_2_PRECISION_BITS;
51
int i;
52
exp_val <<= LOG_2_PRECISION_BITS;
53
for (i = 1; i < significant_symbols; ++i) {
54
bits += DivRound(exp_val * (counts[i] + counts[256 - i]), 100);
55
exp_val = DivRound(exp_decay_factor * exp_val, 10);
56
}
57
return -DivRound((int64_t)bits, 10);
58
}
59
60
static int64_t PredictionCostSpatialHistogram(
61
const uint32_t accumulated[HISTO_SIZE], const uint32_t tile[HISTO_SIZE],
62
int mode, int left_mode, int above_mode) {
63
int i;
64
int64_t retval = 0;
65
for (i = 0; i < 4; ++i) {
66
const uint64_t kExpValue = 94;
67
retval += PredictionCostBias(&tile[i * 256], 1, kExpValue);
68
// Compute the new cost if 'tile' is added to 'accumulate' but also add the
69
// cost of the current histogram to guide the spatial predictor selection.
70
// Basically, favor low entropy, locally and globally.
71
retval += (int64_t)VP8LCombinedShannonEntropy(&tile[i * 256],
72
&accumulated[i * 256]);
73
}
74
// Favor keeping the areas locally similar.
75
if (mode == left_mode) retval -= kSpatialPredictorBias;
76
if (mode == above_mode) retval -= kSpatialPredictorBias;
77
return retval;
78
}
79
80
static WEBP_INLINE void UpdateHisto(uint32_t histo_argb[HISTO_SIZE],
81
uint32_t argb) {
82
++histo_argb[0 * 256 + (argb >> 24)];
83
++histo_argb[1 * 256 + ((argb >> 16) & 0xff)];
84
++histo_argb[2 * 256 + ((argb >> 8) & 0xff)];
85
++histo_argb[3 * 256 + (argb & 0xff)];
86
}
87
88
//------------------------------------------------------------------------------
89
// Spatial transform functions.
90
91
static WEBP_INLINE void PredictBatch(int mode, int x_start, int y,
92
int num_pixels, const uint32_t* current,
93
const uint32_t* upper, uint32_t* out) {
94
if (x_start == 0) {
95
if (y == 0) {
96
// ARGB_BLACK.
97
VP8LPredictorsSub[0](current, NULL, 1, out);
98
} else {
99
// Top one.
100
VP8LPredictorsSub[2](current, upper, 1, out);
101
}
102
++x_start;
103
++out;
104
--num_pixels;
105
}
106
if (y == 0) {
107
// Left one.
108
VP8LPredictorsSub[1](current + x_start, NULL, num_pixels, out);
109
} else {
110
VP8LPredictorsSub[mode](current + x_start, upper + x_start, num_pixels,
111
out);
112
}
113
}
114
115
#if (WEBP_NEAR_LOSSLESS == 1)
116
static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
117
const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
118
const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
119
const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
120
const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
121
return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
122
}
123
124
static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
125
uint32_t left, uint32_t right) {
126
const int diff_up = MaxDiffBetweenPixels(current, up);
127
const int diff_down = MaxDiffBetweenPixels(current, down);
128
const int diff_left = MaxDiffBetweenPixels(current, left);
129
const int diff_right = MaxDiffBetweenPixels(current, right);
130
return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
131
}
132
133
static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
134
const uint32_t green = (argb >> 8) & 0xff;
135
uint32_t red_blue = argb & 0x00ff00ffu;
136
red_blue += (green << 16) | green;
137
red_blue &= 0x00ff00ffu;
138
return (argb & 0xff00ff00u) | red_blue;
139
}
140
141
static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
142
uint8_t* const max_diffs, int used_subtract_green) {
143
uint32_t current, up, down, left, right;
144
int x;
145
if (width <= 2) return;
146
current = argb[0];
147
right = argb[1];
148
if (used_subtract_green) {
149
current = AddGreenToBlueAndRed(current);
150
right = AddGreenToBlueAndRed(right);
151
}
152
// max_diffs[0] and max_diffs[width - 1] are never used.
153
for (x = 1; x < width - 1; ++x) {
154
up = argb[-stride + x];
155
down = argb[stride + x];
156
left = current;
157
current = right;
158
right = argb[x + 1];
159
if (used_subtract_green) {
160
up = AddGreenToBlueAndRed(up);
161
down = AddGreenToBlueAndRed(down);
162
right = AddGreenToBlueAndRed(right);
163
}
164
max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
165
}
166
}
167
168
// Quantize the difference between the actual component value and its prediction
169
// to a multiple of quantization, working modulo 256, taking care not to cross
170
// a boundary (inclusive upper limit).
171
static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
172
uint8_t boundary, int quantization) {
173
const int residual = (value - predict) & 0xff;
174
const int boundary_residual = (boundary - predict) & 0xff;
175
const int lower = residual & ~(quantization - 1);
176
const int upper = lower + quantization;
177
// Resolve ties towards a value closer to the prediction (i.e. towards lower
178
// if value comes after prediction and towards upper otherwise).
179
const int bias = ((boundary - value) & 0xff) < boundary_residual;
180
if (residual - lower < upper - residual + bias) {
181
// lower is closer to residual than upper.
182
if (residual > boundary_residual && lower <= boundary_residual) {
183
// Halve quantization step to avoid crossing boundary. This midpoint is
184
// on the same side of boundary as residual because midpoint >= residual
185
// (since lower is closer than upper) and residual is above the boundary.
186
return lower + (quantization >> 1);
187
}
188
return lower;
189
} else {
190
// upper is closer to residual than lower.
191
if (residual <= boundary_residual && upper > boundary_residual) {
192
// Halve quantization step to avoid crossing boundary. This midpoint is
193
// on the same side of boundary as residual because midpoint <= residual
194
// (since upper is closer than lower) and residual is below the boundary.
195
return lower + (quantization >> 1);
196
}
197
return upper & 0xff;
198
}
199
}
200
201
static WEBP_INLINE uint8_t NearLosslessDiff(uint8_t a, uint8_t b) {
202
return (uint8_t)((((int)(a) - (int)(b))) & 0xff);
203
}
204
205
// Quantize every component of the difference between the actual pixel value and
206
// its prediction to a multiple of a quantization (a power of 2, not larger than
207
// max_quantization which is a power of 2, smaller than max_diff). Take care if
208
// value and predict have undergone subtract green, which means that red and
209
// blue are represented as offsets from green.
210
static uint32_t NearLossless(uint32_t value, uint32_t predict,
211
int max_quantization, int max_diff,
212
int used_subtract_green) {
213
int quantization;
214
uint8_t new_green = 0;
215
uint8_t green_diff = 0;
216
uint8_t a, r, g, b;
217
if (max_diff <= 2) {
218
return VP8LSubPixels(value, predict);
219
}
220
quantization = max_quantization;
221
while (quantization >= max_diff) {
222
quantization >>= 1;
223
}
224
if ((value >> 24) == 0 || (value >> 24) == 0xff) {
225
// Preserve transparency of fully transparent or fully opaque pixels.
226
a = NearLosslessDiff((value >> 24) & 0xff, (predict >> 24) & 0xff);
227
} else {
228
a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
229
}
230
g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
231
quantization);
232
if (used_subtract_green) {
233
// The green offset will be added to red and blue components during decoding
234
// to obtain the actual red and blue values.
235
new_green = ((predict >> 8) + g) & 0xff;
236
// The amount by which green has been adjusted during quantization. It is
237
// subtracted from red and blue for compensation, to avoid accumulating two
238
// quantization errors in them.
239
green_diff = NearLosslessDiff(new_green, (value >> 8) & 0xff);
240
}
241
r = NearLosslessComponent(NearLosslessDiff((value >> 16) & 0xff, green_diff),
242
(predict >> 16) & 0xff, 0xff - new_green,
243
quantization);
244
b = NearLosslessComponent(NearLosslessDiff(value & 0xff, green_diff),
245
predict & 0xff, 0xff - new_green, quantization);
246
return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
247
}
248
#endif // (WEBP_NEAR_LOSSLESS == 1)
249
250
// Stores the difference between the pixel and its prediction in "out".
251
// In case of a lossy encoding, updates the source image to avoid propagating
252
// the deviation further to pixels which depend on the current pixel for their
253
// predictions.
254
static WEBP_INLINE void GetResidual(
255
int width, int height, uint32_t* const upper_row,
256
uint32_t* const current_row, const uint8_t* const max_diffs, int mode,
257
int x_start, int x_end, int y, int max_quantization, int exact,
258
int used_subtract_green, uint32_t* const out) {
259
if (exact) {
260
PredictBatch(mode, x_start, y, x_end - x_start, current_row, upper_row,
261
out);
262
} else {
263
const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
264
int x;
265
for (x = x_start; x < x_end; ++x) {
266
uint32_t predict;
267
uint32_t residual;
268
if (y == 0) {
269
predict = (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left.
270
} else if (x == 0) {
271
predict = upper_row[x]; // Top.
272
} else {
273
predict = pred_func(&current_row[x - 1], upper_row + x);
274
}
275
#if (WEBP_NEAR_LOSSLESS == 1)
276
if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
277
x == 0 || x == width - 1) {
278
residual = VP8LSubPixels(current_row[x], predict);
279
} else {
280
residual = NearLossless(current_row[x], predict, max_quantization,
281
max_diffs[x], used_subtract_green);
282
// Update the source image.
283
current_row[x] = VP8LAddPixels(predict, residual);
284
// x is never 0 here so we do not need to update upper_row like below.
285
}
286
#else
287
(void)max_diffs;
288
(void)height;
289
(void)max_quantization;
290
(void)used_subtract_green;
291
residual = VP8LSubPixels(current_row[x], predict);
292
#endif
293
if ((current_row[x] & kMaskAlpha) == 0) {
294
// If alpha is 0, cleanup RGB. We can choose the RGB values of the
295
// residual for best compression. The prediction of alpha itself can be
296
// non-zero and must be kept though. We choose RGB of the residual to be
297
// 0.
298
residual &= kMaskAlpha;
299
// Update the source image.
300
current_row[x] = predict & ~kMaskAlpha;
301
// The prediction for the rightmost pixel in a row uses the leftmost
302
// pixel
303
// in that row as its top-right context pixel. Hence if we change the
304
// leftmost pixel of current_row, the corresponding change must be
305
// applied
306
// to upper_row as well where top-right context is being read from.
307
if (x == 0 && y != 0) upper_row[width] = current_row[0];
308
}
309
out[x - x_start] = residual;
310
}
311
}
312
}
313
314
// Accessors to residual histograms.
315
static WEBP_INLINE uint32_t* GetHistoArgb(uint32_t* const all_histos,
316
int subsampling_index, int mode) {
317
return &all_histos[(subsampling_index * kNumPredModes + mode) * HISTO_SIZE];
318
}
319
320
static WEBP_INLINE const uint32_t* GetHistoArgbConst(
321
const uint32_t* const all_histos, int subsampling_index, int mode) {
322
return &all_histos[subsampling_index * kNumPredModes * HISTO_SIZE +
323
mode * HISTO_SIZE];
324
}
325
326
// Accessors to accumulated residual histogram.
327
static WEBP_INLINE uint32_t* GetAccumulatedHisto(uint32_t* all_accumulated,
328
int subsampling_index) {
329
return &all_accumulated[subsampling_index * HISTO_SIZE];
330
}
331
332
// Find and store the best predictor for a tile at subsampling
333
// 'subsampling_index'.
334
static void GetBestPredictorForTile(const uint32_t* const all_argb,
335
int subsampling_index, int tile_x,
336
int tile_y, int tiles_per_row,
337
uint32_t* all_accumulated_argb,
338
uint32_t** const all_modes,
339
uint32_t* const all_pred_histos) {
340
uint32_t* const accumulated_argb =
341
GetAccumulatedHisto(all_accumulated_argb, subsampling_index);
342
uint32_t* const modes = all_modes[subsampling_index];
343
uint32_t* const pred_histos =
344
&all_pred_histos[subsampling_index * kNumPredModes];
345
// Prediction modes of the left and above neighbor tiles.
346
const int left_mode =
347
(tile_x > 0) ? (modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff
348
: 0xff;
349
const int above_mode =
350
(tile_y > 0) ? (modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff
351
: 0xff;
352
int mode;
353
int64_t best_diff = WEBP_INT64_MAX;
354
uint32_t best_mode = 0;
355
const uint32_t* best_histo =
356
GetHistoArgbConst(all_argb, /*subsampling_index=*/0, best_mode);
357
for (mode = 0; mode < kNumPredModes; ++mode) {
358
const uint32_t* const histo_argb =
359
GetHistoArgbConst(all_argb, subsampling_index, mode);
360
const int64_t cur_diff = PredictionCostSpatialHistogram(
361
accumulated_argb, histo_argb, mode, left_mode, above_mode);
362
363
if (cur_diff < best_diff) {
364
best_histo = histo_argb;
365
best_diff = cur_diff;
366
best_mode = mode;
367
}
368
}
369
// Update the accumulated histogram.
370
VP8LAddVectorEq(best_histo, accumulated_argb, HISTO_SIZE);
371
modes[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (best_mode << 8);
372
++pred_histos[best_mode];
373
}
374
375
// Computes the residuals for the different predictors.
376
// If max_quantization > 1, assumes that near lossless processing will be
377
// applied, quantizing residuals to multiples of quantization levels up to
378
// max_quantization (the actual quantization level depends on smoothness near
379
// the given pixel).
380
static void ComputeResidualsForTile(
381
int width, int height, int tile_x, int tile_y, int min_bits,
382
uint32_t update_up_to_index, uint32_t* const all_argb,
383
uint32_t* const argb_scratch, const uint32_t* const argb,
384
int max_quantization, int exact, int used_subtract_green) {
385
const int start_x = tile_x << min_bits;
386
const int start_y = tile_y << min_bits;
387
const int tile_size = 1 << min_bits;
388
const int max_y = GetMin(tile_size, height - start_y);
389
const int max_x = GetMin(tile_size, width - start_x);
390
// Whether there exist columns just outside the tile.
391
const int have_left = (start_x > 0);
392
// Position and size of the strip covering the tile and adjacent columns if
393
// they exist.
394
const int context_start_x = start_x - have_left;
395
#if (WEBP_NEAR_LOSSLESS == 1)
396
const int context_width = max_x + have_left + (max_x < width - start_x);
397
#endif
398
// The width of upper_row and current_row is one pixel larger than image width
399
// to allow the top right pixel to point to the leftmost pixel of the next row
400
// when at the right edge.
401
uint32_t* upper_row = argb_scratch;
402
uint32_t* current_row = upper_row + width + 1;
403
uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
404
int mode;
405
// Need pointers to be able to swap arrays.
406
uint32_t residuals[1 << MAX_TRANSFORM_BITS];
407
assert(max_x <= (1 << MAX_TRANSFORM_BITS));
408
for (mode = 0; mode < kNumPredModes; ++mode) {
409
int relative_y;
410
uint32_t* const histo_argb =
411
GetHistoArgb(all_argb, /*subsampling_index=*/0, mode);
412
if (start_y > 0) {
413
// Read the row above the tile which will become the first upper_row.
414
// Include a pixel to the left if it exists; include a pixel to the right
415
// in all cases (wrapping to the leftmost pixel of the next row if it does
416
// not exist).
417
memcpy(current_row + context_start_x,
418
argb + (start_y - 1) * width + context_start_x,
419
sizeof(*argb) * (max_x + have_left + 1));
420
}
421
for (relative_y = 0; relative_y < max_y; ++relative_y) {
422
const int y = start_y + relative_y;
423
int relative_x;
424
uint32_t* tmp = upper_row;
425
upper_row = current_row;
426
current_row = tmp;
427
// Read current_row. Include a pixel to the left if it exists; include a
428
// pixel to the right in all cases except at the bottom right corner of
429
// the image (wrapping to the leftmost pixel of the next row if it does
430
// not exist in the current row).
431
memcpy(current_row + context_start_x,
432
argb + y * width + context_start_x,
433
sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
434
#if (WEBP_NEAR_LOSSLESS == 1)
435
if (max_quantization > 1 && y >= 1 && y + 1 < height) {
436
MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
437
max_diffs + context_start_x, used_subtract_green);
438
}
439
#endif
440
441
GetResidual(width, height, upper_row, current_row, max_diffs, mode,
442
start_x, start_x + max_x, y, max_quantization, exact,
443
used_subtract_green, residuals);
444
for (relative_x = 0; relative_x < max_x; ++relative_x) {
445
UpdateHisto(histo_argb, residuals[relative_x]);
446
}
447
if (update_up_to_index > 0) {
448
uint32_t subsampling_index;
449
for (subsampling_index = 1; subsampling_index <= update_up_to_index;
450
++subsampling_index) {
451
uint32_t* const super_histo =
452
GetHistoArgb(all_argb, subsampling_index, mode);
453
for (relative_x = 0; relative_x < max_x; ++relative_x) {
454
UpdateHisto(super_histo, residuals[relative_x]);
455
}
456
}
457
}
458
}
459
}
460
}
461
462
// Converts pixels of the image to residuals with respect to predictions.
463
// If max_quantization > 1, applies near lossless processing, quantizing
464
// residuals to multiples of quantization levels up to max_quantization
465
// (the actual quantization level depends on smoothness near the given pixel).
466
static void CopyImageWithPrediction(int width, int height, int bits,
467
const uint32_t* const modes,
468
uint32_t* const argb_scratch,
469
uint32_t* const argb, int low_effort,
470
int max_quantization, int exact,
471
int used_subtract_green) {
472
const int tiles_per_row = VP8LSubSampleSize(width, bits);
473
// The width of upper_row and current_row is one pixel larger than image width
474
// to allow the top right pixel to point to the leftmost pixel of the next row
475
// when at the right edge.
476
uint32_t* upper_row = argb_scratch;
477
uint32_t* current_row = upper_row + width + 1;
478
uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
479
#if (WEBP_NEAR_LOSSLESS == 1)
480
uint8_t* lower_max_diffs = current_max_diffs + width;
481
#endif
482
int y;
483
484
for (y = 0; y < height; ++y) {
485
int x;
486
uint32_t* const tmp32 = upper_row;
487
upper_row = current_row;
488
current_row = tmp32;
489
memcpy(current_row, argb + y * width,
490
sizeof(*argb) * (width + (y + 1 < height)));
491
492
if (low_effort) {
493
PredictBatch(kPredLowEffort, 0, y, width, current_row, upper_row,
494
argb + y * width);
495
} else {
496
#if (WEBP_NEAR_LOSSLESS == 1)
497
if (max_quantization > 1) {
498
// Compute max_diffs for the lower row now, because that needs the
499
// contents of argb for the current row, which we will overwrite with
500
// residuals before proceeding with the next row.
501
uint8_t* const tmp8 = current_max_diffs;
502
current_max_diffs = lower_max_diffs;
503
lower_max_diffs = tmp8;
504
if (y + 2 < height) {
505
MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
506
used_subtract_green);
507
}
508
}
509
#endif
510
for (x = 0; x < width;) {
511
const int mode =
512
(modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
513
int x_end = x + (1 << bits);
514
if (x_end > width) x_end = width;
515
GetResidual(width, height, upper_row, current_row, current_max_diffs,
516
mode, x, x_end, y, max_quantization, exact,
517
used_subtract_green, argb + y * width + x);
518
x = x_end;
519
}
520
}
521
}
522
}
523
524
// Checks whether 'image' can be subsampled by finding the biggest power of 2
525
// squares (defined by 'best_bits') of uniform value it is made out of.
526
void VP8LOptimizeSampling(uint32_t* const image, int full_width,
527
int full_height, int bits, int max_bits,
528
int* best_bits_out) {
529
int width = VP8LSubSampleSize(full_width, bits);
530
int height = VP8LSubSampleSize(full_height, bits);
531
int old_width, x, y, square_size;
532
int best_bits = bits;
533
*best_bits_out = bits;
534
// Check rows first.
535
while (best_bits < max_bits) {
536
const int new_square_size = 1 << (best_bits + 1 - bits);
537
int is_good = 1;
538
square_size = 1 << (best_bits - bits);
539
for (y = 0; y + square_size < height; y += new_square_size) {
540
// Check the first lines of consecutive line groups.
541
if (memcmp(&image[y * width], &image[(y + square_size) * width],
542
width * sizeof(*image)) != 0) {
543
is_good = 0;
544
break;
545
}
546
}
547
if (is_good) {
548
++best_bits;
549
} else {
550
break;
551
}
552
}
553
if (best_bits == bits) return;
554
555
// Check columns.
556
while (best_bits > bits) {
557
int is_good = 1;
558
square_size = 1 << (best_bits - bits);
559
for (y = 0; is_good && y < height; ++y) {
560
for (x = 0; is_good && x < width; x += square_size) {
561
int i;
562
for (i = x + 1; i < GetMin(x + square_size, width); ++i) {
563
if (image[y * width + i] != image[y * width + x]) {
564
is_good = 0;
565
break;
566
}
567
}
568
}
569
}
570
if (is_good) {
571
break;
572
}
573
--best_bits;
574
}
575
if (best_bits == bits) return;
576
577
// Subsample the image.
578
old_width = width;
579
square_size = 1 << (best_bits - bits);
580
width = VP8LSubSampleSize(full_width, best_bits);
581
height = VP8LSubSampleSize(full_height, best_bits);
582
for (y = 0; y < height; ++y) {
583
for (x = 0; x < width; ++x) {
584
image[y * width + x] = image[square_size * (y * old_width + x)];
585
}
586
}
587
*best_bits_out = best_bits;
588
}
589
590
// Computes the best predictor image.
591
// Finds the best predictors per tile. Once done, finds the best predictor image
592
// sampling.
593
// best_bits is set to 0 in case of error.
594
// The following requires some glossary:
595
// - a tile is a square of side 2^min_bits pixels.
596
// - a super-tile of a tile is a square of side 2^bits pixels with bits in
597
// [min_bits+1, max_bits].
598
// - the max-tile of a tile is the square of 2^max_bits pixels containing it.
599
// If this max-tile crosses the border of an image, it is cropped.
600
// - tile, super-tiles and max_tile are aligned on powers of 2 in the original
601
// image.
602
// - coordinates for tile, super-tile, max-tile are respectively named
603
// tile_x, super_tile_x, max_tile_x at their bit scale.
604
// - in the max-tile, a tile has local coordinates (local_tile_x, local_tile_y).
605
// The tiles are processed in the following zigzag order to complete the
606
// super-tiles as soon as possible:
607
// 1 2| 5 6
608
// 3 4| 7 8
609
// --------------
610
// 9 10| 13 14
611
// 11 12| 15 16
612
// When computing the residuals for a tile, the histogram of the above
613
// super-tile is updated. If this super-tile is finished, its histogram is used
614
// to update the histogram of the next super-tile and so on up to the max-tile.
615
static void GetBestPredictorsAndSubSampling(
616
int width, int height, const int min_bits, const int max_bits,
617
uint32_t* const argb_scratch, const uint32_t* const argb,
618
int max_quantization, int exact, int used_subtract_green,
619
const WebPPicture* const pic, int percent_range, int* const percent,
620
uint32_t** const all_modes, int* best_bits, uint32_t** best_mode) {
621
const uint32_t tiles_per_row = VP8LSubSampleSize(width, min_bits);
622
const uint32_t tiles_per_col = VP8LSubSampleSize(height, min_bits);
623
int64_t best_cost;
624
uint32_t subsampling_index;
625
const uint32_t max_subsampling_index = max_bits - min_bits;
626
// Compute the needed memory size for residual histograms, accumulated
627
// residual histograms and predictor histograms.
628
const int num_argb = (max_subsampling_index + 1) * kNumPredModes * HISTO_SIZE;
629
const int num_accumulated_rgb = (max_subsampling_index + 1) * HISTO_SIZE;
630
const int num_predictors = (max_subsampling_index + 1) * kNumPredModes;
631
uint32_t* const raw_data = (uint32_t*)WebPSafeCalloc(
632
num_argb + num_accumulated_rgb + num_predictors, sizeof(uint32_t));
633
uint32_t* const all_argb = raw_data;
634
uint32_t* const all_accumulated_argb = all_argb + num_argb;
635
uint32_t* const all_pred_histos = all_accumulated_argb + num_accumulated_rgb;
636
const int max_tile_size = 1 << max_subsampling_index; // in tile size
637
int percent_start = *percent;
638
// When using the residuals of a tile for its super-tiles, you can either:
639
// - use each residual to update the histogram of the super-tile, with a cost
640
// of 4 * (1<<n)^2 increment operations (4 for the number of channels, and
641
// (1<<n)^2 for the number of pixels in the tile)
642
// - use the histogram of the tile to update the histogram of the super-tile,
643
// with a cost of HISTO_SIZE (1024)
644
// The first method is therefore faster until n==4. 'update_up_to_index'
645
// defines the maximum subsampling_index for which the residuals should be
646
// individually added to the super-tile histogram.
647
const uint32_t update_up_to_index =
648
GetMax(GetMin(4, max_bits), min_bits) - min_bits;
649
// Coordinates in the max-tile in tile units.
650
uint32_t local_tile_x = 0, local_tile_y = 0;
651
uint32_t max_tile_x = 0, max_tile_y = 0;
652
uint32_t tile_x = 0, tile_y = 0;
653
654
*best_bits = 0;
655
*best_mode = NULL;
656
if (raw_data == NULL) return;
657
658
while (tile_y < tiles_per_col) {
659
ComputeResidualsForTile(width, height, tile_x, tile_y, min_bits,
660
update_up_to_index, all_argb, argb_scratch, argb,
661
max_quantization, exact, used_subtract_green);
662
663
// Update all the super-tiles that are complete.
664
subsampling_index = 0;
665
while (1) {
666
const uint32_t super_tile_x = tile_x >> subsampling_index;
667
const uint32_t super_tile_y = tile_y >> subsampling_index;
668
const uint32_t super_tiles_per_row =
669
VP8LSubSampleSize(width, min_bits + subsampling_index);
670
GetBestPredictorForTile(all_argb, subsampling_index, super_tile_x,
671
super_tile_y, super_tiles_per_row,
672
all_accumulated_argb, all_modes, all_pred_histos);
673
if (subsampling_index == max_subsampling_index) break;
674
675
// Update the following super-tile histogram if it has not been updated
676
// yet.
677
++subsampling_index;
678
if (subsampling_index > update_up_to_index &&
679
subsampling_index <= max_subsampling_index) {
680
VP8LAddVectorEq(
681
GetHistoArgbConst(all_argb, subsampling_index - 1, /*mode=*/0),
682
GetHistoArgb(all_argb, subsampling_index, /*mode=*/0),
683
HISTO_SIZE * kNumPredModes);
684
}
685
// Check whether the super-tile is not complete (if the smallest tile
686
// is not at the end of a line/column or at the beginning of a super-tile
687
// of size (1 << subsampling_index)).
688
if (!((tile_x == (tiles_per_row - 1) ||
689
(local_tile_x + 1) % (1 << subsampling_index) == 0) &&
690
(tile_y == (tiles_per_col - 1) ||
691
(local_tile_y + 1) % (1 << subsampling_index) == 0))) {
692
--subsampling_index;
693
// subsampling_index now is the index of the last finished super-tile.
694
break;
695
}
696
}
697
// Reset all the histograms belonging to finished tiles.
698
memset(all_argb, 0,
699
HISTO_SIZE * kNumPredModes * (subsampling_index + 1) *
700
sizeof(*all_argb));
701
702
if (subsampling_index == max_subsampling_index) {
703
// If a new max-tile is started.
704
if (tile_x == (tiles_per_row - 1)) {
705
max_tile_x = 0;
706
++max_tile_y;
707
} else {
708
++max_tile_x;
709
}
710
local_tile_x = 0;
711
local_tile_y = 0;
712
} else {
713
// Proceed with the Z traversal.
714
uint32_t coord_x = local_tile_x >> subsampling_index;
715
uint32_t coord_y = local_tile_y >> subsampling_index;
716
if (tile_x == (tiles_per_row - 1) && coord_x % 2 == 0) {
717
++coord_y;
718
} else {
719
if (coord_x % 2 == 0) {
720
++coord_x;
721
} else {
722
// Z traversal.
723
++coord_y;
724
--coord_x;
725
}
726
}
727
local_tile_x = coord_x << subsampling_index;
728
local_tile_y = coord_y << subsampling_index;
729
}
730
tile_x = max_tile_x * max_tile_size + local_tile_x;
731
tile_y = max_tile_y * max_tile_size + local_tile_y;
732
733
if (tile_x == 0 &&
734
!WebPReportProgress(
735
pic, percent_start + percent_range * tile_y / tiles_per_col,
736
percent)) {
737
WebPSafeFree(raw_data);
738
return;
739
}
740
}
741
742
// Figure out the best sampling.
743
best_cost = WEBP_INT64_MAX;
744
for (subsampling_index = 0; subsampling_index <= max_subsampling_index;
745
++subsampling_index) {
746
int plane;
747
const uint32_t* const accumulated =
748
GetAccumulatedHisto(all_accumulated_argb, subsampling_index);
749
int64_t cost = VP8LShannonEntropy(
750
&all_pred_histos[subsampling_index * kNumPredModes], kNumPredModes);
751
for (plane = 0; plane < 4; ++plane) {
752
cost += VP8LShannonEntropy(&accumulated[plane * 256], 256);
753
}
754
if (cost < best_cost) {
755
best_cost = cost;
756
*best_bits = min_bits + subsampling_index;
757
*best_mode = all_modes[subsampling_index];
758
}
759
}
760
761
WebPSafeFree(raw_data);
762
763
VP8LOptimizeSampling(*best_mode, width, height, *best_bits,
764
MAX_TRANSFORM_BITS, best_bits);
765
}
766
767
// Finds the best predictor for each tile, and converts the image to residuals
768
// with respect to predictions. If near_lossless_quality < 100, applies
769
// near lossless processing, shaving off more bits of residuals for lower
770
// qualities.
771
int VP8LResidualImage(int width, int height, int min_bits, int max_bits,
772
int low_effort, uint32_t* const argb,
773
uint32_t* const argb_scratch, uint32_t* const image,
774
int near_lossless_quality, int exact,
775
int used_subtract_green, const WebPPicture* const pic,
776
int percent_range, int* const percent,
777
int* const best_bits) {
778
int percent_start = *percent;
779
const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
780
if (low_effort) {
781
const int tiles_per_row = VP8LSubSampleSize(width, max_bits);
782
const int tiles_per_col = VP8LSubSampleSize(height, max_bits);
783
int i;
784
for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
785
image[i] = ARGB_BLACK | (kPredLowEffort << 8);
786
}
787
*best_bits = max_bits;
788
} else {
789
// Allocate data to try all samplings from min_bits to max_bits.
790
int bits;
791
uint32_t sum_num_pixels = 0u;
792
uint32_t *modes_raw, *best_mode;
793
uint32_t* modes[MAX_TRANSFORM_BITS + 1];
794
uint32_t num_pixels[MAX_TRANSFORM_BITS + 1];
795
for (bits = min_bits; bits <= max_bits; ++bits) {
796
const int tiles_per_row = VP8LSubSampleSize(width, bits);
797
const int tiles_per_col = VP8LSubSampleSize(height, bits);
798
num_pixels[bits] = tiles_per_row * tiles_per_col;
799
sum_num_pixels += num_pixels[bits];
800
}
801
modes_raw = (uint32_t*)WebPSafeMalloc(sum_num_pixels, sizeof(*modes_raw));
802
if (modes_raw == NULL) return 0;
803
// Have modes point to the right global memory modes_raw.
804
modes[min_bits] = modes_raw;
805
for (bits = min_bits + 1; bits <= max_bits; ++bits) {
806
modes[bits] = modes[bits - 1] + num_pixels[bits - 1];
807
}
808
// Find the best sampling.
809
GetBestPredictorsAndSubSampling(
810
width, height, min_bits, max_bits, argb_scratch, argb, max_quantization,
811
exact, used_subtract_green, pic, percent_range, percent,
812
&modes[min_bits], best_bits, &best_mode);
813
if (*best_bits == 0) {
814
WebPSafeFree(modes_raw);
815
return 0;
816
}
817
// Keep the best predictor image.
818
memcpy(image, best_mode,
819
VP8LSubSampleSize(width, *best_bits) *
820
VP8LSubSampleSize(height, *best_bits) * sizeof(*image));
821
WebPSafeFree(modes_raw);
822
}
823
824
CopyImageWithPrediction(width, height, *best_bits, image, argb_scratch, argb,
825
low_effort, max_quantization, exact,
826
used_subtract_green);
827
return WebPReportProgress(pic, percent_start + percent_range, percent);
828
}
829
830
//------------------------------------------------------------------------------
831
// Color transform functions.
832
833
static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) {
834
m->green_to_red_ = 0;
835
m->green_to_blue_ = 0;
836
m->red_to_blue_ = 0;
837
}
838
839
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
840
VP8LMultipliers* const m) {
841
m->green_to_red_ = (color_code >> 0) & 0xff;
842
m->green_to_blue_ = (color_code >> 8) & 0xff;
843
m->red_to_blue_ = (color_code >> 16) & 0xff;
844
}
845
846
static WEBP_INLINE uint32_t MultipliersToColorCode(
847
const VP8LMultipliers* const m) {
848
return 0xff000000u |
849
((uint32_t)(m->red_to_blue_) << 16) |
850
((uint32_t)(m->green_to_blue_) << 8) |
851
m->green_to_red_;
852
}
853
854
static int64_t PredictionCostCrossColor(const uint32_t accumulated[256],
855
const uint32_t counts[256]) {
856
// Favor low entropy, locally and globally.
857
// Favor small absolute values for PredictionCostSpatial
858
static const uint64_t kExpValue = 240;
859
return (int64_t)VP8LCombinedShannonEntropy(counts, accumulated) +
860
PredictionCostBias(counts, 3, kExpValue);
861
}
862
863
static int64_t GetPredictionCostCrossColorRed(
864
const uint32_t* argb, int stride, int tile_width, int tile_height,
865
VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red,
866
const uint32_t accumulated_red_histo[256]) {
867
uint32_t histo[256] = { 0 };
868
int64_t cur_diff;
869
870
VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height,
871
green_to_red, histo);
872
873
cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo);
874
if ((uint8_t)green_to_red == prev_x.green_to_red_) {
875
// favor keeping the areas locally similar
876
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
877
}
878
if ((uint8_t)green_to_red == prev_y.green_to_red_) {
879
// favor keeping the areas locally similar
880
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
881
}
882
if (green_to_red == 0) {
883
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
884
}
885
return cur_diff;
886
}
887
888
static void GetBestGreenToRed(const uint32_t* argb, int stride, int tile_width,
889
int tile_height, VP8LMultipliers prev_x,
890
VP8LMultipliers prev_y, int quality,
891
const uint32_t accumulated_red_histo[256],
892
VP8LMultipliers* const best_tx) {
893
const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6]
894
int green_to_red_best = 0;
895
int iter, offset;
896
int64_t best_diff = GetPredictionCostCrossColorRed(
897
argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_red_best,
898
accumulated_red_histo);
899
for (iter = 0; iter < kMaxIters; ++iter) {
900
// ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to
901
// one in color computation. Having initial delta here as 1 is sufficient
902
// to explore the range of (-2, 2).
903
const int delta = 32 >> iter;
904
// Try a negative and a positive delta from the best known value.
905
for (offset = -delta; offset <= delta; offset += 2 * delta) {
906
const int green_to_red_cur = offset + green_to_red_best;
907
const int64_t cur_diff = GetPredictionCostCrossColorRed(
908
argb, stride, tile_width, tile_height, prev_x, prev_y,
909
green_to_red_cur, accumulated_red_histo);
910
if (cur_diff < best_diff) {
911
best_diff = cur_diff;
912
green_to_red_best = green_to_red_cur;
913
}
914
}
915
}
916
best_tx->green_to_red_ = (green_to_red_best & 0xff);
917
}
918
919
static int64_t GetPredictionCostCrossColorBlue(
920
const uint32_t* argb, int stride, int tile_width, int tile_height,
921
VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_blue,
922
int red_to_blue, const uint32_t accumulated_blue_histo[256]) {
923
uint32_t histo[256] = { 0 };
924
int64_t cur_diff;
925
926
VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height,
927
green_to_blue, red_to_blue, histo);
928
929
cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo);
930
if ((uint8_t)green_to_blue == prev_x.green_to_blue_) {
931
// favor keeping the areas locally similar
932
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
933
}
934
if ((uint8_t)green_to_blue == prev_y.green_to_blue_) {
935
// favor keeping the areas locally similar
936
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
937
}
938
if ((uint8_t)red_to_blue == prev_x.red_to_blue_) {
939
// favor keeping the areas locally similar
940
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
941
}
942
if ((uint8_t)red_to_blue == prev_y.red_to_blue_) {
943
// favor keeping the areas locally similar
944
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
945
}
946
if (green_to_blue == 0) {
947
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
948
}
949
if (red_to_blue == 0) {
950
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
951
}
952
return cur_diff;
953
}
954
955
#define kGreenRedToBlueNumAxis 8
956
#define kGreenRedToBlueMaxIters 7
957
static void GetBestGreenRedToBlue(const uint32_t* argb, int stride,
958
int tile_width, int tile_height,
959
VP8LMultipliers prev_x,
960
VP8LMultipliers prev_y, int quality,
961
const uint32_t accumulated_blue_histo[256],
962
VP8LMultipliers* const best_tx) {
963
const int8_t offset[kGreenRedToBlueNumAxis][2] =
964
{{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
965
const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 };
966
const int iters =
967
(quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4;
968
int green_to_blue_best = 0;
969
int red_to_blue_best = 0;
970
int iter;
971
// Initial value at origin:
972
int64_t best_diff = GetPredictionCostCrossColorBlue(
973
argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_blue_best,
974
red_to_blue_best, accumulated_blue_histo);
975
for (iter = 0; iter < iters; ++iter) {
976
const int delta = delta_lut[iter];
977
int axis;
978
for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) {
979
const int green_to_blue_cur =
980
offset[axis][0] * delta + green_to_blue_best;
981
const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best;
982
const int64_t cur_diff = GetPredictionCostCrossColorBlue(
983
argb, stride, tile_width, tile_height, prev_x, prev_y,
984
green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo);
985
if (cur_diff < best_diff) {
986
best_diff = cur_diff;
987
green_to_blue_best = green_to_blue_cur;
988
red_to_blue_best = red_to_blue_cur;
989
}
990
if (quality < 25 && iter == 4) {
991
// Only axis aligned diffs for lower quality.
992
break; // next iter.
993
}
994
}
995
if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) {
996
// Further iterations would not help.
997
break; // out of iter-loop.
998
}
999
}
1000
best_tx->green_to_blue_ = green_to_blue_best & 0xff;
1001
best_tx->red_to_blue_ = red_to_blue_best & 0xff;
1002
}
1003
#undef kGreenRedToBlueMaxIters
1004
#undef kGreenRedToBlueNumAxis
1005
1006
static VP8LMultipliers GetBestColorTransformForTile(
1007
int tile_x, int tile_y, int bits, VP8LMultipliers prev_x,
1008
VP8LMultipliers prev_y, int quality, int xsize, int ysize,
1009
const uint32_t accumulated_red_histo[256],
1010
const uint32_t accumulated_blue_histo[256], const uint32_t* const argb) {
1011
const int max_tile_size = 1 << bits;
1012
const int tile_y_offset = tile_y * max_tile_size;
1013
const int tile_x_offset = tile_x * max_tile_size;
1014
const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize);
1015
const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize);
1016
const int tile_width = all_x_max - tile_x_offset;
1017
const int tile_height = all_y_max - tile_y_offset;
1018
const uint32_t* const tile_argb = argb + tile_y_offset * xsize
1019
+ tile_x_offset;
1020
VP8LMultipliers best_tx;
1021
MultipliersClear(&best_tx);
1022
1023
GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height,
1024
prev_x, prev_y, quality, accumulated_red_histo, &best_tx);
1025
GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height,
1026
prev_x, prev_y, quality, accumulated_blue_histo,
1027
&best_tx);
1028
return best_tx;
1029
}
1030
1031
static void CopyTileWithColorTransform(int xsize, int ysize,
1032
int tile_x, int tile_y,
1033
int max_tile_size,
1034
VP8LMultipliers color_transform,
1035
uint32_t* argb) {
1036
const int xscan = GetMin(max_tile_size, xsize - tile_x);
1037
int yscan = GetMin(max_tile_size, ysize - tile_y);
1038
argb += tile_y * xsize + tile_x;
1039
while (yscan-- > 0) {
1040
VP8LTransformColor(&color_transform, argb, xscan);
1041
argb += xsize;
1042
}
1043
}
1044
1045
int VP8LColorSpaceTransform(int width, int height, int bits, int quality,
1046
uint32_t* const argb, uint32_t* image,
1047
const WebPPicture* const pic, int percent_range,
1048
int* const percent, int* const best_bits) {
1049
const int max_tile_size = 1 << bits;
1050
const int tile_xsize = VP8LSubSampleSize(width, bits);
1051
const int tile_ysize = VP8LSubSampleSize(height, bits);
1052
int percent_start = *percent;
1053
uint32_t accumulated_red_histo[256] = { 0 };
1054
uint32_t accumulated_blue_histo[256] = { 0 };
1055
int tile_x, tile_y;
1056
VP8LMultipliers prev_x, prev_y;
1057
MultipliersClear(&prev_y);
1058
MultipliersClear(&prev_x);
1059
for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
1060
for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
1061
int y;
1062
const int tile_x_offset = tile_x * max_tile_size;
1063
const int tile_y_offset = tile_y * max_tile_size;
1064
const int all_x_max = GetMin(tile_x_offset + max_tile_size, width);
1065
const int all_y_max = GetMin(tile_y_offset + max_tile_size, height);
1066
const int offset = tile_y * tile_xsize + tile_x;
1067
if (tile_y != 0) {
1068
ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y);
1069
}
1070
prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits,
1071
prev_x, prev_y,
1072
quality, width, height,
1073
accumulated_red_histo,
1074
accumulated_blue_histo,
1075
argb);
1076
image[offset] = MultipliersToColorCode(&prev_x);
1077
CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset,
1078
max_tile_size, prev_x, argb);
1079
1080
// Gather accumulated histogram data.
1081
for (y = tile_y_offset; y < all_y_max; ++y) {
1082
int ix = y * width + tile_x_offset;
1083
const int ix_end = ix + all_x_max - tile_x_offset;
1084
for (; ix < ix_end; ++ix) {
1085
const uint32_t pix = argb[ix];
1086
if (ix >= 2 &&
1087
pix == argb[ix - 2] &&
1088
pix == argb[ix - 1]) {
1089
continue; // repeated pixels are handled by backward references
1090
}
1091
if (ix >= width + 2 &&
1092
argb[ix - 2] == argb[ix - width - 2] &&
1093
argb[ix - 1] == argb[ix - width - 1] &&
1094
pix == argb[ix - width]) {
1095
continue; // repeated pixels are handled by backward references
1096
}
1097
++accumulated_red_histo[(pix >> 16) & 0xff];
1098
++accumulated_blue_histo[(pix >> 0) & 0xff];
1099
}
1100
}
1101
}
1102
if (!WebPReportProgress(
1103
pic, percent_start + percent_range * tile_y / tile_ysize,
1104
percent)) {
1105
return 0;
1106
}
1107
}
1108
VP8LOptimizeSampling(image, width, height, bits, MAX_TRANSFORM_BITS,
1109
best_bits);
1110
return 1;
1111
}
1112
1113