Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/utils/huffman_utils.c
9912 views
1
// Copyright 2012 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Utilities for building and looking up Huffman trees.
11
//
12
// Author: Urvang Joshi ([email protected])
13
14
#include <assert.h>
15
#include <stdlib.h>
16
#include <string.h>
17
#include "src/utils/huffman_utils.h"
18
#include "src/utils/utils.h"
19
#include "src/webp/format_constants.h"
20
21
// Huffman data read via DecodeImageStream is represented in two (red and green)
22
// bytes.
23
#define MAX_HTREE_GROUPS 0x10000
24
25
HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
26
HTreeGroup* const htree_groups =
27
(HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups));
28
if (htree_groups == NULL) {
29
return NULL;
30
}
31
assert(num_htree_groups <= MAX_HTREE_GROUPS);
32
return htree_groups;
33
}
34
35
void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups) {
36
if (htree_groups != NULL) {
37
WebPSafeFree(htree_groups);
38
}
39
}
40
41
// Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the
42
// bit-wise reversal of the len least significant bits of key.
43
static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) {
44
uint32_t step = 1 << (len - 1);
45
while (key & step) {
46
step >>= 1;
47
}
48
return step ? (key & (step - 1)) + step : key;
49
}
50
51
// Stores code in table[0], table[step], table[2*step], ..., table[end].
52
// Assumes that end is an integer multiple of step.
53
static WEBP_INLINE void ReplicateValue(HuffmanCode* table,
54
int step, int end,
55
HuffmanCode code) {
56
assert(end % step == 0);
57
do {
58
end -= step;
59
table[end] = code;
60
} while (end > 0);
61
}
62
63
// Returns the table width of the next 2nd level table. count is the histogram
64
// of bit lengths for the remaining symbols, len is the code length of the next
65
// processed symbol
66
static WEBP_INLINE int NextTableBitSize(const int* const count,
67
int len, int root_bits) {
68
int left = 1 << (len - root_bits);
69
while (len < MAX_ALLOWED_CODE_LENGTH) {
70
left -= count[len];
71
if (left <= 0) break;
72
++len;
73
left <<= 1;
74
}
75
return len - root_bits;
76
}
77
78
// sorted[code_lengths_size] is a pre-allocated array for sorting symbols
79
// by code length.
80
static int BuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
81
const int code_lengths[], int code_lengths_size,
82
uint16_t sorted[]) {
83
HuffmanCode* table = root_table; // next available space in table
84
int total_size = 1 << root_bits; // total size root table + 2nd level table
85
int len; // current code length
86
int symbol; // symbol index in original or sorted table
87
// number of codes of each length:
88
int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
89
// offsets in sorted table for each length:
90
int offset[MAX_ALLOWED_CODE_LENGTH + 1];
91
92
assert(code_lengths_size != 0);
93
assert(code_lengths != NULL);
94
assert((root_table != NULL && sorted != NULL) ||
95
(root_table == NULL && sorted == NULL));
96
assert(root_bits > 0);
97
98
// Build histogram of code lengths.
99
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
100
if (code_lengths[symbol] > MAX_ALLOWED_CODE_LENGTH) {
101
return 0;
102
}
103
++count[code_lengths[symbol]];
104
}
105
106
// Error, all code lengths are zeros.
107
if (count[0] == code_lengths_size) {
108
return 0;
109
}
110
111
// Generate offsets into sorted symbol table by code length.
112
offset[1] = 0;
113
for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) {
114
if (count[len] > (1 << len)) {
115
return 0;
116
}
117
offset[len + 1] = offset[len] + count[len];
118
}
119
120
// Sort symbols by length, by symbol order within each length.
121
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
122
const int symbol_code_length = code_lengths[symbol];
123
if (code_lengths[symbol] > 0) {
124
if (sorted != NULL) {
125
if(offset[symbol_code_length] >= code_lengths_size) {
126
return 0;
127
}
128
sorted[offset[symbol_code_length]++] = symbol;
129
} else {
130
offset[symbol_code_length]++;
131
}
132
}
133
}
134
135
// Special case code with only one value.
136
if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) {
137
if (sorted != NULL) {
138
HuffmanCode code;
139
code.bits = 0;
140
code.value = (uint16_t)sorted[0];
141
ReplicateValue(table, 1, total_size, code);
142
}
143
return total_size;
144
}
145
146
{
147
int step; // step size to replicate values in current table
148
uint32_t low = 0xffffffffu; // low bits for current root entry
149
uint32_t mask = total_size - 1; // mask for low bits
150
uint32_t key = 0; // reversed prefix code
151
int num_nodes = 1; // number of Huffman tree nodes
152
int num_open = 1; // number of open branches in current tree level
153
int table_bits = root_bits; // key length of current table
154
int table_size = 1 << table_bits; // size of current table
155
symbol = 0;
156
// Fill in root table.
157
for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) {
158
num_open <<= 1;
159
num_nodes += num_open;
160
num_open -= count[len];
161
if (num_open < 0) {
162
return 0;
163
}
164
if (root_table == NULL) continue;
165
for (; count[len] > 0; --count[len]) {
166
HuffmanCode code;
167
code.bits = (uint8_t)len;
168
code.value = (uint16_t)sorted[symbol++];
169
ReplicateValue(&table[key], step, table_size, code);
170
key = GetNextKey(key, len);
171
}
172
}
173
174
// Fill in 2nd level tables and add pointers to root table.
175
for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH;
176
++len, step <<= 1) {
177
num_open <<= 1;
178
num_nodes += num_open;
179
num_open -= count[len];
180
if (num_open < 0) {
181
return 0;
182
}
183
for (; count[len] > 0; --count[len]) {
184
HuffmanCode code;
185
if ((key & mask) != low) {
186
if (root_table != NULL) table += table_size;
187
table_bits = NextTableBitSize(count, len, root_bits);
188
table_size = 1 << table_bits;
189
total_size += table_size;
190
low = key & mask;
191
if (root_table != NULL) {
192
root_table[low].bits = (uint8_t)(table_bits + root_bits);
193
root_table[low].value = (uint16_t)((table - root_table) - low);
194
}
195
}
196
if (root_table != NULL) {
197
code.bits = (uint8_t)(len - root_bits);
198
code.value = (uint16_t)sorted[symbol++];
199
ReplicateValue(&table[key >> root_bits], step, table_size, code);
200
}
201
key = GetNextKey(key, len);
202
}
203
}
204
205
// Check if tree is full.
206
if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) {
207
return 0;
208
}
209
}
210
211
return total_size;
212
}
213
214
// Maximum code_lengths_size is 2328 (reached for 11-bit color_cache_bits).
215
// More commonly, the value is around ~280.
216
#define MAX_CODE_LENGTHS_SIZE \
217
((1 << MAX_CACHE_BITS) + NUM_LITERAL_CODES + NUM_LENGTH_CODES)
218
// Cut-off value for switching between heap and stack allocation.
219
#define SORTED_SIZE_CUTOFF 512
220
int VP8LBuildHuffmanTable(HuffmanTables* const root_table, int root_bits,
221
const int code_lengths[], int code_lengths_size) {
222
const int total_size =
223
BuildHuffmanTable(NULL, root_bits, code_lengths, code_lengths_size, NULL);
224
assert(code_lengths_size <= MAX_CODE_LENGTHS_SIZE);
225
if (total_size == 0 || root_table == NULL) return total_size;
226
227
if (root_table->curr_segment->curr_table + total_size >=
228
root_table->curr_segment->start + root_table->curr_segment->size) {
229
// If 'root_table' does not have enough memory, allocate a new segment.
230
// The available part of root_table->curr_segment is left unused because we
231
// need a contiguous buffer.
232
const int segment_size = root_table->curr_segment->size;
233
struct HuffmanTablesSegment* next =
234
(HuffmanTablesSegment*)WebPSafeMalloc(1, sizeof(*next));
235
if (next == NULL) return 0;
236
// Fill the new segment.
237
// We need at least 'total_size' but if that value is small, it is better to
238
// allocate a big chunk to prevent more allocations later. 'segment_size' is
239
// therefore chosen (any other arbitrary value could be chosen).
240
next->size = total_size > segment_size ? total_size : segment_size;
241
next->start =
242
(HuffmanCode*)WebPSafeMalloc(next->size, sizeof(*next->start));
243
if (next->start == NULL) {
244
WebPSafeFree(next);
245
return 0;
246
}
247
next->curr_table = next->start;
248
next->next = NULL;
249
// Point to the new segment.
250
root_table->curr_segment->next = next;
251
root_table->curr_segment = next;
252
}
253
if (code_lengths_size <= SORTED_SIZE_CUTOFF) {
254
// use local stack-allocated array.
255
uint16_t sorted[SORTED_SIZE_CUTOFF];
256
BuildHuffmanTable(root_table->curr_segment->curr_table, root_bits,
257
code_lengths, code_lengths_size, sorted);
258
} else { // rare case. Use heap allocation.
259
uint16_t* const sorted =
260
(uint16_t*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted));
261
if (sorted == NULL) return 0;
262
BuildHuffmanTable(root_table->curr_segment->curr_table, root_bits,
263
code_lengths, code_lengths_size, sorted);
264
WebPSafeFree(sorted);
265
}
266
return total_size;
267
}
268
269
int VP8LHuffmanTablesAllocate(int size, HuffmanTables* huffman_tables) {
270
// Have 'segment' point to the first segment for now, 'root'.
271
HuffmanTablesSegment* const root = &huffman_tables->root;
272
huffman_tables->curr_segment = root;
273
root->next = NULL;
274
// Allocate root.
275
root->start = (HuffmanCode*)WebPSafeMalloc(size, sizeof(*root->start));
276
if (root->start == NULL) return 0;
277
root->curr_table = root->start;
278
root->size = size;
279
return 1;
280
}
281
282
void VP8LHuffmanTablesDeallocate(HuffmanTables* const huffman_tables) {
283
HuffmanTablesSegment *current, *next;
284
if (huffman_tables == NULL) return;
285
// Free the root node.
286
current = &huffman_tables->root;
287
next = current->next;
288
WebPSafeFree(current->start);
289
current->start = NULL;
290
current->next = NULL;
291
current = next;
292
// Free the following nodes.
293
while (current != NULL) {
294
next = current->next;
295
WebPSafeFree(current->start);
296
WebPSafeFree(current);
297
current = next;
298
}
299
}
300
301