Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/utils/huffman_encode_utils.c
9912 views
1
// Copyright 2011 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Author: Jyrki Alakuijala ([email protected])
11
//
12
// Entropy encoding (Huffman) for webp lossless.
13
14
#include <assert.h>
15
#include <stdlib.h>
16
#include <string.h>
17
#include "src/utils/huffman_encode_utils.h"
18
#include "src/utils/utils.h"
19
#include "src/webp/format_constants.h"
20
21
// -----------------------------------------------------------------------------
22
// Util function to optimize the symbol map for RLE coding
23
24
// Heuristics for selecting the stride ranges to collapse.
25
static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
26
return abs(a - b) < 4;
27
}
28
29
// Change the population counts in a way that the consequent
30
// Huffman tree compression, especially its RLE-part, give smaller output.
31
static void OptimizeHuffmanForRle(int length, uint8_t* const good_for_rle,
32
uint32_t* const counts) {
33
// 1) Let's make the Huffman code more compatible with rle encoding.
34
int i;
35
for (; length >= 0; --length) {
36
if (length == 0) {
37
return; // All zeros.
38
}
39
if (counts[length - 1] != 0) {
40
// Now counts[0..length - 1] does not have trailing zeros.
41
break;
42
}
43
}
44
// 2) Let's mark all population counts that already can be encoded
45
// with an rle code.
46
{
47
// Let's not spoil any of the existing good rle codes.
48
// Mark any seq of 0's that is longer as 5 as a good_for_rle.
49
// Mark any seq of non-0's that is longer as 7 as a good_for_rle.
50
uint32_t symbol = counts[0];
51
int stride = 0;
52
for (i = 0; i < length + 1; ++i) {
53
if (i == length || counts[i] != symbol) {
54
if ((symbol == 0 && stride >= 5) ||
55
(symbol != 0 && stride >= 7)) {
56
int k;
57
for (k = 0; k < stride; ++k) {
58
good_for_rle[i - k - 1] = 1;
59
}
60
}
61
stride = 1;
62
if (i != length) {
63
symbol = counts[i];
64
}
65
} else {
66
++stride;
67
}
68
}
69
}
70
// 3) Let's replace those population counts that lead to more rle codes.
71
{
72
uint32_t stride = 0;
73
uint32_t limit = counts[0];
74
uint32_t sum = 0;
75
for (i = 0; i < length + 1; ++i) {
76
if (i == length || good_for_rle[i] ||
77
(i != 0 && good_for_rle[i - 1]) ||
78
!ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
79
if (stride >= 4 || (stride >= 3 && sum == 0)) {
80
uint32_t k;
81
// The stride must end, collapse what we have, if we have enough (4).
82
uint32_t count = (sum + stride / 2) / stride;
83
if (count < 1) {
84
count = 1;
85
}
86
if (sum == 0) {
87
// Don't make an all zeros stride to be upgraded to ones.
88
count = 0;
89
}
90
for (k = 0; k < stride; ++k) {
91
// We don't want to change value at counts[i],
92
// that is already belonging to the next stride. Thus - 1.
93
counts[i - k - 1] = count;
94
}
95
}
96
stride = 0;
97
sum = 0;
98
if (i < length - 3) {
99
// All interesting strides have a count of at least 4,
100
// at least when non-zeros.
101
limit = (counts[i] + counts[i + 1] +
102
counts[i + 2] + counts[i + 3] + 2) / 4;
103
} else if (i < length) {
104
limit = counts[i];
105
} else {
106
limit = 0;
107
}
108
}
109
++stride;
110
if (i != length) {
111
sum += counts[i];
112
if (stride >= 4) {
113
limit = (sum + stride / 2) / stride;
114
}
115
}
116
}
117
}
118
}
119
120
// A comparer function for two Huffman trees: sorts first by 'total count'
121
// (more comes first), and then by 'value' (more comes first).
122
static int CompareHuffmanTrees(const void* ptr1, const void* ptr2) {
123
const HuffmanTree* const t1 = (const HuffmanTree*)ptr1;
124
const HuffmanTree* const t2 = (const HuffmanTree*)ptr2;
125
if (t1->total_count_ > t2->total_count_) {
126
return -1;
127
} else if (t1->total_count_ < t2->total_count_) {
128
return 1;
129
} else {
130
assert(t1->value_ != t2->value_);
131
return (t1->value_ < t2->value_) ? -1 : 1;
132
}
133
}
134
135
static void SetBitDepths(const HuffmanTree* const tree,
136
const HuffmanTree* const pool,
137
uint8_t* const bit_depths, int level) {
138
if (tree->pool_index_left_ >= 0) {
139
SetBitDepths(&pool[tree->pool_index_left_], pool, bit_depths, level + 1);
140
SetBitDepths(&pool[tree->pool_index_right_], pool, bit_depths, level + 1);
141
} else {
142
bit_depths[tree->value_] = level;
143
}
144
}
145
146
// Create an optimal Huffman tree.
147
//
148
// (data,length): population counts.
149
// tree_limit: maximum bit depth (inclusive) of the codes.
150
// bit_depths[]: how many bits are used for the symbol.
151
//
152
// Returns 0 when an error has occurred.
153
//
154
// The catch here is that the tree cannot be arbitrarily deep
155
//
156
// count_limit is the value that is to be faked as the minimum value
157
// and this minimum value is raised until the tree matches the
158
// maximum length requirement.
159
//
160
// This algorithm is not of excellent performance for very long data blocks,
161
// especially when population counts are longer than 2**tree_limit, but
162
// we are not planning to use this with extremely long blocks.
163
//
164
// See https://en.wikipedia.org/wiki/Huffman_coding
165
static void GenerateOptimalTree(const uint32_t* const histogram,
166
int histogram_size,
167
HuffmanTree* tree, int tree_depth_limit,
168
uint8_t* const bit_depths) {
169
uint32_t count_min;
170
HuffmanTree* tree_pool;
171
int tree_size_orig = 0;
172
int i;
173
174
for (i = 0; i < histogram_size; ++i) {
175
if (histogram[i] != 0) {
176
++tree_size_orig;
177
}
178
}
179
180
if (tree_size_orig == 0) { // pretty optimal already!
181
return;
182
}
183
184
tree_pool = tree + tree_size_orig;
185
186
// For block sizes with less than 64k symbols we never need to do a
187
// second iteration of this loop.
188
// If we actually start running inside this loop a lot, we would perhaps
189
// be better off with the Katajainen algorithm.
190
assert(tree_size_orig <= (1 << (tree_depth_limit - 1)));
191
for (count_min = 1; ; count_min *= 2) {
192
int tree_size = tree_size_orig;
193
// We need to pack the Huffman tree in tree_depth_limit bits.
194
// So, we try by faking histogram entries to be at least 'count_min'.
195
int idx = 0;
196
int j;
197
for (j = 0; j < histogram_size; ++j) {
198
if (histogram[j] != 0) {
199
const uint32_t count =
200
(histogram[j] < count_min) ? count_min : histogram[j];
201
tree[idx].total_count_ = count;
202
tree[idx].value_ = j;
203
tree[idx].pool_index_left_ = -1;
204
tree[idx].pool_index_right_ = -1;
205
++idx;
206
}
207
}
208
209
// Build the Huffman tree.
210
qsort(tree, tree_size, sizeof(*tree), CompareHuffmanTrees);
211
212
if (tree_size > 1) { // Normal case.
213
int tree_pool_size = 0;
214
while (tree_size > 1) { // Finish when we have only one root.
215
uint32_t count;
216
tree_pool[tree_pool_size++] = tree[tree_size - 1];
217
tree_pool[tree_pool_size++] = tree[tree_size - 2];
218
count = tree_pool[tree_pool_size - 1].total_count_ +
219
tree_pool[tree_pool_size - 2].total_count_;
220
tree_size -= 2;
221
{
222
// Search for the insertion point.
223
int k;
224
for (k = 0; k < tree_size; ++k) {
225
if (tree[k].total_count_ <= count) {
226
break;
227
}
228
}
229
memmove(tree + (k + 1), tree + k, (tree_size - k) * sizeof(*tree));
230
tree[k].total_count_ = count;
231
tree[k].value_ = -1;
232
233
tree[k].pool_index_left_ = tree_pool_size - 1;
234
tree[k].pool_index_right_ = tree_pool_size - 2;
235
tree_size = tree_size + 1;
236
}
237
}
238
SetBitDepths(&tree[0], tree_pool, bit_depths, 0);
239
} else if (tree_size == 1) { // Trivial case: only one element.
240
bit_depths[tree[0].value_] = 1;
241
}
242
243
{
244
// Test if this Huffman tree satisfies our 'tree_depth_limit' criteria.
245
int max_depth = bit_depths[0];
246
for (j = 1; j < histogram_size; ++j) {
247
if (max_depth < bit_depths[j]) {
248
max_depth = bit_depths[j];
249
}
250
}
251
if (max_depth <= tree_depth_limit) {
252
break;
253
}
254
}
255
}
256
}
257
258
// -----------------------------------------------------------------------------
259
// Coding of the Huffman tree values
260
261
static HuffmanTreeToken* CodeRepeatedValues(int repetitions,
262
HuffmanTreeToken* tokens,
263
int value, int prev_value) {
264
assert(value <= MAX_ALLOWED_CODE_LENGTH);
265
if (value != prev_value) {
266
tokens->code = value;
267
tokens->extra_bits = 0;
268
++tokens;
269
--repetitions;
270
}
271
while (repetitions >= 1) {
272
if (repetitions < 3) {
273
int i;
274
for (i = 0; i < repetitions; ++i) {
275
tokens->code = value;
276
tokens->extra_bits = 0;
277
++tokens;
278
}
279
break;
280
} else if (repetitions < 7) {
281
tokens->code = 16;
282
tokens->extra_bits = repetitions - 3;
283
++tokens;
284
break;
285
} else {
286
tokens->code = 16;
287
tokens->extra_bits = 3;
288
++tokens;
289
repetitions -= 6;
290
}
291
}
292
return tokens;
293
}
294
295
static HuffmanTreeToken* CodeRepeatedZeros(int repetitions,
296
HuffmanTreeToken* tokens) {
297
while (repetitions >= 1) {
298
if (repetitions < 3) {
299
int i;
300
for (i = 0; i < repetitions; ++i) {
301
tokens->code = 0; // 0-value
302
tokens->extra_bits = 0;
303
++tokens;
304
}
305
break;
306
} else if (repetitions < 11) {
307
tokens->code = 17;
308
tokens->extra_bits = repetitions - 3;
309
++tokens;
310
break;
311
} else if (repetitions < 139) {
312
tokens->code = 18;
313
tokens->extra_bits = repetitions - 11;
314
++tokens;
315
break;
316
} else {
317
tokens->code = 18;
318
tokens->extra_bits = 0x7f; // 138 repeated 0s
319
++tokens;
320
repetitions -= 138;
321
}
322
}
323
return tokens;
324
}
325
326
int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree,
327
HuffmanTreeToken* tokens, int max_tokens) {
328
HuffmanTreeToken* const starting_token = tokens;
329
HuffmanTreeToken* const ending_token = tokens + max_tokens;
330
const int depth_size = tree->num_symbols;
331
int prev_value = 8; // 8 is the initial value for rle.
332
int i = 0;
333
assert(tokens != NULL);
334
while (i < depth_size) {
335
const int value = tree->code_lengths[i];
336
int k = i + 1;
337
int runs;
338
while (k < depth_size && tree->code_lengths[k] == value) ++k;
339
runs = k - i;
340
if (value == 0) {
341
tokens = CodeRepeatedZeros(runs, tokens);
342
} else {
343
tokens = CodeRepeatedValues(runs, tokens, value, prev_value);
344
prev_value = value;
345
}
346
i += runs;
347
assert(tokens <= ending_token);
348
}
349
(void)ending_token; // suppress 'unused variable' warning
350
return (int)(tokens - starting_token);
351
}
352
353
// -----------------------------------------------------------------------------
354
355
// Pre-reversed 4-bit values.
356
static const uint8_t kReversedBits[16] = {
357
0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
358
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
359
};
360
361
static uint32_t ReverseBits(int num_bits, uint32_t bits) {
362
uint32_t retval = 0;
363
int i = 0;
364
while (i < num_bits) {
365
i += 4;
366
retval |= kReversedBits[bits & 0xf] << (MAX_ALLOWED_CODE_LENGTH + 1 - i);
367
bits >>= 4;
368
}
369
retval >>= (MAX_ALLOWED_CODE_LENGTH + 1 - num_bits);
370
return retval;
371
}
372
373
// Get the actual bit values for a tree of bit depths.
374
static void ConvertBitDepthsToSymbols(HuffmanTreeCode* const tree) {
375
// 0 bit-depth means that the symbol does not exist.
376
int i;
377
int len;
378
uint32_t next_code[MAX_ALLOWED_CODE_LENGTH + 1];
379
int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
380
381
assert(tree != NULL);
382
len = tree->num_symbols;
383
for (i = 0; i < len; ++i) {
384
const int code_length = tree->code_lengths[i];
385
assert(code_length <= MAX_ALLOWED_CODE_LENGTH);
386
++depth_count[code_length];
387
}
388
depth_count[0] = 0; // ignore unused symbol
389
next_code[0] = 0;
390
{
391
uint32_t code = 0;
392
for (i = 1; i <= MAX_ALLOWED_CODE_LENGTH; ++i) {
393
code = (code + depth_count[i - 1]) << 1;
394
next_code[i] = code;
395
}
396
}
397
for (i = 0; i < len; ++i) {
398
const int code_length = tree->code_lengths[i];
399
tree->codes[i] = ReverseBits(code_length, next_code[code_length]++);
400
}
401
}
402
403
// -----------------------------------------------------------------------------
404
// Main entry point
405
406
void VP8LCreateHuffmanTree(uint32_t* const histogram, int tree_depth_limit,
407
uint8_t* const buf_rle, HuffmanTree* const huff_tree,
408
HuffmanTreeCode* const huff_code) {
409
const int num_symbols = huff_code->num_symbols;
410
memset(buf_rle, 0, num_symbols * sizeof(*buf_rle));
411
OptimizeHuffmanForRle(num_symbols, buf_rle, histogram);
412
GenerateOptimalTree(histogram, num_symbols, huff_tree, tree_depth_limit,
413
huff_code->code_lengths);
414
// Create the actual bit codes for the bit lengths.
415
ConvertBitDepthsToSymbols(huff_code);
416
}
417
418