Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/libwebp/src/utils/quant_levels_utils.c
9912 views
1
// Copyright 2011 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Quantize levels for specified number of quantization-levels ([2, 256]).
11
// Min and max values are preserved (usual 0 and 255 for alpha plane).
12
//
13
// Author: Skal ([email protected])
14
15
#include <assert.h>
16
17
#include "src/utils/quant_levels_utils.h"
18
19
#define NUM_SYMBOLS 256
20
21
#define MAX_ITER 6 // Maximum number of convergence steps.
22
#define ERROR_THRESHOLD 1e-4 // MSE stopping criterion.
23
24
// -----------------------------------------------------------------------------
25
// Quantize levels.
26
27
int QuantizeLevels(uint8_t* const data, int width, int height,
28
int num_levels, uint64_t* const sse) {
29
int freq[NUM_SYMBOLS] = { 0 };
30
int q_level[NUM_SYMBOLS] = { 0 };
31
double inv_q_level[NUM_SYMBOLS] = { 0 };
32
int min_s = 255, max_s = 0;
33
const size_t data_size = height * width;
34
int i, num_levels_in, iter;
35
double last_err = 1.e38, err = 0.;
36
const double err_threshold = ERROR_THRESHOLD * data_size;
37
38
if (data == NULL) {
39
return 0;
40
}
41
42
if (width <= 0 || height <= 0) {
43
return 0;
44
}
45
46
if (num_levels < 2 || num_levels > 256) {
47
return 0;
48
}
49
50
{
51
size_t n;
52
num_levels_in = 0;
53
for (n = 0; n < data_size; ++n) {
54
num_levels_in += (freq[data[n]] == 0);
55
if (min_s > data[n]) min_s = data[n];
56
if (max_s < data[n]) max_s = data[n];
57
++freq[data[n]];
58
}
59
}
60
61
if (num_levels_in <= num_levels) goto End; // nothing to do!
62
63
// Start with uniformly spread centroids.
64
for (i = 0; i < num_levels; ++i) {
65
inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1);
66
}
67
68
// Fixed values. Won't be changed.
69
q_level[min_s] = 0;
70
q_level[max_s] = num_levels - 1;
71
assert(inv_q_level[0] == min_s);
72
assert(inv_q_level[num_levels - 1] == max_s);
73
74
// k-Means iterations.
75
for (iter = 0; iter < MAX_ITER; ++iter) {
76
double q_sum[NUM_SYMBOLS] = { 0 };
77
double q_count[NUM_SYMBOLS] = { 0 };
78
int s, slot = 0;
79
80
// Assign classes to representatives.
81
for (s = min_s; s <= max_s; ++s) {
82
// Keep track of the nearest neighbour 'slot'
83
while (slot < num_levels - 1 &&
84
2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) {
85
++slot;
86
}
87
if (freq[s] > 0) {
88
q_sum[slot] += s * freq[s];
89
q_count[slot] += freq[s];
90
}
91
q_level[s] = slot;
92
}
93
94
// Assign new representatives to classes.
95
if (num_levels > 2) {
96
for (slot = 1; slot < num_levels - 1; ++slot) {
97
const double count = q_count[slot];
98
if (count > 0.) {
99
inv_q_level[slot] = q_sum[slot] / count;
100
}
101
}
102
}
103
104
// Compute convergence error.
105
err = 0.;
106
for (s = min_s; s <= max_s; ++s) {
107
const double error = s - inv_q_level[q_level[s]];
108
err += freq[s] * error * error;
109
}
110
111
// Check for convergence: we stop as soon as the error is no
112
// longer improving.
113
if (last_err - err < err_threshold) break;
114
last_err = err;
115
}
116
117
// Remap the alpha plane to quantized values.
118
{
119
// double->int rounding operation can be costly, so we do it
120
// once for all before remapping. We also perform the data[] -> slot
121
// mapping, while at it (avoid one indirection in the final loop).
122
uint8_t map[NUM_SYMBOLS];
123
int s;
124
size_t n;
125
for (s = min_s; s <= max_s; ++s) {
126
const int slot = q_level[s];
127
map[s] = (uint8_t)(inv_q_level[slot] + .5);
128
}
129
// Final pass.
130
for (n = 0; n < data_size; ++n) {
131
data[n] = map[data[n]];
132
}
133
}
134
End:
135
// Store sum of squared error if needed.
136
if (sse != NULL) *sse = (uint64_t)err;
137
138
return 1;
139
}
140
141
142