Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/mbedtls/library/alignment.h
9898 views
1
/**
2
* \file alignment.h
3
*
4
* \brief Utility code for dealing with unaligned memory accesses
5
*/
6
/*
7
* Copyright The Mbed TLS Contributors
8
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
9
*/
10
11
#ifndef MBEDTLS_LIBRARY_ALIGNMENT_H
12
#define MBEDTLS_LIBRARY_ALIGNMENT_H
13
14
#include <stdint.h>
15
#include <string.h>
16
#include <stdlib.h>
17
18
/*
19
* Define MBEDTLS_EFFICIENT_UNALIGNED_ACCESS for architectures where unaligned memory
20
* accesses are known to be efficient.
21
*
22
* All functions defined here will behave correctly regardless, but might be less
23
* efficient when this is not defined.
24
*/
25
#if defined(__ARM_FEATURE_UNALIGNED) \
26
|| defined(MBEDTLS_ARCH_IS_X86) || defined(MBEDTLS_ARCH_IS_X64) \
27
|| defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64)
28
/*
29
* __ARM_FEATURE_UNALIGNED is defined where appropriate by armcc, gcc 7, clang 9
30
* (and later versions) for Arm v7 and later; all x86 platforms should have
31
* efficient unaligned access.
32
*
33
* https://learn.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-170#alignment
34
* specifies that on Windows-on-Arm64, unaligned access is safe (except for uncached
35
* device memory).
36
*/
37
#define MBEDTLS_EFFICIENT_UNALIGNED_ACCESS
38
#endif
39
40
#if defined(__IAR_SYSTEMS_ICC__) && \
41
(defined(MBEDTLS_ARCH_IS_ARM64) || defined(MBEDTLS_ARCH_IS_ARM32) \
42
|| defined(__ICCRX__) || defined(__ICCRL78__) || defined(__ICCRISCV__))
43
#pragma language=save
44
#pragma language=extended
45
#define MBEDTLS_POP_IAR_LANGUAGE_PRAGMA
46
/* IAR recommend this technique for accessing unaligned data in
47
* https://www.iar.com/knowledge/support/technical-notes/compiler/accessing-unaligned-data
48
* This results in a single load / store instruction (if unaligned access is supported).
49
* According to that document, this is only supported on certain architectures.
50
*/
51
#define UINT_UNALIGNED
52
typedef uint16_t __packed mbedtls_uint16_unaligned_t;
53
typedef uint32_t __packed mbedtls_uint32_unaligned_t;
54
typedef uint64_t __packed mbedtls_uint64_unaligned_t;
55
#elif defined(MBEDTLS_COMPILER_IS_GCC) && (MBEDTLS_GCC_VERSION >= 40504) && \
56
((MBEDTLS_GCC_VERSION < 60300) || (!defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS)))
57
/*
58
* gcc may generate a branch to memcpy for calls like `memcpy(dest, src, 4)` rather than
59
* generating some LDR or LDRB instructions (similar for stores).
60
*
61
* This is architecture dependent: x86-64 seems fine even with old gcc; 32-bit Arm
62
* is affected. To keep it simple, we enable for all architectures.
63
*
64
* For versions of gcc < 5.4.0 this issue always happens.
65
* For gcc < 6.3.0, this issue happens at -O0
66
* For all versions, this issue happens iff unaligned access is not supported.
67
*
68
* For gcc 4.x, this implementation will generate byte-by-byte loads even if unaligned access is
69
* supported, which is correct but not optimal.
70
*
71
* For performance (and code size, in some cases), we want to avoid the branch and just generate
72
* some inline load/store instructions since the access is small and constant-size.
73
*
74
* The manual states:
75
* "The packed attribute specifies that a variable or structure field should have the smallest
76
* possible alignment—one byte for a variable"
77
* https://gcc.gnu.org/onlinedocs/gcc-4.5.4/gcc/Variable-Attributes.html
78
*
79
* Previous implementations used __attribute__((__aligned__(1)), but had issues with a gcc bug:
80
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94662
81
*
82
* Tested with several versions of GCC from 4.5.0 up to 13.2.0
83
* We don't enable for older than 4.5.0 as this has not been tested.
84
*/
85
#define UINT_UNALIGNED_STRUCT
86
typedef struct {
87
uint16_t x;
88
} __attribute__((packed)) mbedtls_uint16_unaligned_t;
89
typedef struct {
90
uint32_t x;
91
} __attribute__((packed)) mbedtls_uint32_unaligned_t;
92
typedef struct {
93
uint64_t x;
94
} __attribute__((packed)) mbedtls_uint64_unaligned_t;
95
#endif
96
97
/*
98
* We try to force mbedtls_(get|put)_unaligned_uintXX to be always inline, because this results
99
* in code that is both smaller and faster. IAR and gcc both benefit from this when optimising
100
* for size.
101
*/
102
103
/**
104
* Read the unsigned 16 bits integer from the given address, which need not
105
* be aligned.
106
*
107
* \param p pointer to 2 bytes of data
108
* \return Data at the given address
109
*/
110
#if defined(__IAR_SYSTEMS_ICC__)
111
#pragma inline = forced
112
#elif defined(__GNUC__)
113
__attribute__((always_inline))
114
#endif
115
static inline uint16_t mbedtls_get_unaligned_uint16(const void *p)
116
{
117
uint16_t r;
118
#if defined(UINT_UNALIGNED)
119
mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p;
120
r = *p16;
121
#elif defined(UINT_UNALIGNED_STRUCT)
122
mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p;
123
r = p16->x;
124
#else
125
memcpy(&r, p, sizeof(r));
126
#endif
127
return r;
128
}
129
130
/**
131
* Write the unsigned 16 bits integer to the given address, which need not
132
* be aligned.
133
*
134
* \param p pointer to 2 bytes of data
135
* \param x data to write
136
*/
137
#if defined(__IAR_SYSTEMS_ICC__)
138
#pragma inline = forced
139
#elif defined(__GNUC__)
140
__attribute__((always_inline))
141
#endif
142
static inline void mbedtls_put_unaligned_uint16(void *p, uint16_t x)
143
{
144
#if defined(UINT_UNALIGNED)
145
mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p;
146
*p16 = x;
147
#elif defined(UINT_UNALIGNED_STRUCT)
148
mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p;
149
p16->x = x;
150
#else
151
memcpy(p, &x, sizeof(x));
152
#endif
153
}
154
155
/**
156
* Read the unsigned 32 bits integer from the given address, which need not
157
* be aligned.
158
*
159
* \param p pointer to 4 bytes of data
160
* \return Data at the given address
161
*/
162
#if defined(__IAR_SYSTEMS_ICC__)
163
#pragma inline = forced
164
#elif defined(__GNUC__)
165
__attribute__((always_inline))
166
#endif
167
static inline uint32_t mbedtls_get_unaligned_uint32(const void *p)
168
{
169
uint32_t r;
170
#if defined(UINT_UNALIGNED)
171
mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p;
172
r = *p32;
173
#elif defined(UINT_UNALIGNED_STRUCT)
174
mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p;
175
r = p32->x;
176
#else
177
memcpy(&r, p, sizeof(r));
178
#endif
179
return r;
180
}
181
182
/**
183
* Write the unsigned 32 bits integer to the given address, which need not
184
* be aligned.
185
*
186
* \param p pointer to 4 bytes of data
187
* \param x data to write
188
*/
189
#if defined(__IAR_SYSTEMS_ICC__)
190
#pragma inline = forced
191
#elif defined(__GNUC__)
192
__attribute__((always_inline))
193
#endif
194
static inline void mbedtls_put_unaligned_uint32(void *p, uint32_t x)
195
{
196
#if defined(UINT_UNALIGNED)
197
mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p;
198
*p32 = x;
199
#elif defined(UINT_UNALIGNED_STRUCT)
200
mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p;
201
p32->x = x;
202
#else
203
memcpy(p, &x, sizeof(x));
204
#endif
205
}
206
207
/**
208
* Read the unsigned 64 bits integer from the given address, which need not
209
* be aligned.
210
*
211
* \param p pointer to 8 bytes of data
212
* \return Data at the given address
213
*/
214
#if defined(__IAR_SYSTEMS_ICC__)
215
#pragma inline = forced
216
#elif defined(__GNUC__)
217
__attribute__((always_inline))
218
#endif
219
static inline uint64_t mbedtls_get_unaligned_uint64(const void *p)
220
{
221
uint64_t r;
222
#if defined(UINT_UNALIGNED)
223
mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p;
224
r = *p64;
225
#elif defined(UINT_UNALIGNED_STRUCT)
226
mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p;
227
r = p64->x;
228
#else
229
memcpy(&r, p, sizeof(r));
230
#endif
231
return r;
232
}
233
234
/**
235
* Write the unsigned 64 bits integer to the given address, which need not
236
* be aligned.
237
*
238
* \param p pointer to 8 bytes of data
239
* \param x data to write
240
*/
241
#if defined(__IAR_SYSTEMS_ICC__)
242
#pragma inline = forced
243
#elif defined(__GNUC__)
244
__attribute__((always_inline))
245
#endif
246
static inline void mbedtls_put_unaligned_uint64(void *p, uint64_t x)
247
{
248
#if defined(UINT_UNALIGNED)
249
mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p;
250
*p64 = x;
251
#elif defined(UINT_UNALIGNED_STRUCT)
252
mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p;
253
p64->x = x;
254
#else
255
memcpy(p, &x, sizeof(x));
256
#endif
257
}
258
259
#if defined(MBEDTLS_POP_IAR_LANGUAGE_PRAGMA)
260
#pragma language=restore
261
#endif
262
263
/** Byte Reading Macros
264
*
265
* Given a multi-byte integer \p x, MBEDTLS_BYTE_n retrieves the n-th
266
* byte from x, where byte 0 is the least significant byte.
267
*/
268
#define MBEDTLS_BYTE_0(x) ((uint8_t) ((x) & 0xff))
269
#define MBEDTLS_BYTE_1(x) ((uint8_t) (((x) >> 8) & 0xff))
270
#define MBEDTLS_BYTE_2(x) ((uint8_t) (((x) >> 16) & 0xff))
271
#define MBEDTLS_BYTE_3(x) ((uint8_t) (((x) >> 24) & 0xff))
272
#define MBEDTLS_BYTE_4(x) ((uint8_t) (((x) >> 32) & 0xff))
273
#define MBEDTLS_BYTE_5(x) ((uint8_t) (((x) >> 40) & 0xff))
274
#define MBEDTLS_BYTE_6(x) ((uint8_t) (((x) >> 48) & 0xff))
275
#define MBEDTLS_BYTE_7(x) ((uint8_t) (((x) >> 56) & 0xff))
276
277
/*
278
* Detect GCC built-in byteswap routines
279
*/
280
#if defined(__GNUC__) && defined(__GNUC_PREREQ)
281
#if __GNUC_PREREQ(4, 8)
282
#define MBEDTLS_BSWAP16 __builtin_bswap16
283
#endif /* __GNUC_PREREQ(4,8) */
284
#if __GNUC_PREREQ(4, 3)
285
#define MBEDTLS_BSWAP32 __builtin_bswap32
286
#define MBEDTLS_BSWAP64 __builtin_bswap64
287
#endif /* __GNUC_PREREQ(4,3) */
288
#endif /* defined(__GNUC__) && defined(__GNUC_PREREQ) */
289
290
/*
291
* Detect Clang built-in byteswap routines
292
*/
293
#if defined(__clang__) && defined(__has_builtin)
294
#if __has_builtin(__builtin_bswap16) && !defined(MBEDTLS_BSWAP16)
295
#define MBEDTLS_BSWAP16 __builtin_bswap16
296
#endif /* __has_builtin(__builtin_bswap16) */
297
#if __has_builtin(__builtin_bswap32) && !defined(MBEDTLS_BSWAP32)
298
#define MBEDTLS_BSWAP32 __builtin_bswap32
299
#endif /* __has_builtin(__builtin_bswap32) */
300
#if __has_builtin(__builtin_bswap64) && !defined(MBEDTLS_BSWAP64)
301
#define MBEDTLS_BSWAP64 __builtin_bswap64
302
#endif /* __has_builtin(__builtin_bswap64) */
303
#endif /* defined(__clang__) && defined(__has_builtin) */
304
305
/*
306
* Detect MSVC built-in byteswap routines
307
*/
308
#if defined(_MSC_VER)
309
#if !defined(MBEDTLS_BSWAP16)
310
#define MBEDTLS_BSWAP16 _byteswap_ushort
311
#endif
312
#if !defined(MBEDTLS_BSWAP32)
313
#define MBEDTLS_BSWAP32 _byteswap_ulong
314
#endif
315
#if !defined(MBEDTLS_BSWAP64)
316
#define MBEDTLS_BSWAP64 _byteswap_uint64
317
#endif
318
#endif /* defined(_MSC_VER) */
319
320
/* Detect armcc built-in byteswap routine */
321
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 410000) && !defined(MBEDTLS_BSWAP32)
322
#if defined(__ARM_ACLE) /* ARM Compiler 6 - earlier versions don't need a header */
323
#include <arm_acle.h>
324
#endif
325
#define MBEDTLS_BSWAP32 __rev
326
#endif
327
328
/* Detect IAR built-in byteswap routine */
329
#if defined(__IAR_SYSTEMS_ICC__)
330
#if defined(__ARM_ACLE)
331
#include <arm_acle.h>
332
#define MBEDTLS_BSWAP16(x) ((uint16_t) __rev16((uint32_t) (x)))
333
#define MBEDTLS_BSWAP32 __rev
334
#define MBEDTLS_BSWAP64 __revll
335
#endif
336
#endif
337
338
/*
339
* Where compiler built-ins are not present, fall back to C code that the
340
* compiler may be able to detect and transform into the relevant bswap or
341
* similar instruction.
342
*/
343
#if !defined(MBEDTLS_BSWAP16)
344
static inline uint16_t mbedtls_bswap16(uint16_t x)
345
{
346
return
347
(x & 0x00ff) << 8 |
348
(x & 0xff00) >> 8;
349
}
350
#define MBEDTLS_BSWAP16 mbedtls_bswap16
351
#endif /* !defined(MBEDTLS_BSWAP16) */
352
353
#if !defined(MBEDTLS_BSWAP32)
354
static inline uint32_t mbedtls_bswap32(uint32_t x)
355
{
356
return
357
(x & 0x000000ff) << 24 |
358
(x & 0x0000ff00) << 8 |
359
(x & 0x00ff0000) >> 8 |
360
(x & 0xff000000) >> 24;
361
}
362
#define MBEDTLS_BSWAP32 mbedtls_bswap32
363
#endif /* !defined(MBEDTLS_BSWAP32) */
364
365
#if !defined(MBEDTLS_BSWAP64)
366
static inline uint64_t mbedtls_bswap64(uint64_t x)
367
{
368
return
369
(x & 0x00000000000000ffULL) << 56 |
370
(x & 0x000000000000ff00ULL) << 40 |
371
(x & 0x0000000000ff0000ULL) << 24 |
372
(x & 0x00000000ff000000ULL) << 8 |
373
(x & 0x000000ff00000000ULL) >> 8 |
374
(x & 0x0000ff0000000000ULL) >> 24 |
375
(x & 0x00ff000000000000ULL) >> 40 |
376
(x & 0xff00000000000000ULL) >> 56;
377
}
378
#define MBEDTLS_BSWAP64 mbedtls_bswap64
379
#endif /* !defined(MBEDTLS_BSWAP64) */
380
381
#if !defined(__BYTE_ORDER__)
382
383
#if defined(__LITTLE_ENDIAN__)
384
/* IAR defines __xxx_ENDIAN__, but not __BYTE_ORDER__ */
385
#define MBEDTLS_IS_BIG_ENDIAN 0
386
#elif defined(__BIG_ENDIAN__)
387
#define MBEDTLS_IS_BIG_ENDIAN 1
388
#else
389
static const uint16_t mbedtls_byte_order_detector = { 0x100 };
390
#define MBEDTLS_IS_BIG_ENDIAN (*((unsigned char *) (&mbedtls_byte_order_detector)) == 0x01)
391
#endif
392
393
#else
394
395
#if (__BYTE_ORDER__) == (__ORDER_BIG_ENDIAN__)
396
#define MBEDTLS_IS_BIG_ENDIAN 1
397
#else
398
#define MBEDTLS_IS_BIG_ENDIAN 0
399
#endif
400
401
#endif /* !defined(__BYTE_ORDER__) */
402
403
/**
404
* Get the unsigned 32 bits integer corresponding to four bytes in
405
* big-endian order (MSB first).
406
*
407
* \param data Base address of the memory to get the four bytes from.
408
* \param offset Offset from \p data of the first and most significant
409
* byte of the four bytes to build the 32 bits unsigned
410
* integer from.
411
*/
412
#define MBEDTLS_GET_UINT32_BE(data, offset) \
413
((MBEDTLS_IS_BIG_ENDIAN) \
414
? mbedtls_get_unaligned_uint32((data) + (offset)) \
415
: MBEDTLS_BSWAP32(mbedtls_get_unaligned_uint32((data) + (offset))) \
416
)
417
418
/**
419
* Put in memory a 32 bits unsigned integer in big-endian order.
420
*
421
* \param n 32 bits unsigned integer to put in memory.
422
* \param data Base address of the memory where to put the 32
423
* bits unsigned integer in.
424
* \param offset Offset from \p data where to put the most significant
425
* byte of the 32 bits unsigned integer \p n.
426
*/
427
#define MBEDTLS_PUT_UINT32_BE(n, data, offset) \
428
{ \
429
if (MBEDTLS_IS_BIG_ENDIAN) \
430
{ \
431
mbedtls_put_unaligned_uint32((data) + (offset), (uint32_t) (n)); \
432
} \
433
else \
434
{ \
435
mbedtls_put_unaligned_uint32((data) + (offset), MBEDTLS_BSWAP32((uint32_t) (n))); \
436
} \
437
}
438
439
/**
440
* Get the unsigned 32 bits integer corresponding to four bytes in
441
* little-endian order (LSB first).
442
*
443
* \param data Base address of the memory to get the four bytes from.
444
* \param offset Offset from \p data of the first and least significant
445
* byte of the four bytes to build the 32 bits unsigned
446
* integer from.
447
*/
448
#define MBEDTLS_GET_UINT32_LE(data, offset) \
449
((MBEDTLS_IS_BIG_ENDIAN) \
450
? MBEDTLS_BSWAP32(mbedtls_get_unaligned_uint32((data) + (offset))) \
451
: mbedtls_get_unaligned_uint32((data) + (offset)) \
452
)
453
454
455
/**
456
* Put in memory a 32 bits unsigned integer in little-endian order.
457
*
458
* \param n 32 bits unsigned integer to put in memory.
459
* \param data Base address of the memory where to put the 32
460
* bits unsigned integer in.
461
* \param offset Offset from \p data where to put the least significant
462
* byte of the 32 bits unsigned integer \p n.
463
*/
464
#define MBEDTLS_PUT_UINT32_LE(n, data, offset) \
465
{ \
466
if (MBEDTLS_IS_BIG_ENDIAN) \
467
{ \
468
mbedtls_put_unaligned_uint32((data) + (offset), MBEDTLS_BSWAP32((uint32_t) (n))); \
469
} \
470
else \
471
{ \
472
mbedtls_put_unaligned_uint32((data) + (offset), ((uint32_t) (n))); \
473
} \
474
}
475
476
/**
477
* Get the unsigned 16 bits integer corresponding to two bytes in
478
* little-endian order (LSB first).
479
*
480
* \param data Base address of the memory to get the two bytes from.
481
* \param offset Offset from \p data of the first and least significant
482
* byte of the two bytes to build the 16 bits unsigned
483
* integer from.
484
*/
485
#define MBEDTLS_GET_UINT16_LE(data, offset) \
486
((MBEDTLS_IS_BIG_ENDIAN) \
487
? MBEDTLS_BSWAP16(mbedtls_get_unaligned_uint16((data) + (offset))) \
488
: mbedtls_get_unaligned_uint16((data) + (offset)) \
489
)
490
491
/**
492
* Put in memory a 16 bits unsigned integer in little-endian order.
493
*
494
* \param n 16 bits unsigned integer to put in memory.
495
* \param data Base address of the memory where to put the 16
496
* bits unsigned integer in.
497
* \param offset Offset from \p data where to put the least significant
498
* byte of the 16 bits unsigned integer \p n.
499
*/
500
#define MBEDTLS_PUT_UINT16_LE(n, data, offset) \
501
{ \
502
if (MBEDTLS_IS_BIG_ENDIAN) \
503
{ \
504
mbedtls_put_unaligned_uint16((data) + (offset), MBEDTLS_BSWAP16((uint16_t) (n))); \
505
} \
506
else \
507
{ \
508
mbedtls_put_unaligned_uint16((data) + (offset), (uint16_t) (n)); \
509
} \
510
}
511
512
/**
513
* Get the unsigned 16 bits integer corresponding to two bytes in
514
* big-endian order (MSB first).
515
*
516
* \param data Base address of the memory to get the two bytes from.
517
* \param offset Offset from \p data of the first and most significant
518
* byte of the two bytes to build the 16 bits unsigned
519
* integer from.
520
*/
521
#define MBEDTLS_GET_UINT16_BE(data, offset) \
522
((MBEDTLS_IS_BIG_ENDIAN) \
523
? mbedtls_get_unaligned_uint16((data) + (offset)) \
524
: MBEDTLS_BSWAP16(mbedtls_get_unaligned_uint16((data) + (offset))) \
525
)
526
527
/**
528
* Put in memory a 16 bits unsigned integer in big-endian order.
529
*
530
* \param n 16 bits unsigned integer to put in memory.
531
* \param data Base address of the memory where to put the 16
532
* bits unsigned integer in.
533
* \param offset Offset from \p data where to put the most significant
534
* byte of the 16 bits unsigned integer \p n.
535
*/
536
#define MBEDTLS_PUT_UINT16_BE(n, data, offset) \
537
{ \
538
if (MBEDTLS_IS_BIG_ENDIAN) \
539
{ \
540
mbedtls_put_unaligned_uint16((data) + (offset), (uint16_t) (n)); \
541
} \
542
else \
543
{ \
544
mbedtls_put_unaligned_uint16((data) + (offset), MBEDTLS_BSWAP16((uint16_t) (n))); \
545
} \
546
}
547
548
/**
549
* Get the unsigned 24 bits integer corresponding to three bytes in
550
* big-endian order (MSB first).
551
*
552
* \param data Base address of the memory to get the three bytes from.
553
* \param offset Offset from \p data of the first and most significant
554
* byte of the three bytes to build the 24 bits unsigned
555
* integer from.
556
*/
557
#define MBEDTLS_GET_UINT24_BE(data, offset) \
558
( \
559
((uint32_t) (data)[(offset)] << 16) \
560
| ((uint32_t) (data)[(offset) + 1] << 8) \
561
| ((uint32_t) (data)[(offset) + 2]) \
562
)
563
564
/**
565
* Put in memory a 24 bits unsigned integer in big-endian order.
566
*
567
* \param n 24 bits unsigned integer to put in memory.
568
* \param data Base address of the memory where to put the 24
569
* bits unsigned integer in.
570
* \param offset Offset from \p data where to put the most significant
571
* byte of the 24 bits unsigned integer \p n.
572
*/
573
#define MBEDTLS_PUT_UINT24_BE(n, data, offset) \
574
{ \
575
(data)[(offset)] = MBEDTLS_BYTE_2(n); \
576
(data)[(offset) + 1] = MBEDTLS_BYTE_1(n); \
577
(data)[(offset) + 2] = MBEDTLS_BYTE_0(n); \
578
}
579
580
/**
581
* Get the unsigned 24 bits integer corresponding to three bytes in
582
* little-endian order (LSB first).
583
*
584
* \param data Base address of the memory to get the three bytes from.
585
* \param offset Offset from \p data of the first and least significant
586
* byte of the three bytes to build the 24 bits unsigned
587
* integer from.
588
*/
589
#define MBEDTLS_GET_UINT24_LE(data, offset) \
590
( \
591
((uint32_t) (data)[(offset)]) \
592
| ((uint32_t) (data)[(offset) + 1] << 8) \
593
| ((uint32_t) (data)[(offset) + 2] << 16) \
594
)
595
596
/**
597
* Put in memory a 24 bits unsigned integer in little-endian order.
598
*
599
* \param n 24 bits unsigned integer to put in memory.
600
* \param data Base address of the memory where to put the 24
601
* bits unsigned integer in.
602
* \param offset Offset from \p data where to put the least significant
603
* byte of the 24 bits unsigned integer \p n.
604
*/
605
#define MBEDTLS_PUT_UINT24_LE(n, data, offset) \
606
{ \
607
(data)[(offset)] = MBEDTLS_BYTE_0(n); \
608
(data)[(offset) + 1] = MBEDTLS_BYTE_1(n); \
609
(data)[(offset) + 2] = MBEDTLS_BYTE_2(n); \
610
}
611
612
/**
613
* Get the unsigned 64 bits integer corresponding to eight bytes in
614
* big-endian order (MSB first).
615
*
616
* \param data Base address of the memory to get the eight bytes from.
617
* \param offset Offset from \p data of the first and most significant
618
* byte of the eight bytes to build the 64 bits unsigned
619
* integer from.
620
*/
621
#define MBEDTLS_GET_UINT64_BE(data, offset) \
622
((MBEDTLS_IS_BIG_ENDIAN) \
623
? mbedtls_get_unaligned_uint64((data) + (offset)) \
624
: MBEDTLS_BSWAP64(mbedtls_get_unaligned_uint64((data) + (offset))) \
625
)
626
627
/**
628
* Put in memory a 64 bits unsigned integer in big-endian order.
629
*
630
* \param n 64 bits unsigned integer to put in memory.
631
* \param data Base address of the memory where to put the 64
632
* bits unsigned integer in.
633
* \param offset Offset from \p data where to put the most significant
634
* byte of the 64 bits unsigned integer \p n.
635
*/
636
#define MBEDTLS_PUT_UINT64_BE(n, data, offset) \
637
{ \
638
if (MBEDTLS_IS_BIG_ENDIAN) \
639
{ \
640
mbedtls_put_unaligned_uint64((data) + (offset), (uint64_t) (n)); \
641
} \
642
else \
643
{ \
644
mbedtls_put_unaligned_uint64((data) + (offset), MBEDTLS_BSWAP64((uint64_t) (n))); \
645
} \
646
}
647
648
/**
649
* Get the unsigned 64 bits integer corresponding to eight bytes in
650
* little-endian order (LSB first).
651
*
652
* \param data Base address of the memory to get the eight bytes from.
653
* \param offset Offset from \p data of the first and least significant
654
* byte of the eight bytes to build the 64 bits unsigned
655
* integer from.
656
*/
657
#define MBEDTLS_GET_UINT64_LE(data, offset) \
658
((MBEDTLS_IS_BIG_ENDIAN) \
659
? MBEDTLS_BSWAP64(mbedtls_get_unaligned_uint64((data) + (offset))) \
660
: mbedtls_get_unaligned_uint64((data) + (offset)) \
661
)
662
663
/**
664
* Put in memory a 64 bits unsigned integer in little-endian order.
665
*
666
* \param n 64 bits unsigned integer to put in memory.
667
* \param data Base address of the memory where to put the 64
668
* bits unsigned integer in.
669
* \param offset Offset from \p data where to put the least significant
670
* byte of the 64 bits unsigned integer \p n.
671
*/
672
#define MBEDTLS_PUT_UINT64_LE(n, data, offset) \
673
{ \
674
if (MBEDTLS_IS_BIG_ENDIAN) \
675
{ \
676
mbedtls_put_unaligned_uint64((data) + (offset), MBEDTLS_BSWAP64((uint64_t) (n))); \
677
} \
678
else \
679
{ \
680
mbedtls_put_unaligned_uint64((data) + (offset), (uint64_t) (n)); \
681
} \
682
}
683
684
#endif /* MBEDTLS_LIBRARY_ALIGNMENT_H */
685
686