Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/linuxbsd_headers/wayland/wayland-util.h
9898 views
1
/*
2
* Copyright © 2008 Kristian Høgsberg
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice (including the
13
* next paragraph) shall be included in all copies or substantial
14
* portions of the Software.
15
*
16
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
18
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
20
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
21
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23
* SOFTWARE.
24
*/
25
26
/** \file wayland-util.h
27
*
28
* \brief Utility classes, functions, and macros.
29
*/
30
31
#ifndef WAYLAND_UTIL_H
32
#define WAYLAND_UTIL_H
33
34
#include <math.h>
35
#include <stddef.h>
36
#include <inttypes.h>
37
#include <stdarg.h>
38
39
#ifdef __cplusplus
40
extern "C" {
41
#endif
42
43
/** Visibility attribute */
44
#if defined(__GNUC__) && __GNUC__ >= 4
45
#define WL_EXPORT __attribute__ ((visibility("default")))
46
#else
47
#define WL_EXPORT
48
#endif
49
50
/** Deprecated attribute */
51
#if defined(__GNUC__) && __GNUC__ >= 4
52
#define WL_DEPRECATED __attribute__ ((deprecated))
53
#else
54
#define WL_DEPRECATED
55
#endif
56
57
/**
58
* Printf-style argument attribute
59
*
60
* \param x Ordinality of the format string argument
61
* \param y Ordinality of the argument to check against the format string
62
*
63
* \sa https://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/Function-Attributes.html
64
*/
65
#if defined(__GNUC__) && __GNUC__ >= 4
66
#define WL_PRINTF(x, y) __attribute__((__format__(__printf__, x, y)))
67
#else
68
#define WL_PRINTF(x, y)
69
#endif
70
71
/** \class wl_object
72
*
73
* \brief A protocol object.
74
*
75
* A `wl_object` is an opaque struct identifying the protocol object
76
* underlying a `wl_proxy` or `wl_resource`.
77
*
78
* \note Functions accessing a `wl_object` are not normally used by client code.
79
* Clients should normally use the higher level interface generated by the
80
* scanner to interact with compositor objects.
81
*
82
*/
83
struct wl_object;
84
85
/**
86
* Protocol message signature
87
*
88
* A wl_message describes the signature of an actual protocol message, such as a
89
* request or event, that adheres to the Wayland protocol wire format. The
90
* protocol implementation uses a wl_message within its demarshal machinery for
91
* decoding messages between a compositor and its clients. In a sense, a
92
* wl_message is to a protocol message like a class is to an object.
93
*
94
* The `name` of a wl_message is the name of the corresponding protocol message.
95
*
96
* The `signature` is an ordered list of symbols representing the data types
97
* of message arguments and, optionally, a protocol version and indicators for
98
* nullability. A leading integer in the `signature` indicates the _since_
99
* version of the protocol message. A `?` preceding a data type symbol indicates
100
* that the following argument type is nullable. While it is a protocol violation
101
* to send messages with non-nullable arguments set to `NULL`, event handlers in
102
* clients might still get called with non-nullable object arguments set to
103
* `NULL`. This can happen when the client destroyed the object being used as
104
* argument on its side and an event referencing that object was sent before the
105
* server knew about its destruction. As this race cannot be prevented, clients
106
* should - as a general rule - program their event handlers such that they can
107
* handle object arguments declared non-nullable being `NULL` gracefully.
108
*
109
* When no arguments accompany a message, `signature` is an empty string.
110
*
111
* Symbols:
112
*
113
* * `i`: int
114
* * `u`: uint
115
* * `f`: fixed
116
* * `s`: string
117
* * `o`: object
118
* * `n`: new_id
119
* * `a`: array
120
* * `h`: fd
121
* * `?`: following argument is nullable
122
*
123
* While demarshaling primitive arguments is straightforward, when demarshaling
124
* messages containing `object` or `new_id` arguments, the protocol
125
* implementation often must determine the type of the object. The `types` of a
126
* wl_message is an array of wl_interface references that correspond to `o` and
127
* `n` arguments in `signature`, with `NULL` placeholders for arguments with
128
* non-object types.
129
*
130
* Consider the protocol event wl_display `delete_id` that has a single `uint`
131
* argument. The wl_message is:
132
*
133
* \code
134
* { "delete_id", "u", [NULL] }
135
* \endcode
136
*
137
* Here, the message `name` is `"delete_id"`, the `signature` is `"u"`, and the
138
* argument `types` is `[NULL]`, indicating that the `uint` argument has no
139
* corresponding wl_interface since it is a primitive argument.
140
*
141
* In contrast, consider a `wl_foo` interface supporting protocol request `bar`
142
* that has existed since version 2, and has two arguments: a `uint` and an
143
* object of type `wl_baz_interface` that may be `NULL`. Such a `wl_message`
144
* might be:
145
*
146
* \code
147
* { "bar", "2u?o", [NULL, &wl_baz_interface] }
148
* \endcode
149
*
150
* Here, the message `name` is `"bar"`, and the `signature` is `"2u?o"`. Notice
151
* how the `2` indicates the protocol version, the `u` indicates the first
152
* argument type is `uint`, and the `?o` indicates that the second argument
153
* is an object that may be `NULL`. Lastly, the argument `types` array indicates
154
* that no wl_interface corresponds to the first argument, while the type
155
* `wl_baz_interface` corresponds to the second argument.
156
*
157
* \sa wl_argument
158
* \sa wl_interface
159
* \sa <a href="https://wayland.freedesktop.org/docs/html/ch04.html#sect-Protocol-Wire-Format">Wire Format</a>
160
*/
161
struct wl_message {
162
/** Message name */
163
const char *name;
164
/** Message signature */
165
const char *signature;
166
/** Object argument interfaces */
167
const struct wl_interface **types;
168
};
169
170
/**
171
* Protocol object interface
172
*
173
* A wl_interface describes the API of a protocol object defined in the Wayland
174
* protocol specification. The protocol implementation uses a wl_interface
175
* within its marshalling machinery for encoding client requests.
176
*
177
* The `name` of a wl_interface is the name of the corresponding protocol
178
* interface, and `version` represents the version of the interface. The members
179
* `method_count` and `event_count` represent the number of `methods` (requests)
180
* and `events` in the respective wl_message members.
181
*
182
* For example, consider a protocol interface `foo`, marked as version `1`, with
183
* two requests and one event.
184
*
185
* \code{.xml}
186
* <interface name="foo" version="1">
187
* <request name="a"></request>
188
* <request name="b"></request>
189
* <event name="c"></event>
190
* </interface>
191
* \endcode
192
*
193
* Given two wl_message arrays `foo_requests` and `foo_events`, a wl_interface
194
* for `foo` might be:
195
*
196
* \code
197
* struct wl_interface foo_interface = {
198
* "foo", 1,
199
* 2, foo_requests,
200
* 1, foo_events
201
* };
202
* \endcode
203
*
204
* \note The server side of the protocol may define interface <em>implementation
205
* types</em> that incorporate the term `interface` in their name. Take
206
* care to not confuse these server-side `struct`s with a wl_interface
207
* variable whose name also ends in `interface`. For example, while the
208
* server may define a type `struct wl_foo_interface`, the client may
209
* define a `struct wl_interface wl_foo_interface`.
210
*
211
* \sa wl_message
212
* \sa wl_proxy
213
* \sa <a href="https://wayland.freedesktop.org/docs/html/ch04.html#sect-Protocol-Interfaces">Interfaces</a>
214
* \sa <a href="https://wayland.freedesktop.org/docs/html/ch04.html#sect-Protocol-Versioning">Versioning</a>
215
*/
216
struct wl_interface {
217
/** Interface name */
218
const char *name;
219
/** Interface version */
220
int version;
221
/** Number of methods (requests) */
222
int method_count;
223
/** Method (request) signatures */
224
const struct wl_message *methods;
225
/** Number of events */
226
int event_count;
227
/** Event signatures */
228
const struct wl_message *events;
229
};
230
231
/** \class wl_list
232
*
233
* \brief Doubly-linked list
234
*
235
* On its own, an instance of `struct wl_list` represents the sentinel head of
236
* a doubly-linked list, and must be initialized using wl_list_init().
237
* When empty, the list head's `next` and `prev` members point to the list head
238
* itself, otherwise `next` references the first element in the list, and `prev`
239
* refers to the last element in the list.
240
*
241
* Use the `struct wl_list` type to represent both the list head and the links
242
* between elements within the list. Use wl_list_empty() to determine if the
243
* list is empty in O(1).
244
*
245
* All elements in the list must be of the same type. The element type must have
246
* a `struct wl_list` member, often named `link` by convention. Prior to
247
* insertion, there is no need to initialize an element's `link` - invoking
248
* wl_list_init() on an individual list element's `struct wl_list` member is
249
* unnecessary if the very next operation is wl_list_insert(). However, a
250
* common idiom is to initialize an element's `link` prior to removal - ensure
251
* safety by invoking wl_list_init() before wl_list_remove().
252
*
253
* Consider a list reference `struct wl_list foo_list`, an element type as
254
* `struct element`, and an element's link member as `struct wl_list link`.
255
*
256
* The following code initializes a list and adds three elements to it.
257
*
258
* \code
259
* struct wl_list foo_list;
260
*
261
* struct element {
262
* int foo;
263
* struct wl_list link;
264
* };
265
* struct element e1, e2, e3;
266
*
267
* wl_list_init(&foo_list);
268
* wl_list_insert(&foo_list, &e1.link); // e1 is the first element
269
* wl_list_insert(&foo_list, &e2.link); // e2 is now the first element
270
* wl_list_insert(&e2.link, &e3.link); // insert e3 after e2
271
* \endcode
272
*
273
* The list now looks like <em>[e2, e3, e1]</em>.
274
*
275
* The `wl_list` API provides some iterator macros. For example, to iterate
276
* a list in ascending order:
277
*
278
* \code
279
* struct element *e;
280
* wl_list_for_each(e, foo_list, link) {
281
* do_something_with_element(e);
282
* }
283
* \endcode
284
*
285
* See the documentation of each iterator for details.
286
* \sa http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/include/linux/list.h
287
*/
288
struct wl_list {
289
/** Previous list element */
290
struct wl_list *prev;
291
/** Next list element */
292
struct wl_list *next;
293
};
294
295
/**
296
* Initializes the list.
297
*
298
* \param list List to initialize
299
*
300
* \memberof wl_list
301
*/
302
void
303
wl_list_init(struct wl_list *list);
304
305
/**
306
* Inserts an element into the list, after the element represented by \p list.
307
* When \p list is a reference to the list itself (the head), set the containing
308
* struct of \p elm as the first element in the list.
309
*
310
* \note If \p elm is already part of a list, inserting it again will lead to
311
* list corruption.
312
*
313
* \param list List element after which the new element is inserted
314
* \param elm Link of the containing struct to insert into the list
315
*
316
* \memberof wl_list
317
*/
318
void
319
wl_list_insert(struct wl_list *list, struct wl_list *elm);
320
321
/**
322
* Removes an element from the list.
323
*
324
* \note This operation leaves \p elm in an invalid state.
325
*
326
* \param elm Link of the containing struct to remove from the list
327
*
328
* \memberof wl_list
329
*/
330
void
331
wl_list_remove(struct wl_list *elm);
332
333
/**
334
* Determines the length of the list.
335
*
336
* \note This is an O(n) operation.
337
*
338
* \param list List whose length is to be determined
339
*
340
* \return Number of elements in the list
341
*
342
* \memberof wl_list
343
*/
344
int
345
wl_list_length(const struct wl_list *list);
346
347
/**
348
* Determines if the list is empty.
349
*
350
* \param list List whose emptiness is to be determined
351
*
352
* \return 1 if empty, or 0 if not empty
353
*
354
* \memberof wl_list
355
*/
356
int
357
wl_list_empty(const struct wl_list *list);
358
359
/**
360
* Inserts all of the elements of one list into another, after the element
361
* represented by \p list.
362
*
363
* \note This leaves \p other in an invalid state.
364
*
365
* \param list List element after which the other list elements will be inserted
366
* \param other List of elements to insert
367
*
368
* \memberof wl_list
369
*/
370
void
371
wl_list_insert_list(struct wl_list *list, struct wl_list *other);
372
373
/**
374
* Retrieves a pointer to a containing struct, given a member name.
375
*
376
* This macro allows "conversion" from a pointer to a member to its containing
377
* struct. This is useful if you have a contained item like a wl_list,
378
* wl_listener, or wl_signal, provided via a callback or other means, and would
379
* like to retrieve the struct that contains it.
380
*
381
* To demonstrate, the following example retrieves a pointer to
382
* `example_container` given only its `destroy_listener` member:
383
*
384
* \code
385
* struct example_container {
386
* struct wl_listener destroy_listener;
387
* // other members...
388
* };
389
*
390
* void example_container_destroy(struct wl_listener *listener, void *data)
391
* {
392
* struct example_container *ctr;
393
*
394
* ctr = wl_container_of(listener, ctr, destroy_listener);
395
* // destroy ctr...
396
* }
397
* \endcode
398
*
399
* \note `sample` need not be a valid pointer. A null or uninitialised pointer
400
* is sufficient.
401
*
402
* \param ptr Valid pointer to the contained member
403
* \param sample Pointer to a struct whose type contains \p ptr
404
* \param member Named location of \p ptr within the \p sample type
405
*
406
* \return The container for the specified pointer
407
*/
408
#define wl_container_of(ptr, sample, member) \
409
(__typeof__(sample))((char *)(ptr) - \
410
offsetof(__typeof__(*sample), member))
411
412
/**
413
* Iterates over a list.
414
*
415
* This macro expresses a for-each iterator for wl_list. Given a list and
416
* wl_list link member name (often named `link` by convention), this macro
417
* assigns each element in the list to \p pos, which can then be referenced in
418
* a trailing code block. For example, given a wl_list of `struct message`
419
* elements:
420
*
421
* \code
422
* struct message {
423
* char *contents;
424
* wl_list link;
425
* };
426
*
427
* struct wl_list *message_list;
428
* // Assume message_list now "contains" many messages
429
*
430
* struct message *m;
431
* wl_list_for_each(m, message_list, link) {
432
* do_something_with_message(m);
433
* }
434
* \endcode
435
*
436
* \param pos Cursor that each list element will be assigned to
437
* \param head Head of the list to iterate over
438
* \param member Name of the link member within the element struct
439
*
440
* \relates wl_list
441
*/
442
#define wl_list_for_each(pos, head, member) \
443
for (pos = wl_container_of((head)->next, pos, member); \
444
&pos->member != (head); \
445
pos = wl_container_of(pos->member.next, pos, member))
446
447
/**
448
* Iterates over a list, safe against removal of the list element.
449
*
450
* \note Only removal of the current element, \p pos, is safe. Removing
451
* any other element during traversal may lead to a loop malfunction.
452
*
453
* \sa wl_list_for_each()
454
*
455
* \param pos Cursor that each list element will be assigned to
456
* \param tmp Temporary pointer of the same type as \p pos
457
* \param head Head of the list to iterate over
458
* \param member Name of the link member within the element struct
459
*
460
* \relates wl_list
461
*/
462
#define wl_list_for_each_safe(pos, tmp, head, member) \
463
for (pos = wl_container_of((head)->next, pos, member), \
464
tmp = wl_container_of((pos)->member.next, tmp, member); \
465
&pos->member != (head); \
466
pos = tmp, \
467
tmp = wl_container_of(pos->member.next, tmp, member))
468
469
/**
470
* Iterates backwards over a list.
471
*
472
* \sa wl_list_for_each()
473
*
474
* \param pos Cursor that each list element will be assigned to
475
* \param head Head of the list to iterate over
476
* \param member Name of the link member within the element struct
477
*
478
* \relates wl_list
479
*/
480
#define wl_list_for_each_reverse(pos, head, member) \
481
for (pos = wl_container_of((head)->prev, pos, member); \
482
&pos->member != (head); \
483
pos = wl_container_of(pos->member.prev, pos, member))
484
485
/**
486
* Iterates backwards over a list, safe against removal of the list element.
487
*
488
* \note Only removal of the current element, \p pos, is safe. Removing
489
* any other element during traversal may lead to a loop malfunction.
490
*
491
* \sa wl_list_for_each()
492
*
493
* \param pos Cursor that each list element will be assigned to
494
* \param tmp Temporary pointer of the same type as \p pos
495
* \param head Head of the list to iterate over
496
* \param member Name of the link member within the element struct
497
*
498
* \relates wl_list
499
*/
500
#define wl_list_for_each_reverse_safe(pos, tmp, head, member) \
501
for (pos = wl_container_of((head)->prev, pos, member), \
502
tmp = wl_container_of((pos)->member.prev, tmp, member); \
503
&pos->member != (head); \
504
pos = tmp, \
505
tmp = wl_container_of(pos->member.prev, tmp, member))
506
507
/**
508
* \class wl_array
509
*
510
* Dynamic array
511
*
512
* A wl_array is a dynamic array that can only grow until released. It is
513
* intended for relatively small allocations whose size is variable or not known
514
* in advance. While construction of a wl_array does not require all elements to
515
* be of the same size, wl_array_for_each() does require all elements to have
516
* the same type and size.
517
*
518
*/
519
struct wl_array {
520
/** Array size */
521
size_t size;
522
/** Allocated space */
523
size_t alloc;
524
/** Array data */
525
void *data;
526
};
527
528
/**
529
* Initializes the array.
530
*
531
* \param array Array to initialize
532
*
533
* \memberof wl_array
534
*/
535
void
536
wl_array_init(struct wl_array *array);
537
538
/**
539
* Releases the array data.
540
*
541
* \note Leaves the array in an invalid state.
542
*
543
* \param array Array whose data is to be released
544
*
545
* \memberof wl_array
546
*/
547
void
548
wl_array_release(struct wl_array *array);
549
550
/**
551
* Increases the size of the array by \p size bytes.
552
*
553
* \param array Array whose size is to be increased
554
* \param size Number of bytes to increase the size of the array by
555
*
556
* \return A pointer to the beginning of the newly appended space, or NULL when
557
* resizing fails.
558
*
559
* \memberof wl_array
560
*/
561
void *
562
wl_array_add(struct wl_array *array, size_t size);
563
564
/**
565
* Copies the contents of \p source to \p array.
566
*
567
* \param array Destination array to copy to
568
* \param source Source array to copy from
569
*
570
* \return 0 on success, or -1 on failure
571
*
572
* \memberof wl_array
573
*/
574
int
575
wl_array_copy(struct wl_array *array, struct wl_array *source);
576
577
/**
578
* Iterates over an array.
579
*
580
* This macro expresses a for-each iterator for wl_array. It assigns each
581
* element in the array to \p pos, which can then be referenced in a trailing
582
* code block. \p pos must be a pointer to the array element type, and all
583
* array elements must be of the same type and size.
584
*
585
* \param pos Cursor that each array element will be assigned to
586
* \param array Array to iterate over
587
*
588
* \relates wl_array
589
* \sa wl_list_for_each()
590
*/
591
#define wl_array_for_each(pos, array) \
592
for (pos = (array)->data; \
593
(const char *) pos < ((const char *) (array)->data + (array)->size); \
594
(pos)++)
595
596
/**
597
* Fixed-point number
598
*
599
* A `wl_fixed_t` is a 24.8 signed fixed-point number with a sign bit, 23 bits
600
* of integer precision and 8 bits of decimal precision. Consider `wl_fixed_t`
601
* as an opaque struct with methods that facilitate conversion to and from
602
* `double` and `int` types.
603
*/
604
typedef int32_t wl_fixed_t;
605
606
/**
607
* Converts a fixed-point number to a floating-point number.
608
*
609
* \param f Fixed-point number to convert
610
*
611
* \return Floating-point representation of the fixed-point argument
612
*/
613
static inline double
614
wl_fixed_to_double(wl_fixed_t f)
615
{
616
union {
617
double d;
618
int64_t i;
619
} u;
620
621
u.i = ((1023LL + 44LL) << 52) + (1LL << 51) + f;
622
623
return u.d - (3LL << 43);
624
}
625
626
/**
627
* Converts a floating-point number to a fixed-point number.
628
*
629
* \param d Floating-point number to convert
630
*
631
* \return Fixed-point representation of the floating-point argument
632
*/
633
static inline wl_fixed_t
634
wl_fixed_from_double(double d)
635
{
636
union {
637
double d;
638
int64_t i;
639
} u;
640
641
u.d = d + (3LL << (51 - 8));
642
643
return (wl_fixed_t)u.i;
644
}
645
646
/**
647
* Converts a fixed-point number to an integer.
648
*
649
* \param f Fixed-point number to convert
650
*
651
* \return Integer component of the fixed-point argument
652
*/
653
static inline int
654
wl_fixed_to_int(wl_fixed_t f)
655
{
656
return f / 256;
657
}
658
659
/**
660
* Converts an integer to a fixed-point number.
661
*
662
* \param i Integer to convert
663
*
664
* \return Fixed-point representation of the integer argument
665
*/
666
static inline wl_fixed_t
667
wl_fixed_from_int(int i)
668
{
669
return i * 256;
670
}
671
672
/**
673
* Protocol message argument data types
674
*
675
* This union represents all of the argument types in the Wayland protocol wire
676
* format. The protocol implementation uses wl_argument within its marshalling
677
* machinery for dispatching messages between a client and a compositor.
678
*
679
* \sa wl_message
680
* \sa wl_interface
681
* \sa <a href="https://wayland.freedesktop.org/docs/html/ch04.html#sect-Protocol-wire-Format">Wire Format</a>
682
*/
683
union wl_argument {
684
int32_t i; /**< `int` */
685
uint32_t u; /**< `uint` */
686
wl_fixed_t f; /**< `fixed` */
687
const char *s; /**< `string` */
688
struct wl_object *o; /**< `object` */
689
uint32_t n; /**< `new_id` */
690
struct wl_array *a; /**< `array` */
691
int32_t h; /**< `fd` */
692
};
693
694
/**
695
* Dispatcher function type alias
696
*
697
* A dispatcher is a function that handles the emitting of callbacks in client
698
* code. For programs directly using the C library, this is done by using
699
* libffi to call function pointers. When binding to languages other than C,
700
* dispatchers provide a way to abstract the function calling process to be
701
* friendlier to other function calling systems.
702
*
703
* A dispatcher takes five arguments: The first is the dispatcher-specific
704
* implementation associated with the target object. The second is the object
705
* upon which the callback is being invoked (either wl_proxy or wl_resource).
706
* The third and fourth arguments are the opcode and the wl_message
707
* corresponding to the callback. The final argument is an array of arguments
708
* received from the other process via the wire protocol.
709
*
710
* \param "const void *" Dispatcher-specific implementation data
711
* \param "void *" Callback invocation target (wl_proxy or `wl_resource`)
712
* \param uint32_t Callback opcode
713
* \param "const struct wl_message *" Callback message signature
714
* \param "union wl_argument *" Array of received arguments
715
*
716
* \return 0 on success, or -1 on failure
717
*/
718
typedef int (*wl_dispatcher_func_t)(const void *, void *, uint32_t,
719
const struct wl_message *,
720
union wl_argument *);
721
722
/**
723
* Log function type alias
724
*
725
* The C implementation of the Wayland protocol abstracts the details of
726
* logging. Users may customize the logging behavior, with a function conforming
727
* to the `wl_log_func_t` type, via `wl_log_set_handler_client` and
728
* `wl_log_set_handler_server`.
729
*
730
* A `wl_log_func_t` must conform to the expectations of `vprintf`, and
731
* expects two arguments: a string to write and a corresponding variable
732
* argument list. While the string to write may contain format specifiers and
733
* use values in the variable argument list, the behavior of any `wl_log_func_t`
734
* depends on the implementation.
735
*
736
* \note Take care to not confuse this with `wl_protocol_logger_func_t`, which
737
* is a specific server-side logger for requests and events.
738
*
739
* \param "const char *" String to write to the log, containing optional format
740
* specifiers
741
* \param "va_list" Variable argument list
742
*
743
* \sa wl_log_set_handler_client
744
* \sa wl_log_set_handler_server
745
*/
746
typedef void (*wl_log_func_t)(const char *, va_list) WL_PRINTF(1, 0);
747
748
/**
749
* Return value of an iterator function
750
*
751
* \sa wl_client_for_each_resource_iterator_func_t
752
* \sa wl_client_for_each_resource
753
*/
754
enum wl_iterator_result {
755
/** Stop the iteration */
756
WL_ITERATOR_STOP,
757
/** Continue the iteration */
758
WL_ITERATOR_CONTINUE
759
};
760
761
#ifdef __cplusplus
762
}
763
#endif
764
765
#endif
766
767