Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/utils/quant_levels_dec_utils.c
21035 views
1
// Copyright 2013 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Implement gradient smoothing: we replace a current alpha value by its
11
// surrounding average if it's close enough (that is: the change will be less
12
// than the minimum distance between two quantized level).
13
// We use sliding window for computing the 2d moving average.
14
//
15
// Author: Skal ([email protected])
16
17
#include "src/utils/quant_levels_dec_utils.h"
18
19
#include <string.h> // for memset
20
21
#include "src/utils/utils.h"
22
#include "src/webp/types.h"
23
24
// #define USE_DITHERING // uncomment to enable ordered dithering (not vital)
25
26
#define FIX 16 // fix-point precision for averaging
27
#define LFIX 2 // extra precision for look-up table
28
#define LUT_SIZE ((1 << (8 + LFIX)) - 1) // look-up table size
29
30
#if defined(USE_DITHERING)
31
32
#define DFIX 4 // extra precision for ordered dithering
33
#define DSIZE 4 // dithering size (must be a power of two)
34
// cf. https://en.wikipedia.org/wiki/Ordered_dithering
35
static const uint8_t kOrderedDither[DSIZE][DSIZE] = {
36
{ 0, 8, 2, 10 }, // coefficients are in DFIX fixed-point precision
37
{ 12, 4, 14, 6 },
38
{ 3, 11, 1, 9 },
39
{ 15, 7, 13, 5 }
40
};
41
42
#else
43
#define DFIX 0
44
#endif
45
46
typedef struct {
47
int width, height; // dimension
48
int stride; // stride in bytes
49
int row; // current input row being processed
50
uint8_t* src; // input pointer
51
uint8_t* dst; // output pointer
52
53
int radius; // filter radius (=delay)
54
int scale; // normalization factor, in FIX bits precision
55
56
void* mem; // all memory
57
58
// various scratch buffers
59
uint16_t* start;
60
uint16_t* cur;
61
uint16_t* end;
62
uint16_t* top;
63
uint16_t* average;
64
65
// input levels distribution
66
int num_levels; // number of quantized levels
67
int min, max; // min and max level values
68
int min_level_dist; // smallest distance between two consecutive levels
69
70
int16_t* correction; // size = 1 + 2*LUT_SIZE -> ~4k memory
71
} SmoothParams;
72
73
//------------------------------------------------------------------------------
74
75
#define CLIP_8b_MASK (int)(~0U << (8 + DFIX))
76
static WEBP_INLINE uint8_t clip_8b(int v) {
77
return (!(v & CLIP_8b_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u;
78
}
79
#undef CLIP_8b_MASK
80
81
// vertical accumulation
82
static void VFilter(SmoothParams* const p) {
83
const uint8_t* src = p->src;
84
const int w = p->width;
85
uint16_t* const cur = p->cur;
86
const uint16_t* const top = p->top;
87
uint16_t* const out = p->end;
88
uint16_t sum = 0; // all arithmetic is modulo 16bit
89
int x;
90
91
for (x = 0; x < w; ++x) {
92
uint16_t new_value;
93
sum += src[x];
94
new_value = top[x] + sum;
95
out[x] = new_value - cur[x]; // vertical sum of 'r' pixels.
96
cur[x] = new_value;
97
}
98
// move input pointers one row down
99
p->top = p->cur;
100
p->cur += w;
101
if (p->cur == p->end) p->cur = p->start; // roll-over
102
// We replicate edges, as it's somewhat easier as a boundary condition.
103
// That's why we don't update the 'src' pointer on top/bottom area:
104
if (p->row >= 0 && p->row < p->height - 1) {
105
p->src += p->stride;
106
}
107
}
108
109
// horizontal accumulation. We use mirror replication of missing pixels, as it's
110
// a little easier to implement (surprisingly).
111
static void HFilter(SmoothParams* const p) {
112
const uint16_t* const in = p->end;
113
uint16_t* const out = p->average;
114
const uint32_t scale = p->scale;
115
const int w = p->width;
116
const int r = p->radius;
117
118
int x;
119
for (x = 0; x <= r; ++x) { // left mirroring
120
const uint16_t delta = in[x + r - 1] + in[r - x];
121
out[x] = (delta * scale) >> FIX;
122
}
123
for (; x < w - r; ++x) { // bulk middle run
124
const uint16_t delta = in[x + r] - in[x - r - 1];
125
out[x] = (delta * scale) >> FIX;
126
}
127
for (; x < w; ++x) { // right mirroring
128
const uint16_t delta =
129
2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1];
130
out[x] = (delta * scale) >> FIX;
131
}
132
}
133
134
// emit one filtered output row
135
static void ApplyFilter(SmoothParams* const p) {
136
const uint16_t* const average = p->average;
137
const int w = p->width;
138
const int16_t* const correction = p->correction;
139
#if defined(USE_DITHERING)
140
const uint8_t* const dither = kOrderedDither[p->row % DSIZE];
141
#endif
142
uint8_t* const dst = p->dst;
143
int x;
144
for (x = 0; x < w; ++x) {
145
const int v = dst[x];
146
if (v < p->max && v > p->min) {
147
const int c = (v << DFIX) + correction[average[x] - (v << LFIX)];
148
#if defined(USE_DITHERING)
149
dst[x] = clip_8b(c + dither[x % DSIZE]);
150
#else
151
dst[x] = clip_8b(c);
152
#endif
153
}
154
}
155
p->dst += p->stride; // advance output pointer
156
}
157
158
//------------------------------------------------------------------------------
159
// Initialize correction table
160
161
static void InitCorrectionLUT(int16_t* const lut, int min_dist) {
162
// The correction curve is:
163
// f(x) = x for x <= threshold2
164
// f(x) = 0 for x >= threshold1
165
// and a linear interpolation for range x=[threshold2, threshold1]
166
// (along with f(-x) = -f(x) symmetry).
167
// Note that: threshold2 = 3/4 * threshold1
168
const int threshold1 = min_dist << LFIX;
169
const int threshold2 = (3 * threshold1) >> 2;
170
const int max_threshold = threshold2 << DFIX;
171
const int delta = threshold1 - threshold2;
172
int i;
173
for (i = 1; i <= LUT_SIZE; ++i) {
174
int c = (i <= threshold2) ? (i << DFIX)
175
: (i < threshold1) ? max_threshold * (threshold1 - i) / delta
176
: 0;
177
c >>= LFIX;
178
lut[+i] = +c;
179
lut[-i] = -c;
180
}
181
lut[0] = 0;
182
}
183
184
static void CountLevels(SmoothParams* const p) {
185
int i, j, last_level;
186
uint8_t used_levels[256] = { 0 };
187
const uint8_t* data = p->src;
188
p->min = 255;
189
p->max = 0;
190
for (j = 0; j < p->height; ++j) {
191
for (i = 0; i < p->width; ++i) {
192
const int v = data[i];
193
if (v < p->min) p->min = v;
194
if (v > p->max) p->max = v;
195
used_levels[v] = 1;
196
}
197
data += p->stride;
198
}
199
// Compute the mininum distance between two non-zero levels.
200
p->min_level_dist = p->max - p->min;
201
last_level = -1;
202
for (i = 0; i < 256; ++i) {
203
if (used_levels[i]) {
204
++p->num_levels;
205
if (last_level >= 0) {
206
const int level_dist = i - last_level;
207
if (level_dist < p->min_level_dist) {
208
p->min_level_dist = level_dist;
209
}
210
}
211
last_level = i;
212
}
213
}
214
}
215
216
// Initialize all params.
217
static int InitParams(uint8_t* const data, int width, int height, int stride,
218
int radius, SmoothParams* const p) {
219
const int R = 2 * radius + 1; // total size of the kernel
220
221
const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start);
222
const size_t size_m = width * sizeof(*p->average);
223
const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction);
224
const size_t total_size = size_scratch_m + size_m + size_lut;
225
uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size);
226
227
if (mem == NULL) return 0;
228
p->mem = (void*)mem;
229
230
p->start = (uint16_t*)mem;
231
p->cur = p->start;
232
p->end = p->start + R * width;
233
p->top = p->end - width;
234
memset(p->top, 0, width * sizeof(*p->top));
235
mem += size_scratch_m;
236
237
p->average = (uint16_t*)mem;
238
mem += size_m;
239
240
p->width = width;
241
p->height = height;
242
p->stride = stride;
243
p->src = data;
244
p->dst = data;
245
p->radius = radius;
246
p->scale = (1 << (FIX + LFIX)) / (R * R); // normalization constant
247
p->row = -radius;
248
249
// analyze the input distribution so we can best-fit the threshold
250
CountLevels(p);
251
252
// correction table
253
p->correction = ((int16_t*)mem) + LUT_SIZE;
254
InitCorrectionLUT(p->correction, p->min_level_dist);
255
256
return 1;
257
}
258
259
static void CleanupParams(SmoothParams* const p) {
260
WebPSafeFree(p->mem);
261
}
262
263
int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride,
264
int strength) {
265
int radius = 4 * strength / 100;
266
267
if (strength < 0 || strength > 100) return 0;
268
if (data == NULL || width <= 0 || height <= 0) return 0; // bad params
269
270
// limit the filter size to not exceed the image dimensions
271
if (2 * radius + 1 > width) radius = (width - 1) >> 1;
272
if (2 * radius + 1 > height) radius = (height - 1) >> 1;
273
274
if (radius > 0) {
275
SmoothParams p;
276
memset(&p, 0, sizeof(p));
277
if (!InitParams(data, width, height, stride, radius, &p)) return 0;
278
if (p.num_levels > 2) {
279
for (; p.row < p.height; ++p.row) {
280
VFilter(&p); // accumulate average of input
281
// Need to wait few rows in order to prime the filter,
282
// before emitting some output.
283
if (p.row >= p.radius) {
284
HFilter(&p);
285
ApplyFilter(&p);
286
}
287
}
288
}
289
CleanupParams(&p);
290
}
291
return 1;
292
}
293
294