Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/enc/vp8l_enc.c
9913 views
1
// Copyright 2012 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// main entry for the lossless encoder.
11
//
12
// Author: Vikas Arora ([email protected])
13
//
14
15
#include <assert.h>
16
#include <stdlib.h>
17
18
#include "src/dsp/lossless.h"
19
#include "src/dsp/lossless_common.h"
20
#include "src/enc/backward_references_enc.h"
21
#include "src/enc/histogram_enc.h"
22
#include "src/enc/vp8i_enc.h"
23
#include "src/enc/vp8li_enc.h"
24
#include "src/utils/bit_writer_utils.h"
25
#include "src/utils/huffman_encode_utils.h"
26
#include "src/utils/palette.h"
27
#include "src/utils/utils.h"
28
#include "src/webp/encode.h"
29
#include "src/webp/format_constants.h"
30
31
// Maximum number of histogram images (sub-blocks).
32
#define MAX_HUFF_IMAGE_SIZE 2600
33
#define MAX_HUFFMAN_BITS (MIN_HUFFMAN_BITS + (1 << NUM_HUFFMAN_BITS) - 1)
34
// Empirical value for which it becomes too computationally expensive to
35
// compute the best predictor image.
36
#define MAX_PREDICTOR_IMAGE_SIZE (1 << 14)
37
38
// -----------------------------------------------------------------------------
39
// Palette
40
41
// These five modes are evaluated and their respective entropy is computed.
42
typedef enum {
43
kDirect = 0,
44
kSpatial = 1,
45
kSubGreen = 2,
46
kSpatialSubGreen = 3,
47
kPalette = 4,
48
kPaletteAndSpatial = 5,
49
kNumEntropyIx = 6
50
} EntropyIx;
51
52
typedef enum {
53
kHistoAlpha = 0,
54
kHistoAlphaPred,
55
kHistoGreen,
56
kHistoGreenPred,
57
kHistoRed,
58
kHistoRedPred,
59
kHistoBlue,
60
kHistoBluePred,
61
kHistoRedSubGreen,
62
kHistoRedPredSubGreen,
63
kHistoBlueSubGreen,
64
kHistoBluePredSubGreen,
65
kHistoPalette,
66
kHistoTotal // Must be last.
67
} HistoIx;
68
69
static void AddSingleSubGreen(uint32_t p,
70
uint32_t* const r, uint32_t* const b) {
71
const int green = (int)p >> 8; // The upper bits are masked away later.
72
++r[(((int)p >> 16) - green) & 0xff];
73
++b[(((int)p >> 0) - green) & 0xff];
74
}
75
76
static void AddSingle(uint32_t p,
77
uint32_t* const a, uint32_t* const r,
78
uint32_t* const g, uint32_t* const b) {
79
++a[(p >> 24) & 0xff];
80
++r[(p >> 16) & 0xff];
81
++g[(p >> 8) & 0xff];
82
++b[(p >> 0) & 0xff];
83
}
84
85
static WEBP_INLINE uint32_t HashPix(uint32_t pix) {
86
// Note that masking with 0xffffffffu is for preventing an
87
// 'unsigned int overflow' warning. Doesn't impact the compiled code.
88
return ((((uint64_t)pix + (pix >> 19)) * 0x39c5fba7ull) & 0xffffffffu) >> 24;
89
}
90
91
static int AnalyzeEntropy(const uint32_t* argb,
92
int width, int height, int argb_stride,
93
int use_palette,
94
int palette_size, int transform_bits,
95
EntropyIx* const min_entropy_ix,
96
int* const red_and_blue_always_zero) {
97
// Allocate histogram set with cache_bits = 0.
98
uint32_t* histo;
99
100
if (use_palette && palette_size <= 16) {
101
// In the case of small palettes, we pack 2, 4 or 8 pixels together. In
102
// practice, small palettes are better than any other transform.
103
*min_entropy_ix = kPalette;
104
*red_and_blue_always_zero = 1;
105
return 1;
106
}
107
histo = (uint32_t*)WebPSafeCalloc(kHistoTotal, sizeof(*histo) * 256);
108
if (histo != NULL) {
109
int i, x, y;
110
const uint32_t* prev_row = NULL;
111
const uint32_t* curr_row = argb;
112
uint32_t pix_prev = argb[0]; // Skip the first pixel.
113
for (y = 0; y < height; ++y) {
114
for (x = 0; x < width; ++x) {
115
const uint32_t pix = curr_row[x];
116
const uint32_t pix_diff = VP8LSubPixels(pix, pix_prev);
117
pix_prev = pix;
118
if ((pix_diff == 0) || (prev_row != NULL && pix == prev_row[x])) {
119
continue;
120
}
121
AddSingle(pix,
122
&histo[kHistoAlpha * 256],
123
&histo[kHistoRed * 256],
124
&histo[kHistoGreen * 256],
125
&histo[kHistoBlue * 256]);
126
AddSingle(pix_diff,
127
&histo[kHistoAlphaPred * 256],
128
&histo[kHistoRedPred * 256],
129
&histo[kHistoGreenPred * 256],
130
&histo[kHistoBluePred * 256]);
131
AddSingleSubGreen(pix,
132
&histo[kHistoRedSubGreen * 256],
133
&histo[kHistoBlueSubGreen * 256]);
134
AddSingleSubGreen(pix_diff,
135
&histo[kHistoRedPredSubGreen * 256],
136
&histo[kHistoBluePredSubGreen * 256]);
137
{
138
// Approximate the palette by the entropy of the multiplicative hash.
139
const uint32_t hash = HashPix(pix);
140
++histo[kHistoPalette * 256 + hash];
141
}
142
}
143
prev_row = curr_row;
144
curr_row += argb_stride;
145
}
146
{
147
uint64_t entropy_comp[kHistoTotal];
148
uint64_t entropy[kNumEntropyIx];
149
int k;
150
int last_mode_to_analyze = use_palette ? kPalette : kSpatialSubGreen;
151
int j;
152
// Let's add one zero to the predicted histograms. The zeros are removed
153
// too efficiently by the pix_diff == 0 comparison, at least one of the
154
// zeros is likely to exist.
155
++histo[kHistoRedPredSubGreen * 256];
156
++histo[kHistoBluePredSubGreen * 256];
157
++histo[kHistoRedPred * 256];
158
++histo[kHistoGreenPred * 256];
159
++histo[kHistoBluePred * 256];
160
++histo[kHistoAlphaPred * 256];
161
162
for (j = 0; j < kHistoTotal; ++j) {
163
entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256);
164
}
165
entropy[kDirect] = entropy_comp[kHistoAlpha] +
166
entropy_comp[kHistoRed] +
167
entropy_comp[kHistoGreen] +
168
entropy_comp[kHistoBlue];
169
entropy[kSpatial] = entropy_comp[kHistoAlphaPred] +
170
entropy_comp[kHistoRedPred] +
171
entropy_comp[kHistoGreenPred] +
172
entropy_comp[kHistoBluePred];
173
entropy[kSubGreen] = entropy_comp[kHistoAlpha] +
174
entropy_comp[kHistoRedSubGreen] +
175
entropy_comp[kHistoGreen] +
176
entropy_comp[kHistoBlueSubGreen];
177
entropy[kSpatialSubGreen] = entropy_comp[kHistoAlphaPred] +
178
entropy_comp[kHistoRedPredSubGreen] +
179
entropy_comp[kHistoGreenPred] +
180
entropy_comp[kHistoBluePredSubGreen];
181
entropy[kPalette] = entropy_comp[kHistoPalette];
182
183
// When including transforms, there is an overhead in bits from
184
// storing them. This overhead is small but matters for small images.
185
// For spatial, there are 14 transformations.
186
entropy[kSpatial] += (uint64_t)VP8LSubSampleSize(width, transform_bits) *
187
VP8LSubSampleSize(height, transform_bits) *
188
VP8LFastLog2(14);
189
// For color transforms: 24 as only 3 channels are considered in a
190
// ColorTransformElement.
191
entropy[kSpatialSubGreen] +=
192
(uint64_t)VP8LSubSampleSize(width, transform_bits) *
193
VP8LSubSampleSize(height, transform_bits) * VP8LFastLog2(24);
194
// For palettes, add the cost of storing the palette.
195
// We empirically estimate the cost of a compressed entry as 8 bits.
196
// The palette is differential-coded when compressed hence a much
197
// lower cost than sizeof(uint32_t)*8.
198
entropy[kPalette] += (palette_size * 8ull) << LOG_2_PRECISION_BITS;
199
200
*min_entropy_ix = kDirect;
201
for (k = kDirect + 1; k <= last_mode_to_analyze; ++k) {
202
if (entropy[*min_entropy_ix] > entropy[k]) {
203
*min_entropy_ix = (EntropyIx)k;
204
}
205
}
206
assert((int)*min_entropy_ix <= last_mode_to_analyze);
207
*red_and_blue_always_zero = 1;
208
// Let's check if the histogram of the chosen entropy mode has
209
// non-zero red and blue values. If all are zero, we can later skip
210
// the cross color optimization.
211
{
212
static const uint8_t kHistoPairs[5][2] = {
213
{ kHistoRed, kHistoBlue },
214
{ kHistoRedPred, kHistoBluePred },
215
{ kHistoRedSubGreen, kHistoBlueSubGreen },
216
{ kHistoRedPredSubGreen, kHistoBluePredSubGreen },
217
{ kHistoRed, kHistoBlue }
218
};
219
const uint32_t* const red_histo =
220
&histo[256 * kHistoPairs[*min_entropy_ix][0]];
221
const uint32_t* const blue_histo =
222
&histo[256 * kHistoPairs[*min_entropy_ix][1]];
223
for (i = 1; i < 256; ++i) {
224
if ((red_histo[i] | blue_histo[i]) != 0) {
225
*red_and_blue_always_zero = 0;
226
break;
227
}
228
}
229
}
230
}
231
WebPSafeFree(histo);
232
return 1;
233
} else {
234
return 0;
235
}
236
}
237
238
// Clamp histogram and transform bits.
239
static int ClampBits(int width, int height, int bits, int min_bits,
240
int max_bits, int image_size_max) {
241
int image_size;
242
bits = (bits < min_bits) ? min_bits : (bits > max_bits) ? max_bits : bits;
243
image_size = VP8LSubSampleSize(width, bits) * VP8LSubSampleSize(height, bits);
244
while (bits < max_bits && image_size > image_size_max) {
245
++bits;
246
image_size =
247
VP8LSubSampleSize(width, bits) * VP8LSubSampleSize(height, bits);
248
}
249
// In case the bits reduce the image too much, choose the smallest value
250
// setting the histogram image size to 1.
251
while (bits > min_bits && image_size == 1) {
252
image_size = VP8LSubSampleSize(width, bits - 1) *
253
VP8LSubSampleSize(height, bits - 1);
254
if (image_size != 1) break;
255
--bits;
256
}
257
return bits;
258
}
259
260
static int GetHistoBits(int method, int use_palette, int width, int height) {
261
// Make tile size a function of encoding method (Range: 0 to 6).
262
const int histo_bits = (use_palette ? 9 : 7) - method;
263
return ClampBits(width, height, histo_bits, MIN_HUFFMAN_BITS,
264
MAX_HUFFMAN_BITS, MAX_HUFF_IMAGE_SIZE);
265
}
266
267
static int GetTransformBits(int method, int histo_bits) {
268
const int max_transform_bits = (method < 4) ? 6 : (method > 4) ? 4 : 5;
269
const int res =
270
(histo_bits > max_transform_bits) ? max_transform_bits : histo_bits;
271
assert(res <= MAX_TRANSFORM_BITS);
272
return res;
273
}
274
275
// Set of parameters to be used in each iteration of the cruncher.
276
#define CRUNCH_SUBCONFIGS_MAX 2
277
typedef struct {
278
int lz77_;
279
int do_no_cache_;
280
} CrunchSubConfig;
281
typedef struct {
282
int entropy_idx_;
283
PaletteSorting palette_sorting_type_;
284
CrunchSubConfig sub_configs_[CRUNCH_SUBCONFIGS_MAX];
285
int sub_configs_size_;
286
} CrunchConfig;
287
288
// +2 because we add a palette sorting configuration for kPalette and
289
// kPaletteAndSpatial.
290
#define CRUNCH_CONFIGS_MAX (kNumEntropyIx + 2 * kPaletteSortingNum)
291
292
static int EncoderAnalyze(VP8LEncoder* const enc,
293
CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX],
294
int* const crunch_configs_size,
295
int* const red_and_blue_always_zero) {
296
const WebPPicture* const pic = enc->pic_;
297
const int width = pic->width;
298
const int height = pic->height;
299
const WebPConfig* const config = enc->config_;
300
const int method = config->method;
301
const int low_effort = (config->method == 0);
302
int i;
303
int use_palette, transform_bits;
304
int n_lz77s;
305
// If set to 0, analyze the cache with the computed cache value. If 1, also
306
// analyze with no-cache.
307
int do_no_cache = 0;
308
assert(pic != NULL && pic->argb != NULL);
309
310
// Check whether a palette is possible.
311
enc->palette_size_ = GetColorPalette(pic, enc->palette_sorted_);
312
use_palette = (enc->palette_size_ <= MAX_PALETTE_SIZE);
313
if (!use_palette) {
314
enc->palette_size_ = 0;
315
}
316
317
// Empirical bit sizes.
318
enc->histo_bits_ = GetHistoBits(method, use_palette,
319
pic->width, pic->height);
320
transform_bits = GetTransformBits(method, enc->histo_bits_);
321
enc->predictor_transform_bits_ = transform_bits;
322
enc->cross_color_transform_bits_ = transform_bits;
323
324
if (low_effort) {
325
// AnalyzeEntropy is somewhat slow.
326
crunch_configs[0].entropy_idx_ = use_palette ? kPalette : kSpatialSubGreen;
327
crunch_configs[0].palette_sorting_type_ =
328
use_palette ? kSortedDefault : kUnusedPalette;
329
n_lz77s = 1;
330
*crunch_configs_size = 1;
331
} else {
332
EntropyIx min_entropy_ix;
333
// Try out multiple LZ77 on images with few colors.
334
n_lz77s = (enc->palette_size_ > 0 && enc->palette_size_ <= 16) ? 2 : 1;
335
if (!AnalyzeEntropy(pic->argb, width, height, pic->argb_stride, use_palette,
336
enc->palette_size_, transform_bits, &min_entropy_ix,
337
red_and_blue_always_zero)) {
338
return 0;
339
}
340
if (method == 6 && config->quality == 100) {
341
do_no_cache = 1;
342
// Go brute force on all transforms.
343
*crunch_configs_size = 0;
344
for (i = 0; i < kNumEntropyIx; ++i) {
345
// We can only apply kPalette or kPaletteAndSpatial if we can indeed use
346
// a palette.
347
if ((i != kPalette && i != kPaletteAndSpatial) || use_palette) {
348
assert(*crunch_configs_size < CRUNCH_CONFIGS_MAX);
349
if (use_palette && (i == kPalette || i == kPaletteAndSpatial)) {
350
int sorting_method;
351
for (sorting_method = 0; sorting_method < kPaletteSortingNum;
352
++sorting_method) {
353
const PaletteSorting typed_sorting_method =
354
(PaletteSorting)sorting_method;
355
// TODO(vrabaud) kSortedDefault should be tested. It is omitted
356
// for now for backward compatibility.
357
if (typed_sorting_method == kUnusedPalette ||
358
typed_sorting_method == kSortedDefault) {
359
continue;
360
}
361
crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
362
crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
363
typed_sorting_method;
364
++*crunch_configs_size;
365
}
366
} else {
367
crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
368
crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
369
kUnusedPalette;
370
++*crunch_configs_size;
371
}
372
}
373
}
374
} else {
375
// Only choose the guessed best transform.
376
*crunch_configs_size = 1;
377
crunch_configs[0].entropy_idx_ = min_entropy_ix;
378
crunch_configs[0].palette_sorting_type_ =
379
use_palette ? kMinimizeDelta : kUnusedPalette;
380
if (config->quality >= 75 && method == 5) {
381
// Test with and without color cache.
382
do_no_cache = 1;
383
// If we have a palette, also check in combination with spatial.
384
if (min_entropy_ix == kPalette) {
385
*crunch_configs_size = 2;
386
crunch_configs[1].entropy_idx_ = kPaletteAndSpatial;
387
crunch_configs[1].palette_sorting_type_ = kMinimizeDelta;
388
}
389
}
390
}
391
}
392
// Fill in the different LZ77s.
393
assert(n_lz77s <= CRUNCH_SUBCONFIGS_MAX);
394
for (i = 0; i < *crunch_configs_size; ++i) {
395
int j;
396
for (j = 0; j < n_lz77s; ++j) {
397
assert(j < CRUNCH_SUBCONFIGS_MAX);
398
crunch_configs[i].sub_configs_[j].lz77_ =
399
(j == 0) ? kLZ77Standard | kLZ77RLE : kLZ77Box;
400
crunch_configs[i].sub_configs_[j].do_no_cache_ = do_no_cache;
401
}
402
crunch_configs[i].sub_configs_size_ = n_lz77s;
403
}
404
return 1;
405
}
406
407
static int EncoderInit(VP8LEncoder* const enc) {
408
const WebPPicture* const pic = enc->pic_;
409
const int width = pic->width;
410
const int height = pic->height;
411
const int pix_cnt = width * height;
412
// we round the block size up, so we're guaranteed to have
413
// at most MAX_REFS_BLOCK_PER_IMAGE blocks used:
414
const int refs_block_size = (pix_cnt - 1) / MAX_REFS_BLOCK_PER_IMAGE + 1;
415
int i;
416
if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0;
417
418
for (i = 0; i < 4; ++i) VP8LBackwardRefsInit(&enc->refs_[i], refs_block_size);
419
420
return 1;
421
}
422
423
// Returns false in case of memory error.
424
static int GetHuffBitLengthsAndCodes(
425
const VP8LHistogramSet* const histogram_image,
426
HuffmanTreeCode* const huffman_codes) {
427
int i, k;
428
int ok = 0;
429
uint64_t total_length_size = 0;
430
uint8_t* mem_buf = NULL;
431
const int histogram_image_size = histogram_image->size;
432
int max_num_symbols = 0;
433
uint8_t* buf_rle = NULL;
434
HuffmanTree* huff_tree = NULL;
435
436
// Iterate over all histograms and get the aggregate number of codes used.
437
for (i = 0; i < histogram_image_size; ++i) {
438
const VP8LHistogram* const histo = histogram_image->histograms[i];
439
HuffmanTreeCode* const codes = &huffman_codes[5 * i];
440
assert(histo != NULL);
441
for (k = 0; k < 5; ++k) {
442
const int num_symbols =
443
(k == 0) ? VP8LHistogramNumCodes(histo->palette_code_bits_) :
444
(k == 4) ? NUM_DISTANCE_CODES : 256;
445
codes[k].num_symbols = num_symbols;
446
total_length_size += num_symbols;
447
}
448
}
449
450
// Allocate and Set Huffman codes.
451
{
452
uint16_t* codes;
453
uint8_t* lengths;
454
mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size,
455
sizeof(*lengths) + sizeof(*codes));
456
if (mem_buf == NULL) goto End;
457
458
codes = (uint16_t*)mem_buf;
459
lengths = (uint8_t*)&codes[total_length_size];
460
for (i = 0; i < 5 * histogram_image_size; ++i) {
461
const int bit_length = huffman_codes[i].num_symbols;
462
huffman_codes[i].codes = codes;
463
huffman_codes[i].code_lengths = lengths;
464
codes += bit_length;
465
lengths += bit_length;
466
if (max_num_symbols < bit_length) {
467
max_num_symbols = bit_length;
468
}
469
}
470
}
471
472
buf_rle = (uint8_t*)WebPSafeMalloc(1ULL, max_num_symbols);
473
huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * max_num_symbols,
474
sizeof(*huff_tree));
475
if (buf_rle == NULL || huff_tree == NULL) goto End;
476
477
// Create Huffman trees.
478
for (i = 0; i < histogram_image_size; ++i) {
479
HuffmanTreeCode* const codes = &huffman_codes[5 * i];
480
VP8LHistogram* const histo = histogram_image->histograms[i];
481
VP8LCreateHuffmanTree(histo->literal_, 15, buf_rle, huff_tree, codes + 0);
482
VP8LCreateHuffmanTree(histo->red_, 15, buf_rle, huff_tree, codes + 1);
483
VP8LCreateHuffmanTree(histo->blue_, 15, buf_rle, huff_tree, codes + 2);
484
VP8LCreateHuffmanTree(histo->alpha_, 15, buf_rle, huff_tree, codes + 3);
485
VP8LCreateHuffmanTree(histo->distance_, 15, buf_rle, huff_tree, codes + 4);
486
}
487
ok = 1;
488
End:
489
WebPSafeFree(huff_tree);
490
WebPSafeFree(buf_rle);
491
if (!ok) {
492
WebPSafeFree(mem_buf);
493
memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes));
494
}
495
return ok;
496
}
497
498
static void StoreHuffmanTreeOfHuffmanTreeToBitMask(
499
VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) {
500
// RFC 1951 will calm you down if you are worried about this funny sequence.
501
// This sequence is tuned from that, but more weighted for lower symbol count,
502
// and more spiking histograms.
503
static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = {
504
17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
505
};
506
int i;
507
// Throw away trailing zeros:
508
int codes_to_store = CODE_LENGTH_CODES;
509
for (; codes_to_store > 4; --codes_to_store) {
510
if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
511
break;
512
}
513
}
514
VP8LPutBits(bw, codes_to_store - 4, 4);
515
for (i = 0; i < codes_to_store; ++i) {
516
VP8LPutBits(bw, code_length_bitdepth[kStorageOrder[i]], 3);
517
}
518
}
519
520
static void ClearHuffmanTreeIfOnlyOneSymbol(
521
HuffmanTreeCode* const huffman_code) {
522
int k;
523
int count = 0;
524
for (k = 0; k < huffman_code->num_symbols; ++k) {
525
if (huffman_code->code_lengths[k] != 0) {
526
++count;
527
if (count > 1) return;
528
}
529
}
530
for (k = 0; k < huffman_code->num_symbols; ++k) {
531
huffman_code->code_lengths[k] = 0;
532
huffman_code->codes[k] = 0;
533
}
534
}
535
536
static void StoreHuffmanTreeToBitMask(
537
VP8LBitWriter* const bw,
538
const HuffmanTreeToken* const tokens, const int num_tokens,
539
const HuffmanTreeCode* const huffman_code) {
540
int i;
541
for (i = 0; i < num_tokens; ++i) {
542
const int ix = tokens[i].code;
543
const int extra_bits = tokens[i].extra_bits;
544
VP8LPutBits(bw, huffman_code->codes[ix], huffman_code->code_lengths[ix]);
545
switch (ix) {
546
case 16:
547
VP8LPutBits(bw, extra_bits, 2);
548
break;
549
case 17:
550
VP8LPutBits(bw, extra_bits, 3);
551
break;
552
case 18:
553
VP8LPutBits(bw, extra_bits, 7);
554
break;
555
}
556
}
557
}
558
559
// 'huff_tree' and 'tokens' are pre-alloacted buffers.
560
static void StoreFullHuffmanCode(VP8LBitWriter* const bw,
561
HuffmanTree* const huff_tree,
562
HuffmanTreeToken* const tokens,
563
const HuffmanTreeCode* const tree) {
564
uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 };
565
uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 };
566
const int max_tokens = tree->num_symbols;
567
int num_tokens;
568
HuffmanTreeCode huffman_code;
569
huffman_code.num_symbols = CODE_LENGTH_CODES;
570
huffman_code.code_lengths = code_length_bitdepth;
571
huffman_code.codes = code_length_bitdepth_symbols;
572
573
VP8LPutBits(bw, 0, 1);
574
num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens);
575
{
576
uint32_t histogram[CODE_LENGTH_CODES] = { 0 };
577
uint8_t buf_rle[CODE_LENGTH_CODES] = { 0 };
578
int i;
579
for (i = 0; i < num_tokens; ++i) {
580
++histogram[tokens[i].code];
581
}
582
583
VP8LCreateHuffmanTree(histogram, 7, buf_rle, huff_tree, &huffman_code);
584
}
585
586
StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth);
587
ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code);
588
{
589
int trailing_zero_bits = 0;
590
int trimmed_length = num_tokens;
591
int write_trimmed_length;
592
int length;
593
int i = num_tokens;
594
while (i-- > 0) {
595
const int ix = tokens[i].code;
596
if (ix == 0 || ix == 17 || ix == 18) {
597
--trimmed_length; // discount trailing zeros
598
trailing_zero_bits += code_length_bitdepth[ix];
599
if (ix == 17) {
600
trailing_zero_bits += 3;
601
} else if (ix == 18) {
602
trailing_zero_bits += 7;
603
}
604
} else {
605
break;
606
}
607
}
608
write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12);
609
length = write_trimmed_length ? trimmed_length : num_tokens;
610
VP8LPutBits(bw, write_trimmed_length, 1);
611
if (write_trimmed_length) {
612
if (trimmed_length == 2) {
613
VP8LPutBits(bw, 0, 3 + 2); // nbitpairs=1, trimmed_length=2
614
} else {
615
const int nbits = BitsLog2Floor(trimmed_length - 2);
616
const int nbitpairs = nbits / 2 + 1;
617
assert(trimmed_length > 2);
618
assert(nbitpairs - 1 < 8);
619
VP8LPutBits(bw, nbitpairs - 1, 3);
620
VP8LPutBits(bw, trimmed_length - 2, nbitpairs * 2);
621
}
622
}
623
StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code);
624
}
625
}
626
627
// 'huff_tree' and 'tokens' are pre-alloacted buffers.
628
static void StoreHuffmanCode(VP8LBitWriter* const bw,
629
HuffmanTree* const huff_tree,
630
HuffmanTreeToken* const tokens,
631
const HuffmanTreeCode* const huffman_code) {
632
int i;
633
int count = 0;
634
int symbols[2] = { 0, 0 };
635
const int kMaxBits = 8;
636
const int kMaxSymbol = 1 << kMaxBits;
637
638
// Check whether it's a small tree.
639
for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) {
640
if (huffman_code->code_lengths[i] != 0) {
641
if (count < 2) symbols[count] = i;
642
++count;
643
}
644
}
645
646
if (count == 0) { // emit minimal tree for empty cases
647
// bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0
648
VP8LPutBits(bw, 0x01, 4);
649
} else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) {
650
VP8LPutBits(bw, 1, 1); // Small tree marker to encode 1 or 2 symbols.
651
VP8LPutBits(bw, count - 1, 1);
652
if (symbols[0] <= 1) {
653
VP8LPutBits(bw, 0, 1); // Code bit for small (1 bit) symbol value.
654
VP8LPutBits(bw, symbols[0], 1);
655
} else {
656
VP8LPutBits(bw, 1, 1);
657
VP8LPutBits(bw, symbols[0], 8);
658
}
659
if (count == 2) {
660
VP8LPutBits(bw, symbols[1], 8);
661
}
662
} else {
663
StoreFullHuffmanCode(bw, huff_tree, tokens, huffman_code);
664
}
665
}
666
667
static WEBP_INLINE void WriteHuffmanCode(VP8LBitWriter* const bw,
668
const HuffmanTreeCode* const code,
669
int code_index) {
670
const int depth = code->code_lengths[code_index];
671
const int symbol = code->codes[code_index];
672
VP8LPutBits(bw, symbol, depth);
673
}
674
675
static WEBP_INLINE void WriteHuffmanCodeWithExtraBits(
676
VP8LBitWriter* const bw,
677
const HuffmanTreeCode* const code,
678
int code_index,
679
int bits,
680
int n_bits) {
681
const int depth = code->code_lengths[code_index];
682
const int symbol = code->codes[code_index];
683
VP8LPutBits(bw, (bits << depth) | symbol, depth + n_bits);
684
}
685
686
static int StoreImageToBitMask(VP8LBitWriter* const bw, int width,
687
int histo_bits,
688
const VP8LBackwardRefs* const refs,
689
const uint32_t* histogram_symbols,
690
const HuffmanTreeCode* const huffman_codes,
691
const WebPPicture* const pic) {
692
const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1;
693
const int tile_mask = (histo_bits == 0) ? 0 : -(1 << histo_bits);
694
// x and y trace the position in the image.
695
int x = 0;
696
int y = 0;
697
int tile_x = x & tile_mask;
698
int tile_y = y & tile_mask;
699
int histogram_ix = (histogram_symbols[0] >> 8) & 0xffff;
700
const HuffmanTreeCode* codes = huffman_codes + 5 * histogram_ix;
701
VP8LRefsCursor c = VP8LRefsCursorInit(refs);
702
while (VP8LRefsCursorOk(&c)) {
703
const PixOrCopy* const v = c.cur_pos;
704
if ((tile_x != (x & tile_mask)) || (tile_y != (y & tile_mask))) {
705
tile_x = x & tile_mask;
706
tile_y = y & tile_mask;
707
histogram_ix = (histogram_symbols[(y >> histo_bits) * histo_xsize +
708
(x >> histo_bits)] >>
709
8) &
710
0xffff;
711
codes = huffman_codes + 5 * histogram_ix;
712
}
713
if (PixOrCopyIsLiteral(v)) {
714
static const uint8_t order[] = { 1, 2, 0, 3 };
715
int k;
716
for (k = 0; k < 4; ++k) {
717
const int code = PixOrCopyLiteral(v, order[k]);
718
WriteHuffmanCode(bw, codes + k, code);
719
}
720
} else if (PixOrCopyIsCacheIdx(v)) {
721
const int code = PixOrCopyCacheIdx(v);
722
const int literal_ix = 256 + NUM_LENGTH_CODES + code;
723
WriteHuffmanCode(bw, codes, literal_ix);
724
} else {
725
int bits, n_bits;
726
int code;
727
728
const int distance = PixOrCopyDistance(v);
729
VP8LPrefixEncode(v->len, &code, &n_bits, &bits);
730
WriteHuffmanCodeWithExtraBits(bw, codes, 256 + code, bits, n_bits);
731
732
// Don't write the distance with the extra bits code since
733
// the distance can be up to 18 bits of extra bits, and the prefix
734
// 15 bits, totaling to 33, and our PutBits only supports up to 32 bits.
735
VP8LPrefixEncode(distance, &code, &n_bits, &bits);
736
WriteHuffmanCode(bw, codes + 4, code);
737
VP8LPutBits(bw, bits, n_bits);
738
}
739
x += PixOrCopyLength(v);
740
while (x >= width) {
741
x -= width;
742
++y;
743
}
744
VP8LRefsCursorNext(&c);
745
}
746
if (bw->error_) {
747
return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
748
}
749
return 1;
750
}
751
752
// Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31.
753
// pic and percent are for progress.
754
static int EncodeImageNoHuffman(VP8LBitWriter* const bw,
755
const uint32_t* const argb,
756
VP8LHashChain* const hash_chain,
757
VP8LBackwardRefs* const refs_array, int width,
758
int height, int quality, int low_effort,
759
const WebPPicture* const pic, int percent_range,
760
int* const percent) {
761
int i;
762
int max_tokens = 0;
763
VP8LBackwardRefs* refs;
764
HuffmanTreeToken* tokens = NULL;
765
HuffmanTreeCode huffman_codes[5] = {{0, NULL, NULL}};
766
const uint32_t histogram_symbols[1] = {0}; // only one tree, one symbol
767
int cache_bits = 0;
768
VP8LHistogramSet* histogram_image = NULL;
769
HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc(
770
3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
771
if (huff_tree == NULL) {
772
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
773
goto Error;
774
}
775
776
// Calculate backward references from ARGB image.
777
if (!VP8LHashChainFill(hash_chain, quality, argb, width, height, low_effort,
778
pic, percent_range / 2, percent)) {
779
goto Error;
780
}
781
if (!VP8LGetBackwardReferences(width, height, argb, quality, /*low_effort=*/0,
782
kLZ77Standard | kLZ77RLE, cache_bits,
783
/*do_no_cache=*/0, hash_chain, refs_array,
784
&cache_bits, pic,
785
percent_range - percent_range / 2, percent)) {
786
goto Error;
787
}
788
refs = &refs_array[0];
789
histogram_image = VP8LAllocateHistogramSet(1, cache_bits);
790
if (histogram_image == NULL) {
791
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
792
goto Error;
793
}
794
VP8LHistogramSetClear(histogram_image);
795
796
// Build histogram image and symbols from backward references.
797
VP8LHistogramStoreRefs(refs, histogram_image->histograms[0]);
798
799
// Create Huffman bit lengths and codes for each histogram image.
800
assert(histogram_image->size == 1);
801
if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
802
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
803
goto Error;
804
}
805
806
// No color cache, no Huffman image.
807
VP8LPutBits(bw, 0, 1);
808
809
// Find maximum number of symbols for the huffman tree-set.
810
for (i = 0; i < 5; ++i) {
811
HuffmanTreeCode* const codes = &huffman_codes[i];
812
if (max_tokens < codes->num_symbols) {
813
max_tokens = codes->num_symbols;
814
}
815
}
816
817
tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
818
if (tokens == NULL) {
819
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
820
goto Error;
821
}
822
823
// Store Huffman codes.
824
for (i = 0; i < 5; ++i) {
825
HuffmanTreeCode* const codes = &huffman_codes[i];
826
StoreHuffmanCode(bw, huff_tree, tokens, codes);
827
ClearHuffmanTreeIfOnlyOneSymbol(codes);
828
}
829
830
// Store actual literals.
831
if (!StoreImageToBitMask(bw, width, 0, refs, histogram_symbols, huffman_codes,
832
pic)) {
833
goto Error;
834
}
835
836
Error:
837
WebPSafeFree(tokens);
838
WebPSafeFree(huff_tree);
839
VP8LFreeHistogramSet(histogram_image);
840
WebPSafeFree(huffman_codes[0].codes);
841
return (pic->error_code == VP8_ENC_OK);
842
}
843
844
// pic and percent are for progress.
845
static int EncodeImageInternal(
846
VP8LBitWriter* const bw, const uint32_t* const argb,
847
VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[4], int width,
848
int height, int quality, int low_effort, const CrunchConfig* const config,
849
int* cache_bits, int histogram_bits_in, size_t init_byte_position,
850
int* const hdr_size, int* const data_size, const WebPPicture* const pic,
851
int percent_range, int* const percent) {
852
const uint32_t histogram_image_xysize =
853
VP8LSubSampleSize(width, histogram_bits_in) *
854
VP8LSubSampleSize(height, histogram_bits_in);
855
int remaining_percent = percent_range;
856
int percent_start = *percent;
857
VP8LHistogramSet* histogram_image = NULL;
858
VP8LHistogram* tmp_histo = NULL;
859
uint32_t i, histogram_image_size = 0;
860
size_t bit_array_size = 0;
861
HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc(
862
3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
863
HuffmanTreeToken* tokens = NULL;
864
HuffmanTreeCode* huffman_codes = NULL;
865
uint32_t* const histogram_argb = (uint32_t*)WebPSafeMalloc(
866
histogram_image_xysize, sizeof(*histogram_argb));
867
int sub_configs_idx;
868
int cache_bits_init, write_histogram_image;
869
VP8LBitWriter bw_init = *bw, bw_best;
870
int hdr_size_tmp;
871
VP8LHashChain hash_chain_histogram; // histogram image hash chain
872
size_t bw_size_best = ~(size_t)0;
873
assert(histogram_bits_in >= MIN_HUFFMAN_BITS);
874
assert(histogram_bits_in <= MAX_HUFFMAN_BITS);
875
assert(hdr_size != NULL);
876
assert(data_size != NULL);
877
878
memset(&hash_chain_histogram, 0, sizeof(hash_chain_histogram));
879
if (!VP8LBitWriterInit(&bw_best, 0)) {
880
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
881
goto Error;
882
}
883
884
// Make sure we can allocate the different objects.
885
if (huff_tree == NULL || histogram_argb == NULL ||
886
!VP8LHashChainInit(&hash_chain_histogram, histogram_image_xysize)) {
887
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
888
goto Error;
889
}
890
891
percent_range = remaining_percent / 5;
892
if (!VP8LHashChainFill(hash_chain, quality, argb, width, height,
893
low_effort, pic, percent_range, percent)) {
894
goto Error;
895
}
896
percent_start += percent_range;
897
remaining_percent -= percent_range;
898
899
// If the value is different from zero, it has been set during the palette
900
// analysis.
901
cache_bits_init = (*cache_bits == 0) ? MAX_COLOR_CACHE_BITS : *cache_bits;
902
// If several iterations will happen, clone into bw_best.
903
if ((config->sub_configs_size_ > 1 || config->sub_configs_[0].do_no_cache_) &&
904
!VP8LBitWriterClone(bw, &bw_best)) {
905
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
906
goto Error;
907
}
908
909
for (sub_configs_idx = 0; sub_configs_idx < config->sub_configs_size_;
910
++sub_configs_idx) {
911
const CrunchSubConfig* const sub_config =
912
&config->sub_configs_[sub_configs_idx];
913
int cache_bits_best, i_cache;
914
int i_remaining_percent = remaining_percent / config->sub_configs_size_;
915
int i_percent_range = i_remaining_percent / 4;
916
i_remaining_percent -= i_percent_range;
917
918
if (!VP8LGetBackwardReferences(
919
width, height, argb, quality, low_effort, sub_config->lz77_,
920
cache_bits_init, sub_config->do_no_cache_, hash_chain,
921
&refs_array[0], &cache_bits_best, pic, i_percent_range, percent)) {
922
goto Error;
923
}
924
925
for (i_cache = 0; i_cache < (sub_config->do_no_cache_ ? 2 : 1); ++i_cache) {
926
const int cache_bits_tmp = (i_cache == 0) ? cache_bits_best : 0;
927
int histogram_bits = histogram_bits_in;
928
// Speed-up: no need to study the no-cache case if it was already studied
929
// in i_cache == 0.
930
if (i_cache == 1 && cache_bits_best == 0) break;
931
932
// Reset the bit writer for this iteration.
933
VP8LBitWriterReset(&bw_init, bw);
934
935
// Build histogram image and symbols from backward references.
936
histogram_image =
937
VP8LAllocateHistogramSet(histogram_image_xysize, cache_bits_tmp);
938
tmp_histo = VP8LAllocateHistogram(cache_bits_tmp);
939
if (histogram_image == NULL || tmp_histo == NULL) {
940
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
941
goto Error;
942
}
943
944
i_percent_range = i_remaining_percent / 3;
945
i_remaining_percent -= i_percent_range;
946
if (!VP8LGetHistoImageSymbols(
947
width, height, &refs_array[i_cache], quality, low_effort,
948
histogram_bits, cache_bits_tmp, histogram_image, tmp_histo,
949
histogram_argb, pic, i_percent_range, percent)) {
950
goto Error;
951
}
952
// Create Huffman bit lengths and codes for each histogram image.
953
histogram_image_size = histogram_image->size;
954
bit_array_size = 5 * histogram_image_size;
955
huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size,
956
sizeof(*huffman_codes));
957
// Note: some histogram_image entries may point to tmp_histos[], so the
958
// latter need to outlive the following call to
959
// GetHuffBitLengthsAndCodes().
960
if (huffman_codes == NULL ||
961
!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
962
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
963
goto Error;
964
}
965
// Free combined histograms.
966
VP8LFreeHistogramSet(histogram_image);
967
histogram_image = NULL;
968
969
// Free scratch histograms.
970
VP8LFreeHistogram(tmp_histo);
971
tmp_histo = NULL;
972
973
// Color Cache parameters.
974
if (cache_bits_tmp > 0) {
975
VP8LPutBits(bw, 1, 1);
976
VP8LPutBits(bw, cache_bits_tmp, 4);
977
} else {
978
VP8LPutBits(bw, 0, 1);
979
}
980
981
// Huffman image + meta huffman.
982
histogram_image_size = 0;
983
for (i = 0; i < histogram_image_xysize; ++i) {
984
if (histogram_argb[i] >= histogram_image_size) {
985
histogram_image_size = histogram_argb[i] + 1;
986
}
987
histogram_argb[i] <<= 8;
988
}
989
990
write_histogram_image = (histogram_image_size > 1);
991
VP8LPutBits(bw, write_histogram_image, 1);
992
if (write_histogram_image) {
993
VP8LOptimizeSampling(histogram_argb, width, height, histogram_bits_in,
994
MAX_HUFFMAN_BITS, &histogram_bits);
995
VP8LPutBits(bw, histogram_bits - 2, 3);
996
i_percent_range = i_remaining_percent / 2;
997
i_remaining_percent -= i_percent_range;
998
if (!EncodeImageNoHuffman(
999
bw, histogram_argb, &hash_chain_histogram, &refs_array[2],
1000
VP8LSubSampleSize(width, histogram_bits),
1001
VP8LSubSampleSize(height, histogram_bits), quality, low_effort,
1002
pic, i_percent_range, percent)) {
1003
goto Error;
1004
}
1005
}
1006
1007
// Store Huffman codes.
1008
{
1009
int max_tokens = 0;
1010
// Find maximum number of symbols for the huffman tree-set.
1011
for (i = 0; i < 5 * histogram_image_size; ++i) {
1012
HuffmanTreeCode* const codes = &huffman_codes[i];
1013
if (max_tokens < codes->num_symbols) {
1014
max_tokens = codes->num_symbols;
1015
}
1016
}
1017
tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
1018
if (tokens == NULL) {
1019
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1020
goto Error;
1021
}
1022
for (i = 0; i < 5 * histogram_image_size; ++i) {
1023
HuffmanTreeCode* const codes = &huffman_codes[i];
1024
StoreHuffmanCode(bw, huff_tree, tokens, codes);
1025
ClearHuffmanTreeIfOnlyOneSymbol(codes);
1026
}
1027
}
1028
// Store actual literals.
1029
hdr_size_tmp = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position);
1030
if (!StoreImageToBitMask(bw, width, histogram_bits, &refs_array[i_cache],
1031
histogram_argb, huffman_codes, pic)) {
1032
goto Error;
1033
}
1034
// Keep track of the smallest image so far.
1035
if (VP8LBitWriterNumBytes(bw) < bw_size_best) {
1036
bw_size_best = VP8LBitWriterNumBytes(bw);
1037
*cache_bits = cache_bits_tmp;
1038
*hdr_size = hdr_size_tmp;
1039
*data_size =
1040
(int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size);
1041
VP8LBitWriterSwap(bw, &bw_best);
1042
}
1043
WebPSafeFree(tokens);
1044
tokens = NULL;
1045
if (huffman_codes != NULL) {
1046
WebPSafeFree(huffman_codes->codes);
1047
WebPSafeFree(huffman_codes);
1048
huffman_codes = NULL;
1049
}
1050
}
1051
}
1052
VP8LBitWriterSwap(bw, &bw_best);
1053
1054
if (!WebPReportProgress(pic, percent_start + remaining_percent, percent)) {
1055
goto Error;
1056
}
1057
1058
Error:
1059
WebPSafeFree(tokens);
1060
WebPSafeFree(huff_tree);
1061
VP8LFreeHistogramSet(histogram_image);
1062
VP8LFreeHistogram(tmp_histo);
1063
VP8LHashChainClear(&hash_chain_histogram);
1064
if (huffman_codes != NULL) {
1065
WebPSafeFree(huffman_codes->codes);
1066
WebPSafeFree(huffman_codes);
1067
}
1068
WebPSafeFree(histogram_argb);
1069
VP8LBitWriterWipeOut(&bw_best);
1070
return (pic->error_code == VP8_ENC_OK);
1071
}
1072
1073
// -----------------------------------------------------------------------------
1074
// Transforms
1075
1076
static void ApplySubtractGreen(VP8LEncoder* const enc, int width, int height,
1077
VP8LBitWriter* const bw) {
1078
VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1079
VP8LPutBits(bw, SUBTRACT_GREEN_TRANSFORM, 2);
1080
VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height);
1081
}
1082
1083
static int ApplyPredictFilter(VP8LEncoder* const enc, int width, int height,
1084
int quality, int low_effort,
1085
int used_subtract_green, VP8LBitWriter* const bw,
1086
int percent_range, int* const percent) {
1087
int best_bits;
1088
const int near_lossless_strength =
1089
enc->use_palette_ ? 100 : enc->config_->near_lossless;
1090
const int max_bits = ClampBits(width, height, enc->predictor_transform_bits_,
1091
MIN_TRANSFORM_BITS, MAX_TRANSFORM_BITS,
1092
MAX_PREDICTOR_IMAGE_SIZE);
1093
const int min_bits = ClampBits(
1094
width, height,
1095
max_bits - 2 * (enc->config_->method > 4 ? enc->config_->method - 4 : 0),
1096
MIN_TRANSFORM_BITS, MAX_TRANSFORM_BITS, MAX_PREDICTOR_IMAGE_SIZE);
1097
1098
if (!VP8LResidualImage(width, height, min_bits, max_bits, low_effort,
1099
enc->argb_, enc->argb_scratch_, enc->transform_data_,
1100
near_lossless_strength, enc->config_->exact,
1101
used_subtract_green, enc->pic_, percent_range / 2,
1102
percent, &best_bits)) {
1103
return 0;
1104
}
1105
VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1106
VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2);
1107
assert(best_bits >= MIN_TRANSFORM_BITS && best_bits <= MAX_TRANSFORM_BITS);
1108
VP8LPutBits(bw, best_bits - MIN_TRANSFORM_BITS, NUM_TRANSFORM_BITS);
1109
enc->predictor_transform_bits_ = best_bits;
1110
return EncodeImageNoHuffman(
1111
bw, enc->transform_data_, &enc->hash_chain_, &enc->refs_[0],
1112
VP8LSubSampleSize(width, best_bits), VP8LSubSampleSize(height, best_bits),
1113
quality, low_effort, enc->pic_, percent_range - percent_range / 2,
1114
percent);
1115
}
1116
1117
static int ApplyCrossColorFilter(VP8LEncoder* const enc, int width, int height,
1118
int quality, int low_effort,
1119
VP8LBitWriter* const bw, int percent_range,
1120
int* const percent) {
1121
const int min_bits = enc->cross_color_transform_bits_;
1122
int best_bits;
1123
1124
if (!VP8LColorSpaceTransform(width, height, min_bits, quality, enc->argb_,
1125
enc->transform_data_, enc->pic_,
1126
percent_range / 2, percent, &best_bits)) {
1127
return 0;
1128
}
1129
VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1130
VP8LPutBits(bw, CROSS_COLOR_TRANSFORM, 2);
1131
assert(best_bits >= MIN_TRANSFORM_BITS && best_bits <= MAX_TRANSFORM_BITS);
1132
VP8LPutBits(bw, best_bits - MIN_TRANSFORM_BITS, NUM_TRANSFORM_BITS);
1133
enc->cross_color_transform_bits_ = best_bits;
1134
return EncodeImageNoHuffman(
1135
bw, enc->transform_data_, &enc->hash_chain_, &enc->refs_[0],
1136
VP8LSubSampleSize(width, best_bits), VP8LSubSampleSize(height, best_bits),
1137
quality, low_effort, enc->pic_, percent_range - percent_range / 2,
1138
percent);
1139
}
1140
1141
// -----------------------------------------------------------------------------
1142
1143
static int WriteRiffHeader(const WebPPicture* const pic, size_t riff_size,
1144
size_t vp8l_size) {
1145
uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = {
1146
'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P',
1147
'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE,
1148
};
1149
PutLE32(riff + TAG_SIZE, (uint32_t)riff_size);
1150
PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size);
1151
return pic->writer(riff, sizeof(riff), pic);
1152
}
1153
1154
static int WriteImageSize(const WebPPicture* const pic,
1155
VP8LBitWriter* const bw) {
1156
const int width = pic->width - 1;
1157
const int height = pic->height - 1;
1158
assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION);
1159
1160
VP8LPutBits(bw, width, VP8L_IMAGE_SIZE_BITS);
1161
VP8LPutBits(bw, height, VP8L_IMAGE_SIZE_BITS);
1162
return !bw->error_;
1163
}
1164
1165
static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) {
1166
VP8LPutBits(bw, has_alpha, 1);
1167
VP8LPutBits(bw, VP8L_VERSION, VP8L_VERSION_BITS);
1168
return !bw->error_;
1169
}
1170
1171
static int WriteImage(const WebPPicture* const pic, VP8LBitWriter* const bw,
1172
size_t* const coded_size) {
1173
const uint8_t* const webpll_data = VP8LBitWriterFinish(bw);
1174
const size_t webpll_size = VP8LBitWriterNumBytes(bw);
1175
const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size;
1176
const size_t pad = vp8l_size & 1;
1177
const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad;
1178
*coded_size = 0;
1179
1180
if (bw->error_) {
1181
return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1182
}
1183
1184
if (!WriteRiffHeader(pic, riff_size, vp8l_size) ||
1185
!pic->writer(webpll_data, webpll_size, pic)) {
1186
return WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_WRITE);
1187
}
1188
1189
if (pad) {
1190
const uint8_t pad_byte[1] = { 0 };
1191
if (!pic->writer(pad_byte, 1, pic)) {
1192
return WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_WRITE);
1193
}
1194
}
1195
*coded_size = CHUNK_HEADER_SIZE + riff_size;
1196
return 1;
1197
}
1198
1199
// -----------------------------------------------------------------------------
1200
1201
static void ClearTransformBuffer(VP8LEncoder* const enc) {
1202
WebPSafeFree(enc->transform_mem_);
1203
enc->transform_mem_ = NULL;
1204
enc->transform_mem_size_ = 0;
1205
}
1206
1207
// Allocates the memory for argb (W x H) buffer, 2 rows of context for
1208
// prediction and transform data.
1209
// Flags influencing the memory allocated:
1210
// enc->transform_bits_
1211
// enc->use_predict_, enc->use_cross_color_
1212
static int AllocateTransformBuffer(VP8LEncoder* const enc, int width,
1213
int height) {
1214
const uint64_t image_size = (uint64_t)width * height;
1215
// VP8LResidualImage needs room for 2 scanlines of uint32 pixels with an extra
1216
// pixel in each, plus 2 regular scanlines of bytes.
1217
// TODO(skal): Clean up by using arithmetic in bytes instead of words.
1218
const uint64_t argb_scratch_size =
1219
enc->use_predict_ ? (width + 1) * 2 + (width * 2 + sizeof(uint32_t) - 1) /
1220
sizeof(uint32_t)
1221
: 0;
1222
const uint64_t transform_data_size =
1223
(enc->use_predict_ || enc->use_cross_color_)
1224
? (uint64_t)VP8LSubSampleSize(width, MIN_TRANSFORM_BITS) *
1225
VP8LSubSampleSize(height, MIN_TRANSFORM_BITS)
1226
: 0;
1227
const uint64_t max_alignment_in_words =
1228
(WEBP_ALIGN_CST + sizeof(uint32_t) - 1) / sizeof(uint32_t);
1229
const uint64_t mem_size = image_size + max_alignment_in_words +
1230
argb_scratch_size + max_alignment_in_words +
1231
transform_data_size;
1232
uint32_t* mem = enc->transform_mem_;
1233
if (mem == NULL || mem_size > enc->transform_mem_size_) {
1234
ClearTransformBuffer(enc);
1235
mem = (uint32_t*)WebPSafeMalloc(mem_size, sizeof(*mem));
1236
if (mem == NULL) {
1237
return WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY);
1238
}
1239
enc->transform_mem_ = mem;
1240
enc->transform_mem_size_ = (size_t)mem_size;
1241
enc->argb_content_ = kEncoderNone;
1242
}
1243
enc->argb_ = mem;
1244
mem = (uint32_t*)WEBP_ALIGN(mem + image_size);
1245
enc->argb_scratch_ = mem;
1246
mem = (uint32_t*)WEBP_ALIGN(mem + argb_scratch_size);
1247
enc->transform_data_ = mem;
1248
1249
enc->current_width_ = width;
1250
return 1;
1251
}
1252
1253
static int MakeInputImageCopy(VP8LEncoder* const enc) {
1254
const WebPPicture* const picture = enc->pic_;
1255
const int width = picture->width;
1256
const int height = picture->height;
1257
1258
if (!AllocateTransformBuffer(enc, width, height)) return 0;
1259
if (enc->argb_content_ == kEncoderARGB) return 1;
1260
1261
{
1262
uint32_t* dst = enc->argb_;
1263
const uint32_t* src = picture->argb;
1264
int y;
1265
for (y = 0; y < height; ++y) {
1266
memcpy(dst, src, width * sizeof(*dst));
1267
dst += width;
1268
src += picture->argb_stride;
1269
}
1270
}
1271
enc->argb_content_ = kEncoderARGB;
1272
assert(enc->current_width_ == width);
1273
return 1;
1274
}
1275
1276
// -----------------------------------------------------------------------------
1277
1278
#define APPLY_PALETTE_GREEDY_MAX 4
1279
1280
static WEBP_INLINE uint32_t SearchColorGreedy(const uint32_t palette[],
1281
int palette_size,
1282
uint32_t color) {
1283
(void)palette_size;
1284
assert(palette_size < APPLY_PALETTE_GREEDY_MAX);
1285
assert(3 == APPLY_PALETTE_GREEDY_MAX - 1);
1286
if (color == palette[0]) return 0;
1287
if (color == palette[1]) return 1;
1288
if (color == palette[2]) return 2;
1289
return 3;
1290
}
1291
1292
static WEBP_INLINE uint32_t ApplyPaletteHash0(uint32_t color) {
1293
// Focus on the green color.
1294
return (color >> 8) & 0xff;
1295
}
1296
1297
#define PALETTE_INV_SIZE_BITS 11
1298
#define PALETTE_INV_SIZE (1 << PALETTE_INV_SIZE_BITS)
1299
1300
static WEBP_INLINE uint32_t ApplyPaletteHash1(uint32_t color) {
1301
// Forget about alpha.
1302
return ((uint32_t)((color & 0x00ffffffu) * 4222244071ull)) >>
1303
(32 - PALETTE_INV_SIZE_BITS);
1304
}
1305
1306
static WEBP_INLINE uint32_t ApplyPaletteHash2(uint32_t color) {
1307
// Forget about alpha.
1308
return ((uint32_t)((color & 0x00ffffffu) * ((1ull << 31) - 1))) >>
1309
(32 - PALETTE_INV_SIZE_BITS);
1310
}
1311
1312
// Use 1 pixel cache for ARGB pixels.
1313
#define APPLY_PALETTE_FOR(COLOR_INDEX) do { \
1314
uint32_t prev_pix = palette[0]; \
1315
uint32_t prev_idx = 0; \
1316
for (y = 0; y < height; ++y) { \
1317
for (x = 0; x < width; ++x) { \
1318
const uint32_t pix = src[x]; \
1319
if (pix != prev_pix) { \
1320
prev_idx = COLOR_INDEX; \
1321
prev_pix = pix; \
1322
} \
1323
tmp_row[x] = prev_idx; \
1324
} \
1325
VP8LBundleColorMap(tmp_row, width, xbits, dst); \
1326
src += src_stride; \
1327
dst += dst_stride; \
1328
} \
1329
} while (0)
1330
1331
// Remap argb values in src[] to packed palettes entries in dst[]
1332
// using 'row' as a temporary buffer of size 'width'.
1333
// We assume that all src[] values have a corresponding entry in the palette.
1334
// Note: src[] can be the same as dst[]
1335
static int ApplyPalette(const uint32_t* src, uint32_t src_stride, uint32_t* dst,
1336
uint32_t dst_stride, const uint32_t* palette,
1337
int palette_size, int width, int height, int xbits,
1338
const WebPPicture* const pic) {
1339
// TODO(skal): this tmp buffer is not needed if VP8LBundleColorMap() can be
1340
// made to work in-place.
1341
uint8_t* const tmp_row = (uint8_t*)WebPSafeMalloc(width, sizeof(*tmp_row));
1342
int x, y;
1343
1344
if (tmp_row == NULL) {
1345
return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1346
}
1347
1348
if (palette_size < APPLY_PALETTE_GREEDY_MAX) {
1349
APPLY_PALETTE_FOR(SearchColorGreedy(palette, palette_size, pix));
1350
} else {
1351
int i, j;
1352
uint16_t buffer[PALETTE_INV_SIZE];
1353
uint32_t (*const hash_functions[])(uint32_t) = {
1354
ApplyPaletteHash0, ApplyPaletteHash1, ApplyPaletteHash2
1355
};
1356
1357
// Try to find a perfect hash function able to go from a color to an index
1358
// within 1 << PALETTE_INV_SIZE_BITS in order to build a hash map to go
1359
// from color to index in palette.
1360
for (i = 0; i < 3; ++i) {
1361
int use_LUT = 1;
1362
// Set each element in buffer to max uint16_t.
1363
memset(buffer, 0xff, sizeof(buffer));
1364
for (j = 0; j < palette_size; ++j) {
1365
const uint32_t ind = hash_functions[i](palette[j]);
1366
if (buffer[ind] != 0xffffu) {
1367
use_LUT = 0;
1368
break;
1369
} else {
1370
buffer[ind] = j;
1371
}
1372
}
1373
if (use_LUT) break;
1374
}
1375
1376
if (i == 0) {
1377
APPLY_PALETTE_FOR(buffer[ApplyPaletteHash0(pix)]);
1378
} else if (i == 1) {
1379
APPLY_PALETTE_FOR(buffer[ApplyPaletteHash1(pix)]);
1380
} else if (i == 2) {
1381
APPLY_PALETTE_FOR(buffer[ApplyPaletteHash2(pix)]);
1382
} else {
1383
uint32_t idx_map[MAX_PALETTE_SIZE];
1384
uint32_t palette_sorted[MAX_PALETTE_SIZE];
1385
PrepareMapToPalette(palette, palette_size, palette_sorted, idx_map);
1386
APPLY_PALETTE_FOR(
1387
idx_map[SearchColorNoIdx(palette_sorted, pix, palette_size)]);
1388
}
1389
}
1390
WebPSafeFree(tmp_row);
1391
return 1;
1392
}
1393
#undef APPLY_PALETTE_FOR
1394
#undef PALETTE_INV_SIZE_BITS
1395
#undef PALETTE_INV_SIZE
1396
#undef APPLY_PALETTE_GREEDY_MAX
1397
1398
// Note: Expects "enc->palette_" to be set properly.
1399
static int MapImageFromPalette(VP8LEncoder* const enc) {
1400
const WebPPicture* const pic = enc->pic_;
1401
const int width = pic->width;
1402
const int height = pic->height;
1403
const uint32_t* const palette = enc->palette_;
1404
const int palette_size = enc->palette_size_;
1405
int xbits;
1406
1407
// Replace each input pixel by corresponding palette index.
1408
// This is done line by line.
1409
if (palette_size <= 4) {
1410
xbits = (palette_size <= 2) ? 3 : 2;
1411
} else {
1412
xbits = (palette_size <= 16) ? 1 : 0;
1413
}
1414
1415
if (!AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height)) {
1416
return 0;
1417
}
1418
if (!ApplyPalette(pic->argb, pic->argb_stride, enc->argb_,
1419
enc->current_width_, palette, palette_size, width, height,
1420
xbits, pic)) {
1421
return 0;
1422
}
1423
enc->argb_content_ = kEncoderPalette;
1424
return 1;
1425
}
1426
1427
// Save palette_[] to bitstream.
1428
static int EncodePalette(VP8LBitWriter* const bw, int low_effort,
1429
VP8LEncoder* const enc, int percent_range,
1430
int* const percent) {
1431
int i;
1432
uint32_t tmp_palette[MAX_PALETTE_SIZE];
1433
const int palette_size = enc->palette_size_;
1434
const uint32_t* const palette = enc->palette_;
1435
// If the last element is 0, do not store it and count on automatic palette
1436
// 0-filling. This can only happen if there is no pixel packing, hence if
1437
// there are strictly more than 16 colors (after 0 is removed).
1438
const uint32_t encoded_palette_size =
1439
(enc->palette_[palette_size - 1] == 0 && palette_size > 17)
1440
? palette_size - 1
1441
: palette_size;
1442
VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1443
VP8LPutBits(bw, COLOR_INDEXING_TRANSFORM, 2);
1444
assert(palette_size >= 1 && palette_size <= MAX_PALETTE_SIZE);
1445
VP8LPutBits(bw, encoded_palette_size - 1, 8);
1446
for (i = encoded_palette_size - 1; i >= 1; --i) {
1447
tmp_palette[i] = VP8LSubPixels(palette[i], palette[i - 1]);
1448
}
1449
tmp_palette[0] = palette[0];
1450
return EncodeImageNoHuffman(
1451
bw, tmp_palette, &enc->hash_chain_, &enc->refs_[0], encoded_palette_size,
1452
1, /*quality=*/20, low_effort, enc->pic_, percent_range, percent);
1453
}
1454
1455
// -----------------------------------------------------------------------------
1456
// VP8LEncoder
1457
1458
static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config,
1459
const WebPPicture* const picture) {
1460
VP8LEncoder* const enc = (VP8LEncoder*)WebPSafeCalloc(1ULL, sizeof(*enc));
1461
if (enc == NULL) {
1462
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1463
return NULL;
1464
}
1465
enc->config_ = config;
1466
enc->pic_ = picture;
1467
enc->argb_content_ = kEncoderNone;
1468
1469
VP8LEncDspInit();
1470
1471
return enc;
1472
}
1473
1474
static void VP8LEncoderDelete(VP8LEncoder* enc) {
1475
if (enc != NULL) {
1476
int i;
1477
VP8LHashChainClear(&enc->hash_chain_);
1478
for (i = 0; i < 4; ++i) VP8LBackwardRefsClear(&enc->refs_[i]);
1479
ClearTransformBuffer(enc);
1480
WebPSafeFree(enc);
1481
}
1482
}
1483
1484
// -----------------------------------------------------------------------------
1485
// Main call
1486
1487
typedef struct {
1488
const WebPConfig* config_;
1489
const WebPPicture* picture_;
1490
VP8LBitWriter* bw_;
1491
VP8LEncoder* enc_;
1492
CrunchConfig crunch_configs_[CRUNCH_CONFIGS_MAX];
1493
int num_crunch_configs_;
1494
int red_and_blue_always_zero_;
1495
WebPAuxStats* stats_;
1496
} StreamEncodeContext;
1497
1498
static int EncodeStreamHook(void* input, void* data2) {
1499
StreamEncodeContext* const params = (StreamEncodeContext*)input;
1500
const WebPConfig* const config = params->config_;
1501
const WebPPicture* const picture = params->picture_;
1502
VP8LBitWriter* const bw = params->bw_;
1503
VP8LEncoder* const enc = params->enc_;
1504
const CrunchConfig* const crunch_configs = params->crunch_configs_;
1505
const int num_crunch_configs = params->num_crunch_configs_;
1506
const int red_and_blue_always_zero = params->red_and_blue_always_zero_;
1507
#if !defined(WEBP_DISABLE_STATS)
1508
WebPAuxStats* const stats = params->stats_;
1509
#endif
1510
const int quality = (int)config->quality;
1511
const int low_effort = (config->method == 0);
1512
#if (WEBP_NEAR_LOSSLESS == 1)
1513
const int width = picture->width;
1514
#endif
1515
const int height = picture->height;
1516
const size_t byte_position = VP8LBitWriterNumBytes(bw);
1517
int percent = 2; // for WebPProgressHook
1518
#if (WEBP_NEAR_LOSSLESS == 1)
1519
int use_near_lossless = 0;
1520
#endif
1521
int hdr_size = 0;
1522
int data_size = 0;
1523
int idx;
1524
size_t best_size = ~(size_t)0;
1525
VP8LBitWriter bw_init = *bw, bw_best;
1526
(void)data2;
1527
1528
if (!VP8LBitWriterInit(&bw_best, 0) ||
1529
(num_crunch_configs > 1 && !VP8LBitWriterClone(bw, &bw_best))) {
1530
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1531
goto Error;
1532
}
1533
1534
for (idx = 0; idx < num_crunch_configs; ++idx) {
1535
const int entropy_idx = crunch_configs[idx].entropy_idx_;
1536
int remaining_percent = 97 / num_crunch_configs, percent_range;
1537
enc->use_palette_ =
1538
(entropy_idx == kPalette) || (entropy_idx == kPaletteAndSpatial);
1539
enc->use_subtract_green_ =
1540
(entropy_idx == kSubGreen) || (entropy_idx == kSpatialSubGreen);
1541
enc->use_predict_ = (entropy_idx == kSpatial) ||
1542
(entropy_idx == kSpatialSubGreen) ||
1543
(entropy_idx == kPaletteAndSpatial);
1544
// When using a palette, R/B==0, hence no need to test for cross-color.
1545
if (low_effort || enc->use_palette_) {
1546
enc->use_cross_color_ = 0;
1547
} else {
1548
enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_;
1549
}
1550
// Reset any parameter in the encoder that is set in the previous iteration.
1551
enc->cache_bits_ = 0;
1552
VP8LBackwardRefsClear(&enc->refs_[0]);
1553
VP8LBackwardRefsClear(&enc->refs_[1]);
1554
1555
#if (WEBP_NEAR_LOSSLESS == 1)
1556
// Apply near-lossless preprocessing.
1557
use_near_lossless = (config->near_lossless < 100) && !enc->use_palette_ &&
1558
!enc->use_predict_;
1559
if (use_near_lossless) {
1560
if (!AllocateTransformBuffer(enc, width, height)) goto Error;
1561
if ((enc->argb_content_ != kEncoderNearLossless) &&
1562
!VP8ApplyNearLossless(picture, config->near_lossless, enc->argb_)) {
1563
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1564
goto Error;
1565
}
1566
enc->argb_content_ = kEncoderNearLossless;
1567
} else {
1568
enc->argb_content_ = kEncoderNone;
1569
}
1570
#else
1571
enc->argb_content_ = kEncoderNone;
1572
#endif
1573
1574
// Encode palette
1575
if (enc->use_palette_) {
1576
if (!PaletteSort(crunch_configs[idx].palette_sorting_type_, enc->pic_,
1577
enc->palette_sorted_, enc->palette_size_,
1578
enc->palette_)) {
1579
WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY);
1580
goto Error;
1581
}
1582
percent_range = remaining_percent / 4;
1583
if (!EncodePalette(bw, low_effort, enc, percent_range, &percent)) {
1584
goto Error;
1585
}
1586
remaining_percent -= percent_range;
1587
if (!MapImageFromPalette(enc)) goto Error;
1588
// If using a color cache, do not have it bigger than the number of
1589
// colors.
1590
if (enc->palette_size_ < (1 << MAX_COLOR_CACHE_BITS)) {
1591
enc->cache_bits_ = BitsLog2Floor(enc->palette_size_) + 1;
1592
}
1593
}
1594
// In case image is not packed.
1595
if (enc->argb_content_ != kEncoderNearLossless &&
1596
enc->argb_content_ != kEncoderPalette) {
1597
if (!MakeInputImageCopy(enc)) goto Error;
1598
}
1599
1600
// -------------------------------------------------------------------------
1601
// Apply transforms and write transform data.
1602
1603
if (enc->use_subtract_green_) {
1604
ApplySubtractGreen(enc, enc->current_width_, height, bw);
1605
}
1606
1607
if (enc->use_predict_) {
1608
percent_range = remaining_percent / 3;
1609
if (!ApplyPredictFilter(enc, enc->current_width_, height, quality,
1610
low_effort, enc->use_subtract_green_, bw,
1611
percent_range, &percent)) {
1612
goto Error;
1613
}
1614
remaining_percent -= percent_range;
1615
}
1616
1617
if (enc->use_cross_color_) {
1618
percent_range = remaining_percent / 2;
1619
if (!ApplyCrossColorFilter(enc, enc->current_width_, height, quality,
1620
low_effort, bw, percent_range, &percent)) {
1621
goto Error;
1622
}
1623
remaining_percent -= percent_range;
1624
}
1625
1626
VP8LPutBits(bw, !TRANSFORM_PRESENT, 1); // No more transforms.
1627
1628
// -------------------------------------------------------------------------
1629
// Encode and write the transformed image.
1630
if (!EncodeImageInternal(
1631
bw, enc->argb_, &enc->hash_chain_, enc->refs_, enc->current_width_,
1632
height, quality, low_effort, &crunch_configs[idx],
1633
&enc->cache_bits_, enc->histo_bits_, byte_position, &hdr_size,
1634
&data_size, picture, remaining_percent, &percent)) {
1635
goto Error;
1636
}
1637
1638
// If we are better than what we already have.
1639
if (VP8LBitWriterNumBytes(bw) < best_size) {
1640
best_size = VP8LBitWriterNumBytes(bw);
1641
// Store the BitWriter.
1642
VP8LBitWriterSwap(bw, &bw_best);
1643
#if !defined(WEBP_DISABLE_STATS)
1644
// Update the stats.
1645
if (stats != NULL) {
1646
stats->lossless_features = 0;
1647
if (enc->use_predict_) stats->lossless_features |= 1;
1648
if (enc->use_cross_color_) stats->lossless_features |= 2;
1649
if (enc->use_subtract_green_) stats->lossless_features |= 4;
1650
if (enc->use_palette_) stats->lossless_features |= 8;
1651
stats->histogram_bits = enc->histo_bits_;
1652
stats->transform_bits = enc->predictor_transform_bits_;
1653
stats->cross_color_transform_bits = enc->cross_color_transform_bits_;
1654
stats->cache_bits = enc->cache_bits_;
1655
stats->palette_size = enc->palette_size_;
1656
stats->lossless_size = (int)(best_size - byte_position);
1657
stats->lossless_hdr_size = hdr_size;
1658
stats->lossless_data_size = data_size;
1659
}
1660
#endif
1661
}
1662
// Reset the bit writer for the following iteration if any.
1663
if (num_crunch_configs > 1) VP8LBitWriterReset(&bw_init, bw);
1664
}
1665
VP8LBitWriterSwap(&bw_best, bw);
1666
1667
Error:
1668
VP8LBitWriterWipeOut(&bw_best);
1669
// The hook should return false in case of error.
1670
return (params->picture_->error_code == VP8_ENC_OK);
1671
}
1672
1673
int VP8LEncodeStream(const WebPConfig* const config,
1674
const WebPPicture* const picture,
1675
VP8LBitWriter* const bw_main) {
1676
VP8LEncoder* const enc_main = VP8LEncoderNew(config, picture);
1677
VP8LEncoder* enc_side = NULL;
1678
CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX];
1679
int num_crunch_configs_main, num_crunch_configs_side = 0;
1680
int idx;
1681
int red_and_blue_always_zero = 0;
1682
WebPWorker worker_main, worker_side;
1683
StreamEncodeContext params_main, params_side;
1684
// The main thread uses picture->stats, the side thread uses stats_side.
1685
WebPAuxStats stats_side;
1686
VP8LBitWriter bw_side;
1687
WebPPicture picture_side;
1688
const WebPWorkerInterface* const worker_interface = WebPGetWorkerInterface();
1689
int ok_main;
1690
1691
if (enc_main == NULL || !VP8LBitWriterInit(&bw_side, 0)) {
1692
VP8LEncoderDelete(enc_main);
1693
return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1694
}
1695
1696
// Avoid "garbage value" error from Clang's static analysis tool.
1697
if (!WebPPictureInit(&picture_side)) {
1698
goto Error;
1699
}
1700
1701
// Analyze image (entropy, num_palettes etc)
1702
if (!EncoderAnalyze(enc_main, crunch_configs, &num_crunch_configs_main,
1703
&red_and_blue_always_zero) ||
1704
!EncoderInit(enc_main)) {
1705
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1706
goto Error;
1707
}
1708
1709
// Split the configs between the main and side threads (if any).
1710
if (config->thread_level > 0) {
1711
num_crunch_configs_side = num_crunch_configs_main / 2;
1712
for (idx = 0; idx < num_crunch_configs_side; ++idx) {
1713
params_side.crunch_configs_[idx] =
1714
crunch_configs[num_crunch_configs_main - num_crunch_configs_side +
1715
idx];
1716
}
1717
params_side.num_crunch_configs_ = num_crunch_configs_side;
1718
}
1719
num_crunch_configs_main -= num_crunch_configs_side;
1720
for (idx = 0; idx < num_crunch_configs_main; ++idx) {
1721
params_main.crunch_configs_[idx] = crunch_configs[idx];
1722
}
1723
params_main.num_crunch_configs_ = num_crunch_configs_main;
1724
1725
// Fill in the parameters for the thread workers.
1726
{
1727
const int params_size = (num_crunch_configs_side > 0) ? 2 : 1;
1728
for (idx = 0; idx < params_size; ++idx) {
1729
// Create the parameters for each worker.
1730
WebPWorker* const worker = (idx == 0) ? &worker_main : &worker_side;
1731
StreamEncodeContext* const param =
1732
(idx == 0) ? &params_main : &params_side;
1733
param->config_ = config;
1734
param->red_and_blue_always_zero_ = red_and_blue_always_zero;
1735
if (idx == 0) {
1736
param->picture_ = picture;
1737
param->stats_ = picture->stats;
1738
param->bw_ = bw_main;
1739
param->enc_ = enc_main;
1740
} else {
1741
// Create a side picture (error_code is not thread-safe).
1742
if (!WebPPictureView(picture, /*left=*/0, /*top=*/0, picture->width,
1743
picture->height, &picture_side)) {
1744
assert(0);
1745
}
1746
picture_side.progress_hook = NULL; // Progress hook is not thread-safe.
1747
param->picture_ = &picture_side; // No need to free a view afterwards.
1748
param->stats_ = (picture->stats == NULL) ? NULL : &stats_side;
1749
// Create a side bit writer.
1750
if (!VP8LBitWriterClone(bw_main, &bw_side)) {
1751
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1752
goto Error;
1753
}
1754
param->bw_ = &bw_side;
1755
// Create a side encoder.
1756
enc_side = VP8LEncoderNew(config, &picture_side);
1757
if (enc_side == NULL || !EncoderInit(enc_side)) {
1758
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1759
goto Error;
1760
}
1761
// Copy the values that were computed for the main encoder.
1762
enc_side->histo_bits_ = enc_main->histo_bits_;
1763
enc_side->predictor_transform_bits_ =
1764
enc_main->predictor_transform_bits_;
1765
enc_side->cross_color_transform_bits_ =
1766
enc_main->cross_color_transform_bits_;
1767
enc_side->palette_size_ = enc_main->palette_size_;
1768
memcpy(enc_side->palette_, enc_main->palette_,
1769
sizeof(enc_main->palette_));
1770
memcpy(enc_side->palette_sorted_, enc_main->palette_sorted_,
1771
sizeof(enc_main->palette_sorted_));
1772
param->enc_ = enc_side;
1773
}
1774
// Create the workers.
1775
worker_interface->Init(worker);
1776
worker->data1 = param;
1777
worker->data2 = NULL;
1778
worker->hook = EncodeStreamHook;
1779
}
1780
}
1781
1782
// Start the second thread if needed.
1783
if (num_crunch_configs_side != 0) {
1784
if (!worker_interface->Reset(&worker_side)) {
1785
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1786
goto Error;
1787
}
1788
#if !defined(WEBP_DISABLE_STATS)
1789
// This line is here and not in the param initialization above to remove a
1790
// Clang static analyzer warning.
1791
if (picture->stats != NULL) {
1792
memcpy(&stats_side, picture->stats, sizeof(stats_side));
1793
}
1794
#endif
1795
worker_interface->Launch(&worker_side);
1796
}
1797
// Execute the main thread.
1798
worker_interface->Execute(&worker_main);
1799
ok_main = worker_interface->Sync(&worker_main);
1800
worker_interface->End(&worker_main);
1801
if (num_crunch_configs_side != 0) {
1802
// Wait for the second thread.
1803
const int ok_side = worker_interface->Sync(&worker_side);
1804
worker_interface->End(&worker_side);
1805
if (!ok_main || !ok_side) {
1806
if (picture->error_code == VP8_ENC_OK) {
1807
assert(picture_side.error_code != VP8_ENC_OK);
1808
WebPEncodingSetError(picture, picture_side.error_code);
1809
}
1810
goto Error;
1811
}
1812
if (VP8LBitWriterNumBytes(&bw_side) < VP8LBitWriterNumBytes(bw_main)) {
1813
VP8LBitWriterSwap(bw_main, &bw_side);
1814
#if !defined(WEBP_DISABLE_STATS)
1815
if (picture->stats != NULL) {
1816
memcpy(picture->stats, &stats_side, sizeof(*picture->stats));
1817
}
1818
#endif
1819
}
1820
}
1821
1822
Error:
1823
VP8LBitWriterWipeOut(&bw_side);
1824
VP8LEncoderDelete(enc_main);
1825
VP8LEncoderDelete(enc_side);
1826
return (picture->error_code == VP8_ENC_OK);
1827
}
1828
1829
#undef CRUNCH_CONFIGS_MAX
1830
#undef CRUNCH_SUBCONFIGS_MAX
1831
1832
int VP8LEncodeImage(const WebPConfig* const config,
1833
const WebPPicture* const picture) {
1834
int width, height;
1835
int has_alpha;
1836
size_t coded_size;
1837
int percent = 0;
1838
int initial_size;
1839
VP8LBitWriter bw;
1840
1841
if (picture == NULL) return 0;
1842
1843
if (config == NULL || picture->argb == NULL) {
1844
return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
1845
}
1846
1847
width = picture->width;
1848
height = picture->height;
1849
// Initialize BitWriter with size corresponding to 16 bpp to photo images and
1850
// 8 bpp for graphical images.
1851
initial_size = (config->image_hint == WEBP_HINT_GRAPH) ?
1852
width * height : width * height * 2;
1853
if (!VP8LBitWriterInit(&bw, initial_size)) {
1854
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1855
goto Error;
1856
}
1857
1858
if (!WebPReportProgress(picture, 1, &percent)) {
1859
UserAbort:
1860
WebPEncodingSetError(picture, VP8_ENC_ERROR_USER_ABORT);
1861
goto Error;
1862
}
1863
// Reset stats (for pure lossless coding)
1864
if (picture->stats != NULL) {
1865
WebPAuxStats* const stats = picture->stats;
1866
memset(stats, 0, sizeof(*stats));
1867
stats->PSNR[0] = 99.f;
1868
stats->PSNR[1] = 99.f;
1869
stats->PSNR[2] = 99.f;
1870
stats->PSNR[3] = 99.f;
1871
stats->PSNR[4] = 99.f;
1872
}
1873
1874
// Write image size.
1875
if (!WriteImageSize(picture, &bw)) {
1876
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1877
goto Error;
1878
}
1879
1880
has_alpha = WebPPictureHasTransparency(picture);
1881
// Write the non-trivial Alpha flag and lossless version.
1882
if (!WriteRealAlphaAndVersion(&bw, has_alpha)) {
1883
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1884
goto Error;
1885
}
1886
1887
if (!WebPReportProgress(picture, 2, &percent)) goto UserAbort;
1888
1889
// Encode main image stream.
1890
if (!VP8LEncodeStream(config, picture, &bw)) goto Error;
1891
1892
if (!WebPReportProgress(picture, 99, &percent)) goto UserAbort;
1893
1894
// Finish the RIFF chunk.
1895
if (!WriteImage(picture, &bw, &coded_size)) goto Error;
1896
1897
if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort;
1898
1899
#if !defined(WEBP_DISABLE_STATS)
1900
// Save size.
1901
if (picture->stats != NULL) {
1902
picture->stats->coded_size += (int)coded_size;
1903
picture->stats->lossless_size = (int)coded_size;
1904
}
1905
#endif
1906
1907
if (picture->extra_info != NULL) {
1908
const int mb_w = (width + 15) >> 4;
1909
const int mb_h = (height + 15) >> 4;
1910
memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info));
1911
}
1912
1913
Error:
1914
if (bw.error_) {
1915
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1916
}
1917
VP8LBitWriterWipeOut(&bw);
1918
return (picture->error_code == VP8_ENC_OK);
1919
}
1920
1921
//------------------------------------------------------------------------------
1922
1923