Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/mbedtls/library/aesni.c
9898 views
1
/*
2
* AES-NI support functions
3
*
4
* Copyright The Mbed TLS Contributors
5
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6
*/
7
8
/*
9
* [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
10
* [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
11
*/
12
13
#include "common.h"
14
15
#if defined(MBEDTLS_AESNI_C)
16
17
#include "aesni.h"
18
19
#include <string.h>
20
21
#if defined(MBEDTLS_AESNI_HAVE_CODE)
22
23
#if MBEDTLS_AESNI_HAVE_CODE == 2
24
#if defined(__GNUC__)
25
#include <cpuid.h>
26
#elif defined(_MSC_VER)
27
#include <intrin.h>
28
#else
29
#error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler"
30
#endif
31
#include <immintrin.h>
32
#endif
33
34
#if defined(MBEDTLS_ARCH_IS_X86)
35
#if defined(MBEDTLS_COMPILER_IS_GCC)
36
#pragma GCC push_options
37
#pragma GCC target ("pclmul,sse2,aes")
38
#define MBEDTLS_POP_TARGET_PRAGMA
39
#elif defined(__clang__) && (__clang_major__ >= 5)
40
#pragma clang attribute push (__attribute__((target("pclmul,sse2,aes"))), apply_to=function)
41
#define MBEDTLS_POP_TARGET_PRAGMA
42
#endif
43
#endif
44
45
#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
46
/*
47
* AES-NI support detection routine
48
*/
49
int mbedtls_aesni_has_support(unsigned int what)
50
{
51
/* To avoid a race condition, tell the compiler that the assignment
52
* `done = 1` and the assignment to `c` may not be reordered.
53
* https://github.com/Mbed-TLS/mbedtls/issues/9840
54
*
55
* Note that we may also be worried about memory access reordering,
56
* but fortunately the x86 memory model is not too wild: stores
57
* from the same thread are observed consistently by other threads.
58
* (See example 8-1 in Sewell et al., "x86-TSO: A Rigorous and Usable
59
* Programmer’s Model for x86 Multiprocessors", CACM, 2010,
60
* https://www.cl.cam.ac.uk/~pes20/weakmemory/cacm.pdf)
61
*/
62
static volatile int done = 0;
63
static volatile unsigned int c = 0;
64
65
if (!done) {
66
#if MBEDTLS_AESNI_HAVE_CODE == 2
67
static int info[4] = { 0, 0, 0, 0 };
68
#if defined(_MSC_VER)
69
__cpuid(info, 1);
70
#else
71
__cpuid(1, info[0], info[1], info[2], info[3]);
72
#endif
73
c = info[2];
74
#else /* AESNI using asm */
75
asm ("movl $1, %%eax \n\t"
76
"cpuid \n\t"
77
: "=c" (c)
78
:
79
: "eax", "ebx", "edx");
80
#endif /* MBEDTLS_AESNI_HAVE_CODE */
81
done = 1;
82
}
83
84
return (c & what) != 0;
85
}
86
#endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
87
88
#if MBEDTLS_AESNI_HAVE_CODE == 2
89
90
/*
91
* AES-NI AES-ECB block en(de)cryption
92
*/
93
int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
94
int mode,
95
const unsigned char input[16],
96
unsigned char output[16])
97
{
98
const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
99
unsigned nr = ctx->nr; // Number of remaining rounds
100
101
// Load round key 0
102
__m128i state;
103
memcpy(&state, input, 16);
104
state = _mm_xor_si128(state, rk[0]); // state ^= *rk;
105
++rk;
106
--nr;
107
108
#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
109
if (mode == MBEDTLS_AES_DECRYPT) {
110
while (nr != 0) {
111
state = _mm_aesdec_si128(state, *rk);
112
++rk;
113
--nr;
114
}
115
state = _mm_aesdeclast_si128(state, *rk);
116
} else
117
#else
118
(void) mode;
119
#endif
120
{
121
while (nr != 0) {
122
state = _mm_aesenc_si128(state, *rk);
123
++rk;
124
--nr;
125
}
126
state = _mm_aesenclast_si128(state, *rk);
127
}
128
129
memcpy(output, &state, 16);
130
return 0;
131
}
132
133
/*
134
* GCM multiplication: c = a times b in GF(2^128)
135
* Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
136
*/
137
138
static void gcm_clmul(const __m128i aa, const __m128i bb,
139
__m128i *cc, __m128i *dd)
140
{
141
/*
142
* Caryless multiplication dd:cc = aa * bb
143
* using [CLMUL-WP] algorithm 1 (p. 12).
144
*/
145
*cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
146
*dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
147
__m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
148
__m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
149
ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0
150
ee = ff; // e1+f1:e0+f0
151
ff = _mm_srli_si128(ff, 8); // 0:e1+f1
152
ee = _mm_slli_si128(ee, 8); // e0+f0:0
153
*dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1
154
*cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0
155
}
156
157
static void gcm_shift(__m128i *cc, __m128i *dd)
158
{
159
/* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
160
* taking advantage of [CLMUL-WP] eq 27 (p. 18). */
161
// // *cc = r1:r0
162
// // *dd = r3:r2
163
__m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1
164
__m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1
165
__m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63
166
__m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63
167
__m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63
168
cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0
169
dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63
170
171
*cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1
172
*dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
173
}
174
175
static __m128i gcm_reduce(__m128i xx)
176
{
177
// // xx = x1:x0
178
/* [CLMUL-WP] Algorithm 5 Step 2 */
179
__m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a
180
__m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b
181
__m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c
182
__m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
183
return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0
184
}
185
186
static __m128i gcm_mix(__m128i dx)
187
{
188
/* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
189
__m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0'
190
__m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0'
191
__m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0'
192
193
// e0'+f0'+g0' is almost e0+f0+g0, except for some missing
194
// bits carried from d. Now get those bits back in.
195
__m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff
196
__m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff
197
__m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff
198
__m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
199
200
return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
201
}
202
203
void mbedtls_aesni_gcm_mult(unsigned char c[16],
204
const unsigned char a[16],
205
const unsigned char b[16])
206
{
207
__m128i aa = { 0 }, bb = { 0 }, cc, dd;
208
209
/* The inputs are in big-endian order, so byte-reverse them */
210
for (size_t i = 0; i < 16; i++) {
211
((uint8_t *) &aa)[i] = a[15 - i];
212
((uint8_t *) &bb)[i] = b[15 - i];
213
}
214
215
gcm_clmul(aa, bb, &cc, &dd);
216
gcm_shift(&cc, &dd);
217
/*
218
* Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
219
* using [CLMUL-WP] algorithm 5 (p. 18).
220
* Currently dd:cc holds x3:x2:x1:x0 (already shifted).
221
*/
222
__m128i dx = gcm_reduce(cc);
223
__m128i xh = gcm_mix(dx);
224
cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
225
226
/* Now byte-reverse the outputs */
227
for (size_t i = 0; i < 16; i++) {
228
c[i] = ((uint8_t *) &cc)[15 - i];
229
}
230
231
return;
232
}
233
234
/*
235
* Compute decryption round keys from encryption round keys
236
*/
237
#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
238
void mbedtls_aesni_inverse_key(unsigned char *invkey,
239
const unsigned char *fwdkey, int nr)
240
{
241
__m128i *ik = (__m128i *) invkey;
242
const __m128i *fk = (const __m128i *) fwdkey + nr;
243
244
*ik = *fk;
245
for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
246
*ik = _mm_aesimc_si128(*fk);
247
}
248
*ik = *fk;
249
}
250
#endif
251
252
/*
253
* Key expansion, 128-bit case
254
*/
255
static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
256
{
257
/*
258
* Finish generating the next round key.
259
*
260
* On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
261
* with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
262
*
263
* On exit, xword is r7:r6:r5:r4
264
* with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
265
* and this is returned, to be written to the round key buffer.
266
*/
267
xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X
268
xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4
269
state = _mm_slli_si128(state, 4); // r2:r1:r0:0
270
xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4
271
state = _mm_slli_si128(state, 4); // r1:r0:0:0
272
xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4
273
state = _mm_slli_si128(state, 4); // r0:0:0:0
274
state = _mm_xor_si128(xword, state); // r7:r6:r5:r4
275
return state;
276
}
277
278
static void aesni_setkey_enc_128(unsigned char *rk_bytes,
279
const unsigned char *key)
280
{
281
__m128i *rk = (__m128i *) rk_bytes;
282
283
memcpy(&rk[0], key, 16);
284
rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
285
rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
286
rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
287
rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
288
rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
289
rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
290
rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
291
rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
292
rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
293
rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
294
}
295
296
/*
297
* Key expansion, 192-bit case
298
*/
299
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
300
static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
301
unsigned char *rk)
302
{
303
/*
304
* Finish generating the next 6 quarter-keys.
305
*
306
* On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
307
* and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
308
* (obtained with AESKEYGENASSIST).
309
*
310
* On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
311
* and those are written to the round key buffer.
312
*/
313
xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X
314
xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0
315
*state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0
316
xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
317
*state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0
318
xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
319
*state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0
320
xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
321
*state0 = xword; // = r9:r8:r7:r6
322
323
xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9
324
xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4
325
*state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0
326
xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4
327
*state1 = xword; // = stuff:stuff:r11:r10
328
329
/* Store state0 and the low half of state1 into rk, which is conceptually
330
* an array of 24-byte elements. Since 24 is not a multiple of 16,
331
* rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
332
memcpy(rk, state0, 16);
333
memcpy(rk + 16, state1, 8);
334
}
335
336
static void aesni_setkey_enc_192(unsigned char *rk,
337
const unsigned char *key)
338
{
339
/* First round: use original key */
340
memcpy(rk, key, 24);
341
/* aes.c guarantees that rk is aligned on a 16-byte boundary. */
342
__m128i state0 = ((__m128i *) rk)[0];
343
__m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
344
345
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
346
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
347
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
348
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
349
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
350
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
351
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
352
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
353
}
354
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
355
356
/*
357
* Key expansion, 256-bit case
358
*/
359
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
360
static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
361
__m128i *rk0, __m128i *rk1)
362
{
363
/*
364
* Finish generating the next two round keys.
365
*
366
* On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
367
* xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
368
* (obtained with AESKEYGENASSIST).
369
*
370
* On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
371
*/
372
xword = _mm_shuffle_epi32(xword, 0xff);
373
xword = _mm_xor_si128(xword, state0);
374
state0 = _mm_slli_si128(state0, 4);
375
xword = _mm_xor_si128(xword, state0);
376
state0 = _mm_slli_si128(state0, 4);
377
xword = _mm_xor_si128(xword, state0);
378
state0 = _mm_slli_si128(state0, 4);
379
state0 = _mm_xor_si128(state0, xword);
380
*rk0 = state0;
381
382
/* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
383
* and proceed to generate next round key from there */
384
xword = _mm_aeskeygenassist_si128(state0, 0x00);
385
xword = _mm_shuffle_epi32(xword, 0xaa);
386
xword = _mm_xor_si128(xword, state1);
387
state1 = _mm_slli_si128(state1, 4);
388
xword = _mm_xor_si128(xword, state1);
389
state1 = _mm_slli_si128(state1, 4);
390
xword = _mm_xor_si128(xword, state1);
391
state1 = _mm_slli_si128(state1, 4);
392
state1 = _mm_xor_si128(state1, xword);
393
*rk1 = state1;
394
}
395
396
static void aesni_setkey_enc_256(unsigned char *rk_bytes,
397
const unsigned char *key)
398
{
399
__m128i *rk = (__m128i *) rk_bytes;
400
401
memcpy(&rk[0], key, 16);
402
memcpy(&rk[1], key + 16, 16);
403
404
/*
405
* Main "loop" - Generating one more key than necessary,
406
* see definition of mbedtls_aes_context.buf
407
*/
408
aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
409
aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
410
aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
411
aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
412
aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
413
aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
414
aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
415
}
416
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
417
418
#if defined(MBEDTLS_POP_TARGET_PRAGMA)
419
#if defined(__clang__)
420
#pragma clang attribute pop
421
#elif defined(__GNUC__)
422
#pragma GCC pop_options
423
#endif
424
#undef MBEDTLS_POP_TARGET_PRAGMA
425
#endif
426
427
#else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
428
429
#if defined(__has_feature)
430
#if __has_feature(memory_sanitizer)
431
#warning \
432
"MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
433
#endif
434
#endif
435
436
/*
437
* Binutils needs to be at least 2.19 to support AES-NI instructions.
438
* Unfortunately, a lot of users have a lower version now (2014-04).
439
* Emit bytecode directly in order to support "old" version of gas.
440
*
441
* Opcodes from the Intel architecture reference manual, vol. 3.
442
* We always use registers, so we don't need prefixes for memory operands.
443
* Operand macros are in gas order (src, dst) as opposed to Intel order
444
* (dst, src) in order to blend better into the surrounding assembly code.
445
*/
446
#define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
447
#define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
448
#define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
449
#define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
450
#define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
451
#define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
452
#define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
453
454
#define xmm0_xmm0 "0xC0"
455
#define xmm0_xmm1 "0xC8"
456
#define xmm0_xmm2 "0xD0"
457
#define xmm0_xmm3 "0xD8"
458
#define xmm0_xmm4 "0xE0"
459
#define xmm1_xmm0 "0xC1"
460
#define xmm1_xmm2 "0xD1"
461
462
/*
463
* AES-NI AES-ECB block en(de)cryption
464
*/
465
int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
466
int mode,
467
const unsigned char input[16],
468
unsigned char output[16])
469
{
470
asm ("movdqu (%3), %%xmm0 \n\t" // load input
471
"movdqu (%1), %%xmm1 \n\t" // load round key 0
472
"pxor %%xmm1, %%xmm0 \n\t" // round 0
473
"add $16, %1 \n\t" // point to next round key
474
"subl $1, %0 \n\t" // normal rounds = nr - 1
475
"test %2, %2 \n\t" // mode?
476
"jz 2f \n\t" // 0 = decrypt
477
478
"1: \n\t" // encryption loop
479
"movdqu (%1), %%xmm1 \n\t" // load round key
480
AESENC(xmm1_xmm0) // do round
481
"add $16, %1 \n\t" // point to next round key
482
"subl $1, %0 \n\t" // loop
483
"jnz 1b \n\t"
484
"movdqu (%1), %%xmm1 \n\t" // load round key
485
AESENCLAST(xmm1_xmm0) // last round
486
#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
487
"jmp 3f \n\t"
488
489
"2: \n\t" // decryption loop
490
"movdqu (%1), %%xmm1 \n\t"
491
AESDEC(xmm1_xmm0) // do round
492
"add $16, %1 \n\t"
493
"subl $1, %0 \n\t"
494
"jnz 2b \n\t"
495
"movdqu (%1), %%xmm1 \n\t" // load round key
496
AESDECLAST(xmm1_xmm0) // last round
497
#endif
498
499
"3: \n\t"
500
"movdqu %%xmm0, (%4) \n\t" // export output
501
:
502
: "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
503
: "memory", "cc", "xmm0", "xmm1", "0", "1");
504
505
506
return 0;
507
}
508
509
/*
510
* GCM multiplication: c = a times b in GF(2^128)
511
* Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
512
*/
513
void mbedtls_aesni_gcm_mult(unsigned char c[16],
514
const unsigned char a[16],
515
const unsigned char b[16])
516
{
517
unsigned char aa[16], bb[16], cc[16];
518
size_t i;
519
520
/* The inputs are in big-endian order, so byte-reverse them */
521
for (i = 0; i < 16; i++) {
522
aa[i] = a[15 - i];
523
bb[i] = b[15 - i];
524
}
525
526
asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0
527
"movdqu (%1), %%xmm1 \n\t" // b1:b0
528
529
/*
530
* Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
531
* using [CLMUL-WP] algorithm 1 (p. 12).
532
*/
533
"movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0
534
"movdqa %%xmm1, %%xmm3 \n\t" // same
535
"movdqa %%xmm1, %%xmm4 \n\t" // same
536
PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0
537
PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0
538
PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0
539
PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0
540
"pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0
541
"movdqa %%xmm4, %%xmm3 \n\t" // same
542
"psrldq $8, %%xmm4 \n\t" // 0:e1+f1
543
"pslldq $8, %%xmm3 \n\t" // e0+f0:0
544
"pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1
545
"pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0
546
547
/*
548
* Now shift the result one bit to the left,
549
* taking advantage of [CLMUL-WP] eq 27 (p. 18)
550
*/
551
"movdqa %%xmm1, %%xmm3 \n\t" // r1:r0
552
"movdqa %%xmm2, %%xmm4 \n\t" // r3:r2
553
"psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1
554
"psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1
555
"psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63
556
"psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63
557
"movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63
558
"pslldq $8, %%xmm3 \n\t" // r0>>63:0
559
"pslldq $8, %%xmm4 \n\t" // r2>>63:0
560
"psrldq $8, %%xmm5 \n\t" // 0:r1>>63
561
"por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1
562
"por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1
563
"por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
564
565
/*
566
* Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
567
* using [CLMUL-WP] algorithm 5 (p. 18).
568
* Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
569
*/
570
/* Step 2 (1) */
571
"movdqa %%xmm1, %%xmm3 \n\t" // x1:x0
572
"movdqa %%xmm1, %%xmm4 \n\t" // same
573
"movdqa %%xmm1, %%xmm5 \n\t" // same
574
"psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a
575
"psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b
576
"psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c
577
578
/* Step 2 (2) */
579
"pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b
580
"pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c
581
"pslldq $8, %%xmm3 \n\t" // a+b+c:0
582
"pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0
583
584
/* Steps 3 and 4 */
585
"movdqa %%xmm1,%%xmm0 \n\t" // d:x0
586
"movdqa %%xmm1,%%xmm4 \n\t" // same
587
"movdqa %%xmm1,%%xmm5 \n\t" // same
588
"psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0'
589
"psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0'
590
"psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0'
591
"pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0'
592
"pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0'
593
// e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
594
// bits carried from d. Now get those\t bits back in.
595
"movdqa %%xmm1,%%xmm3 \n\t" // d:x0
596
"movdqa %%xmm1,%%xmm4 \n\t" // same
597
"movdqa %%xmm1,%%xmm5 \n\t" // same
598
"psllq $63, %%xmm3 \n\t" // d<<63:stuff
599
"psllq $62, %%xmm4 \n\t" // d<<62:stuff
600
"psllq $57, %%xmm5 \n\t" // d<<57:stuff
601
"pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff
602
"pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff
603
"psrldq $8, %%xmm3 \n\t" // 0:missing bits of d
604
"pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0
605
"pxor %%xmm1, %%xmm0 \n\t" // h1:h0
606
"pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0
607
608
"movdqu %%xmm0, (%2) \n\t" // done
609
:
610
: "r" (aa), "r" (bb), "r" (cc)
611
: "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
612
613
/* Now byte-reverse the outputs */
614
for (i = 0; i < 16; i++) {
615
c[i] = cc[15 - i];
616
}
617
618
return;
619
}
620
621
/*
622
* Compute decryption round keys from encryption round keys
623
*/
624
#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
625
void mbedtls_aesni_inverse_key(unsigned char *invkey,
626
const unsigned char *fwdkey, int nr)
627
{
628
unsigned char *ik = invkey;
629
const unsigned char *fk = fwdkey + 16 * nr;
630
631
memcpy(ik, fk, 16);
632
633
for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
634
asm ("movdqu (%0), %%xmm0 \n\t"
635
AESIMC(xmm0_xmm0)
636
"movdqu %%xmm0, (%1) \n\t"
637
:
638
: "r" (fk), "r" (ik)
639
: "memory", "xmm0");
640
}
641
642
memcpy(ik, fk, 16);
643
}
644
#endif
645
646
/*
647
* Key expansion, 128-bit case
648
*/
649
static void aesni_setkey_enc_128(unsigned char *rk,
650
const unsigned char *key)
651
{
652
asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key
653
"movdqu %%xmm0, (%0) \n\t" // as round key 0
654
"jmp 2f \n\t" // skip auxiliary routine
655
656
/*
657
* Finish generating the next round key.
658
*
659
* On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
660
* with X = rot( sub( r3 ) ) ^ RCON.
661
*
662
* On exit, xmm0 is r7:r6:r5:r4
663
* with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
664
* and those are written to the round key buffer.
665
*/
666
"1: \n\t"
667
"pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X
668
"pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4
669
"pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0
670
"pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4
671
"pslldq $4, %%xmm0 \n\t" // etc
672
"pxor %%xmm0, %%xmm1 \n\t"
673
"pslldq $4, %%xmm0 \n\t"
674
"pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time!
675
"add $16, %0 \n\t" // point to next round key
676
"movdqu %%xmm0, (%0) \n\t" // write it
677
"ret \n\t"
678
679
/* Main "loop" */
680
"2: \n\t"
681
AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t"
682
AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t"
683
AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t"
684
AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t"
685
AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t"
686
AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t"
687
AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t"
688
AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t"
689
AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t"
690
AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t"
691
:
692
: "r" (rk), "r" (key)
693
: "memory", "cc", "xmm0", "xmm1", "0");
694
}
695
696
/*
697
* Key expansion, 192-bit case
698
*/
699
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
700
static void aesni_setkey_enc_192(unsigned char *rk,
701
const unsigned char *key)
702
{
703
asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key
704
"movdqu %%xmm0, (%0) \n\t"
705
"add $16, %0 \n\t"
706
"movq 16(%1), %%xmm1 \n\t"
707
"movq %%xmm1, (%0) \n\t"
708
"add $8, %0 \n\t"
709
"jmp 2f \n\t" // skip auxiliary routine
710
711
/*
712
* Finish generating the next 6 quarter-keys.
713
*
714
* On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
715
* and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
716
*
717
* On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
718
* and those are written to the round key buffer.
719
*/
720
"1: \n\t"
721
"pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X
722
"pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4
723
"pslldq $4, %%xmm0 \n\t" // etc
724
"pxor %%xmm0, %%xmm2 \n\t"
725
"pslldq $4, %%xmm0 \n\t"
726
"pxor %%xmm0, %%xmm2 \n\t"
727
"pslldq $4, %%xmm0 \n\t"
728
"pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6
729
"movdqu %%xmm0, (%0) \n\t"
730
"add $16, %0 \n\t"
731
"pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9
732
"pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10
733
"pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0
734
"pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10
735
"movq %%xmm1, (%0) \n\t"
736
"add $8, %0 \n\t"
737
"ret \n\t"
738
739
"2: \n\t"
740
AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
741
AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
742
AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
743
AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
744
AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
745
AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
746
AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
747
AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t"
748
749
:
750
: "r" (rk), "r" (key)
751
: "memory", "cc", "xmm0", "xmm1", "xmm2", "0");
752
}
753
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
754
755
/*
756
* Key expansion, 256-bit case
757
*/
758
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
759
static void aesni_setkey_enc_256(unsigned char *rk,
760
const unsigned char *key)
761
{
762
asm ("movdqu (%1), %%xmm0 \n\t"
763
"movdqu %%xmm0, (%0) \n\t"
764
"add $16, %0 \n\t"
765
"movdqu 16(%1), %%xmm1 \n\t"
766
"movdqu %%xmm1, (%0) \n\t"
767
"jmp 2f \n\t" // skip auxiliary routine
768
769
/*
770
* Finish generating the next two round keys.
771
*
772
* On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
773
* xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
774
*
775
* On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
776
* and those have been written to the output buffer.
777
*/
778
"1: \n\t"
779
"pshufd $0xff, %%xmm2, %%xmm2 \n\t"
780
"pxor %%xmm0, %%xmm2 \n\t"
781
"pslldq $4, %%xmm0 \n\t"
782
"pxor %%xmm0, %%xmm2 \n\t"
783
"pslldq $4, %%xmm0 \n\t"
784
"pxor %%xmm0, %%xmm2 \n\t"
785
"pslldq $4, %%xmm0 \n\t"
786
"pxor %%xmm2, %%xmm0 \n\t"
787
"add $16, %0 \n\t"
788
"movdqu %%xmm0, (%0) \n\t"
789
790
/* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
791
* and proceed to generate next round key from there */
792
AESKEYGENA(xmm0_xmm2, "0x00")
793
"pshufd $0xaa, %%xmm2, %%xmm2 \n\t"
794
"pxor %%xmm1, %%xmm2 \n\t"
795
"pslldq $4, %%xmm1 \n\t"
796
"pxor %%xmm1, %%xmm2 \n\t"
797
"pslldq $4, %%xmm1 \n\t"
798
"pxor %%xmm1, %%xmm2 \n\t"
799
"pslldq $4, %%xmm1 \n\t"
800
"pxor %%xmm2, %%xmm1 \n\t"
801
"add $16, %0 \n\t"
802
"movdqu %%xmm1, (%0) \n\t"
803
"ret \n\t"
804
805
/*
806
* Main "loop" - Generating one more key than necessary,
807
* see definition of mbedtls_aes_context.buf
808
*/
809
"2: \n\t"
810
AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
811
AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
812
AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
813
AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
814
AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
815
AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
816
AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
817
:
818
: "r" (rk), "r" (key)
819
: "memory", "cc", "xmm0", "xmm1", "xmm2", "0");
820
}
821
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
822
823
#endif /* MBEDTLS_AESNI_HAVE_CODE */
824
825
/*
826
* Key expansion, wrapper
827
*/
828
int mbedtls_aesni_setkey_enc(unsigned char *rk,
829
const unsigned char *key,
830
size_t bits)
831
{
832
switch (bits) {
833
case 128: aesni_setkey_enc_128(rk, key); break;
834
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
835
case 192: aesni_setkey_enc_192(rk, key); break;
836
case 256: aesni_setkey_enc_256(rk, key); break;
837
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
838
default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
839
}
840
841
return 0;
842
}
843
844
#endif /* MBEDTLS_AESNI_HAVE_CODE */
845
846
#endif /* MBEDTLS_AESNI_C */
847
848