Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/utils/quant_levels_utils.c
20969 views
1
// Copyright 2011 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Quantize levels for specified number of quantization-levels ([2, 256]).
11
// Min and max values are preserved (usual 0 and 255 for alpha plane).
12
//
13
// Author: Skal ([email protected])
14
15
#include <assert.h>
16
#include <stddef.h>
17
18
#include "src/webp/types.h"
19
#include "src/utils/quant_levels_utils.h"
20
21
#define NUM_SYMBOLS 256
22
23
#define MAX_ITER 6 // Maximum number of convergence steps.
24
#define ERROR_THRESHOLD 1e-4 // MSE stopping criterion.
25
26
// -----------------------------------------------------------------------------
27
// Quantize levels.
28
29
int QuantizeLevels(uint8_t* const data, int width, int height,
30
int num_levels, uint64_t* const sse) {
31
int freq[NUM_SYMBOLS] = { 0 };
32
int q_level[NUM_SYMBOLS] = { 0 };
33
double inv_q_level[NUM_SYMBOLS] = { 0 };
34
int min_s = 255, max_s = 0;
35
const size_t data_size = height * width;
36
int i, num_levels_in, iter;
37
double last_err = 1.e38, err = 0.;
38
const double err_threshold = ERROR_THRESHOLD * data_size;
39
40
if (data == NULL) {
41
return 0;
42
}
43
44
if (width <= 0 || height <= 0) {
45
return 0;
46
}
47
48
if (num_levels < 2 || num_levels > 256) {
49
return 0;
50
}
51
52
{
53
size_t n;
54
num_levels_in = 0;
55
for (n = 0; n < data_size; ++n) {
56
num_levels_in += (freq[data[n]] == 0);
57
if (min_s > data[n]) min_s = data[n];
58
if (max_s < data[n]) max_s = data[n];
59
++freq[data[n]];
60
}
61
}
62
63
if (num_levels_in <= num_levels) goto End; // nothing to do!
64
65
// Start with uniformly spread centroids.
66
for (i = 0; i < num_levels; ++i) {
67
inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1);
68
}
69
70
// Fixed values. Won't be changed.
71
q_level[min_s] = 0;
72
q_level[max_s] = num_levels - 1;
73
assert(inv_q_level[0] == min_s);
74
assert(inv_q_level[num_levels - 1] == max_s);
75
76
// k-Means iterations.
77
for (iter = 0; iter < MAX_ITER; ++iter) {
78
double q_sum[NUM_SYMBOLS] = { 0 };
79
double q_count[NUM_SYMBOLS] = { 0 };
80
int s, slot = 0;
81
82
// Assign classes to representatives.
83
for (s = min_s; s <= max_s; ++s) {
84
// Keep track of the nearest neighbour 'slot'
85
while (slot < num_levels - 1 &&
86
2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) {
87
++slot;
88
}
89
if (freq[s] > 0) {
90
q_sum[slot] += s * freq[s];
91
q_count[slot] += freq[s];
92
}
93
q_level[s] = slot;
94
}
95
96
// Assign new representatives to classes.
97
if (num_levels > 2) {
98
for (slot = 1; slot < num_levels - 1; ++slot) {
99
const double count = q_count[slot];
100
if (count > 0.) {
101
inv_q_level[slot] = q_sum[slot] / count;
102
}
103
}
104
}
105
106
// Compute convergence error.
107
err = 0.;
108
for (s = min_s; s <= max_s; ++s) {
109
const double error = s - inv_q_level[q_level[s]];
110
err += freq[s] * error * error;
111
}
112
113
// Check for convergence: we stop as soon as the error is no
114
// longer improving.
115
if (last_err - err < err_threshold) break;
116
last_err = err;
117
}
118
119
// Remap the alpha plane to quantized values.
120
{
121
// double->int rounding operation can be costly, so we do it
122
// once for all before remapping. We also perform the data[] -> slot
123
// mapping, while at it (avoid one indirection in the final loop).
124
uint8_t map[NUM_SYMBOLS];
125
int s;
126
size_t n;
127
for (s = min_s; s <= max_s; ++s) {
128
const int slot = q_level[s];
129
map[s] = (uint8_t)(inv_q_level[slot] + .5);
130
}
131
// Final pass.
132
for (n = 0; n < data_size; ++n) {
133
data[n] = map[data[n]];
134
}
135
}
136
End:
137
// Store sum of squared error if needed.
138
if (sse != NULL) *sse = (uint64_t)err;
139
140
return 1;
141
}
142
143