Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/mbedtls/library/bignum_core.c
9898 views
1
/*
2
* Core bignum functions
3
*
4
* Copyright The Mbed TLS Contributors
5
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6
*/
7
8
#include "common.h"
9
10
#if defined(MBEDTLS_BIGNUM_C)
11
12
#include <string.h>
13
14
#include "mbedtls/error.h"
15
#include "mbedtls/platform_util.h"
16
#include "constant_time_internal.h"
17
18
#include "mbedtls/platform.h"
19
20
#include "bignum_core.h"
21
#include "bn_mul.h"
22
#include "constant_time_internal.h"
23
24
size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a)
25
{
26
#if defined(__has_builtin)
27
#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_clz)
28
#define core_clz __builtin_clz
29
#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_clzl)
30
#define core_clz __builtin_clzl
31
#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_clzll)
32
#define core_clz __builtin_clzll
33
#endif
34
#endif
35
#if defined(core_clz)
36
return (size_t) core_clz(a);
37
#else
38
size_t j;
39
mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
40
41
for (j = 0; j < biL; j++) {
42
if (a & mask) {
43
break;
44
}
45
46
mask >>= 1;
47
}
48
49
return j;
50
#endif
51
}
52
53
size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs)
54
{
55
int i;
56
size_t j;
57
58
for (i = ((int) A_limbs) - 1; i >= 0; i--) {
59
if (A[i] != 0) {
60
j = biL - mbedtls_mpi_core_clz(A[i]);
61
return (i * biL) + j;
62
}
63
}
64
65
return 0;
66
}
67
68
static mbedtls_mpi_uint mpi_bigendian_to_host(mbedtls_mpi_uint a)
69
{
70
if (MBEDTLS_IS_BIG_ENDIAN) {
71
/* Nothing to do on bigendian systems. */
72
return a;
73
} else {
74
#if defined(MBEDTLS_HAVE_INT32)
75
return (mbedtls_mpi_uint) MBEDTLS_BSWAP32(a);
76
#elif defined(MBEDTLS_HAVE_INT64)
77
return (mbedtls_mpi_uint) MBEDTLS_BSWAP64(a);
78
#endif
79
}
80
}
81
82
void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
83
size_t A_limbs)
84
{
85
mbedtls_mpi_uint *cur_limb_left;
86
mbedtls_mpi_uint *cur_limb_right;
87
if (A_limbs == 0) {
88
return;
89
}
90
91
/*
92
* Traverse limbs and
93
* - adapt byte-order in each limb
94
* - swap the limbs themselves.
95
* For that, simultaneously traverse the limbs from left to right
96
* and from right to left, as long as the left index is not bigger
97
* than the right index (it's not a problem if limbs is odd and the
98
* indices coincide in the last iteration).
99
*/
100
for (cur_limb_left = A, cur_limb_right = A + (A_limbs - 1);
101
cur_limb_left <= cur_limb_right;
102
cur_limb_left++, cur_limb_right--) {
103
mbedtls_mpi_uint tmp;
104
/* Note that if cur_limb_left == cur_limb_right,
105
* this code effectively swaps the bytes only once. */
106
tmp = mpi_bigendian_to_host(*cur_limb_left);
107
*cur_limb_left = mpi_bigendian_to_host(*cur_limb_right);
108
*cur_limb_right = tmp;
109
}
110
}
111
112
/* Whether min <= A, in constant time.
113
* A_limbs must be at least 1. */
114
mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
115
const mbedtls_mpi_uint *A,
116
size_t A_limbs)
117
{
118
/* min <= least significant limb? */
119
mbedtls_ct_condition_t min_le_lsl = mbedtls_ct_uint_ge(A[0], min);
120
121
/* limbs other than the least significant one are all zero? */
122
mbedtls_ct_condition_t msll_mask = MBEDTLS_CT_FALSE;
123
for (size_t i = 1; i < A_limbs; i++) {
124
msll_mask = mbedtls_ct_bool_or(msll_mask, mbedtls_ct_bool(A[i]));
125
}
126
127
/* min <= A iff the lowest limb of A is >= min or the other limbs
128
* are not all zero. */
129
return mbedtls_ct_bool_or(msll_mask, min_le_lsl);
130
}
131
132
mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
133
const mbedtls_mpi_uint *B,
134
size_t limbs)
135
{
136
mbedtls_ct_condition_t ret = MBEDTLS_CT_FALSE, cond = MBEDTLS_CT_FALSE, done = MBEDTLS_CT_FALSE;
137
138
for (size_t i = limbs; i > 0; i--) {
139
/*
140
* If B[i - 1] < A[i - 1] then A < B is false and the result must
141
* remain 0.
142
*
143
* Again even if we can make a decision, we just mark the result and
144
* the fact that we are done and continue looping.
145
*/
146
cond = mbedtls_ct_uint_lt(B[i - 1], A[i - 1]);
147
done = mbedtls_ct_bool_or(done, cond);
148
149
/*
150
* If A[i - 1] < B[i - 1] then A < B is true.
151
*
152
* Again even if we can make a decision, we just mark the result and
153
* the fact that we are done and continue looping.
154
*/
155
cond = mbedtls_ct_uint_lt(A[i - 1], B[i - 1]);
156
ret = mbedtls_ct_bool_or(ret, mbedtls_ct_bool_and(cond, mbedtls_ct_bool_not(done)));
157
done = mbedtls_ct_bool_or(done, cond);
158
}
159
160
/*
161
* If all the limbs were equal, then the numbers are equal, A < B is false
162
* and leaving the result 0 is correct.
163
*/
164
165
return ret;
166
}
167
168
void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
169
const mbedtls_mpi_uint *A,
170
size_t limbs,
171
mbedtls_ct_condition_t assign)
172
{
173
if (X == A) {
174
return;
175
}
176
177
/* This function is very performance-sensitive for RSA. For this reason
178
* we have the loop below, instead of calling mbedtls_ct_memcpy_if
179
* (this is more optimal since here we don't have to handle the case where
180
* we copy awkwardly sized data).
181
*/
182
for (size_t i = 0; i < limbs; i++) {
183
X[i] = mbedtls_ct_mpi_uint_if(assign, A[i], X[i]);
184
}
185
}
186
187
void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
188
mbedtls_mpi_uint *Y,
189
size_t limbs,
190
mbedtls_ct_condition_t swap)
191
{
192
if (X == Y) {
193
return;
194
}
195
196
for (size_t i = 0; i < limbs; i++) {
197
mbedtls_mpi_uint tmp = X[i];
198
X[i] = mbedtls_ct_mpi_uint_if(swap, Y[i], X[i]);
199
Y[i] = mbedtls_ct_mpi_uint_if(swap, tmp, Y[i]);
200
}
201
}
202
203
int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
204
size_t X_limbs,
205
const unsigned char *input,
206
size_t input_length)
207
{
208
const size_t limbs = CHARS_TO_LIMBS(input_length);
209
210
if (X_limbs < limbs) {
211
return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
212
}
213
214
if (X != NULL) {
215
memset(X, 0, X_limbs * ciL);
216
217
for (size_t i = 0; i < input_length; i++) {
218
size_t offset = ((i % ciL) << 3);
219
X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << offset;
220
}
221
}
222
223
return 0;
224
}
225
226
int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
227
size_t X_limbs,
228
const unsigned char *input,
229
size_t input_length)
230
{
231
const size_t limbs = CHARS_TO_LIMBS(input_length);
232
233
if (X_limbs < limbs) {
234
return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
235
}
236
237
/* If X_limbs is 0, input_length must also be 0 (from previous test).
238
* Nothing to do. */
239
if (X_limbs == 0) {
240
return 0;
241
}
242
243
memset(X, 0, X_limbs * ciL);
244
245
/* memcpy() with (NULL, 0) is undefined behaviour */
246
if (input_length != 0) {
247
size_t overhead = (X_limbs * ciL) - input_length;
248
unsigned char *Xp = (unsigned char *) X;
249
memcpy(Xp + overhead, input, input_length);
250
}
251
252
mbedtls_mpi_core_bigendian_to_host(X, X_limbs);
253
254
return 0;
255
}
256
257
int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
258
size_t A_limbs,
259
unsigned char *output,
260
size_t output_length)
261
{
262
size_t stored_bytes = A_limbs * ciL;
263
size_t bytes_to_copy;
264
265
if (stored_bytes < output_length) {
266
bytes_to_copy = stored_bytes;
267
} else {
268
bytes_to_copy = output_length;
269
270
/* The output buffer is smaller than the allocated size of A.
271
* However A may fit if its leading bytes are zero. */
272
for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
273
if (GET_BYTE(A, i) != 0) {
274
return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
275
}
276
}
277
}
278
279
for (size_t i = 0; i < bytes_to_copy; i++) {
280
output[i] = GET_BYTE(A, i);
281
}
282
283
if (stored_bytes < output_length) {
284
/* Write trailing 0 bytes */
285
memset(output + stored_bytes, 0, output_length - stored_bytes);
286
}
287
288
return 0;
289
}
290
291
int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *X,
292
size_t X_limbs,
293
unsigned char *output,
294
size_t output_length)
295
{
296
size_t stored_bytes;
297
size_t bytes_to_copy;
298
unsigned char *p;
299
300
stored_bytes = X_limbs * ciL;
301
302
if (stored_bytes < output_length) {
303
/* There is enough space in the output buffer. Write initial
304
* null bytes and record the position at which to start
305
* writing the significant bytes. In this case, the execution
306
* trace of this function does not depend on the value of the
307
* number. */
308
bytes_to_copy = stored_bytes;
309
p = output + output_length - stored_bytes;
310
memset(output, 0, output_length - stored_bytes);
311
} else {
312
/* The output buffer is smaller than the allocated size of X.
313
* However X may fit if its leading bytes are zero. */
314
bytes_to_copy = output_length;
315
p = output;
316
for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
317
if (GET_BYTE(X, i) != 0) {
318
return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
319
}
320
}
321
}
322
323
for (size_t i = 0; i < bytes_to_copy; i++) {
324
p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
325
}
326
327
return 0;
328
}
329
330
void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
331
size_t count)
332
{
333
size_t i, v0, v1;
334
mbedtls_mpi_uint r0 = 0, r1;
335
336
v0 = count / biL;
337
v1 = count & (biL - 1);
338
339
if (v0 > limbs || (v0 == limbs && v1 > 0)) {
340
memset(X, 0, limbs * ciL);
341
return;
342
}
343
344
/*
345
* shift by count / limb_size
346
*/
347
if (v0 > 0) {
348
for (i = 0; i < limbs - v0; i++) {
349
X[i] = X[i + v0];
350
}
351
352
for (; i < limbs; i++) {
353
X[i] = 0;
354
}
355
}
356
357
/*
358
* shift by count % limb_size
359
*/
360
if (v1 > 0) {
361
for (i = limbs; i > 0; i--) {
362
r1 = X[i - 1] << (biL - v1);
363
X[i - 1] >>= v1;
364
X[i - 1] |= r0;
365
r0 = r1;
366
}
367
}
368
}
369
370
void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
371
size_t count)
372
{
373
size_t i, v0, v1;
374
mbedtls_mpi_uint r0 = 0, r1;
375
376
v0 = count / (biL);
377
v1 = count & (biL - 1);
378
379
/*
380
* shift by count / limb_size
381
*/
382
if (v0 > 0) {
383
for (i = limbs; i > v0; i--) {
384
X[i - 1] = X[i - v0 - 1];
385
}
386
387
for (; i > 0; i--) {
388
X[i - 1] = 0;
389
}
390
}
391
392
/*
393
* shift by count % limb_size
394
*/
395
if (v1 > 0) {
396
for (i = v0; i < limbs; i++) {
397
r1 = X[i] >> (biL - v1);
398
X[i] <<= v1;
399
X[i] |= r0;
400
r0 = r1;
401
}
402
}
403
}
404
405
mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
406
const mbedtls_mpi_uint *A,
407
const mbedtls_mpi_uint *B,
408
size_t limbs)
409
{
410
mbedtls_mpi_uint c = 0;
411
412
for (size_t i = 0; i < limbs; i++) {
413
mbedtls_mpi_uint t = c + A[i];
414
c = (t < A[i]);
415
t += B[i];
416
c += (t < B[i]);
417
X[i] = t;
418
}
419
420
return c;
421
}
422
423
mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
424
const mbedtls_mpi_uint *A,
425
size_t limbs,
426
unsigned cond)
427
{
428
mbedtls_mpi_uint c = 0;
429
430
mbedtls_ct_condition_t do_add = mbedtls_ct_bool(cond);
431
432
for (size_t i = 0; i < limbs; i++) {
433
mbedtls_mpi_uint add = mbedtls_ct_mpi_uint_if_else_0(do_add, A[i]);
434
mbedtls_mpi_uint t = c + X[i];
435
c = (t < X[i]);
436
t += add;
437
c += (t < add);
438
X[i] = t;
439
}
440
441
return c;
442
}
443
444
mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
445
const mbedtls_mpi_uint *A,
446
const mbedtls_mpi_uint *B,
447
size_t limbs)
448
{
449
mbedtls_mpi_uint c = 0;
450
451
for (size_t i = 0; i < limbs; i++) {
452
mbedtls_mpi_uint z = (A[i] < c);
453
mbedtls_mpi_uint t = A[i] - c;
454
c = (t < B[i]) + z;
455
X[i] = t - B[i];
456
}
457
458
return c;
459
}
460
461
mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *d, size_t d_len,
462
const mbedtls_mpi_uint *s, size_t s_len,
463
mbedtls_mpi_uint b)
464
{
465
mbedtls_mpi_uint c = 0; /* carry */
466
/*
467
* It is a documented precondition of this function that d_len >= s_len.
468
* If that's not the case, we swap these round: this turns what would be
469
* a buffer overflow into an incorrect result.
470
*/
471
if (d_len < s_len) {
472
s_len = d_len;
473
}
474
size_t excess_len = d_len - s_len;
475
size_t steps_x8 = s_len / 8;
476
size_t steps_x1 = s_len & 7;
477
478
while (steps_x8--) {
479
MULADDC_X8_INIT
480
MULADDC_X8_CORE
481
MULADDC_X8_STOP
482
}
483
484
while (steps_x1--) {
485
MULADDC_X1_INIT
486
MULADDC_X1_CORE
487
MULADDC_X1_STOP
488
}
489
490
while (excess_len--) {
491
*d += c;
492
c = (*d < c);
493
d++;
494
}
495
496
return c;
497
}
498
499
void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
500
const mbedtls_mpi_uint *A, size_t A_limbs,
501
const mbedtls_mpi_uint *B, size_t B_limbs)
502
{
503
memset(X, 0, (A_limbs + B_limbs) * ciL);
504
505
for (size_t i = 0; i < B_limbs; i++) {
506
(void) mbedtls_mpi_core_mla(X + i, A_limbs + 1, A, A_limbs, B[i]);
507
}
508
}
509
510
/*
511
* Fast Montgomery initialization (thanks to Tom St Denis).
512
*/
513
mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N)
514
{
515
mbedtls_mpi_uint x = N[0];
516
517
x += ((N[0] + 2) & 4) << 1;
518
519
for (unsigned int i = biL; i >= 8; i /= 2) {
520
x *= (2 - (N[0] * x));
521
}
522
523
return ~x + 1;
524
}
525
526
void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
527
const mbedtls_mpi_uint *A,
528
const mbedtls_mpi_uint *B,
529
size_t B_limbs,
530
const mbedtls_mpi_uint *N,
531
size_t AN_limbs,
532
mbedtls_mpi_uint mm,
533
mbedtls_mpi_uint *T)
534
{
535
memset(T, 0, (2 * AN_limbs + 1) * ciL);
536
537
for (size_t i = 0; i < AN_limbs; i++) {
538
/* T = (T + u0*B + u1*N) / 2^biL */
539
mbedtls_mpi_uint u0 = A[i];
540
mbedtls_mpi_uint u1 = (T[0] + u0 * B[0]) * mm;
541
542
(void) mbedtls_mpi_core_mla(T, AN_limbs + 2, B, B_limbs, u0);
543
(void) mbedtls_mpi_core_mla(T, AN_limbs + 2, N, AN_limbs, u1);
544
545
T++;
546
}
547
548
/*
549
* The result we want is (T >= N) ? T - N : T.
550
*
551
* For better constant-time properties in this function, we always do the
552
* subtraction, with the result in X.
553
*
554
* We also look to see if there was any carry in the final additions in the
555
* loop above.
556
*/
557
558
mbedtls_mpi_uint carry = T[AN_limbs];
559
mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, T, N, AN_limbs);
560
561
/*
562
* Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs):
563
*
564
* T can be in one of 3 ranges:
565
*
566
* 1) T < N : (carry, borrow) = (0, 1): we want T
567
* 2) N <= T < R : (carry, borrow) = (0, 0): we want X
568
* 3) T >= R : (carry, borrow) = (1, 1): we want X
569
*
570
* and (carry, borrow) = (1, 0) can't happen.
571
*
572
* So the correct return value is already in X if (carry ^ borrow) = 0,
573
* but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1.
574
*/
575
mbedtls_ct_memcpy_if(mbedtls_ct_bool(carry ^ borrow),
576
(unsigned char *) X,
577
(unsigned char *) T,
578
NULL,
579
AN_limbs * sizeof(mbedtls_mpi_uint));
580
}
581
582
int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
583
const mbedtls_mpi *N)
584
{
585
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
586
587
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));
588
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL));
589
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
590
MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n));
591
592
cleanup:
593
return ret;
594
}
595
596
MBEDTLS_STATIC_TESTABLE
597
void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
598
const mbedtls_mpi_uint *table,
599
size_t limbs,
600
size_t count,
601
size_t index)
602
{
603
for (size_t i = 0; i < count; i++, table += limbs) {
604
mbedtls_ct_condition_t assign = mbedtls_ct_uint_eq(i, index);
605
mbedtls_mpi_core_cond_assign(dest, table, limbs, assign);
606
}
607
}
608
609
/* Fill X with n_bytes random bytes.
610
* X must already have room for those bytes.
611
* The ordering of the bytes returned from the RNG is suitable for
612
* deterministic ECDSA (see RFC 6979 §3.3 and the specification of
613
* mbedtls_mpi_core_random()).
614
*/
615
int mbedtls_mpi_core_fill_random(
616
mbedtls_mpi_uint *X, size_t X_limbs,
617
size_t n_bytes,
618
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
619
{
620
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
621
const size_t limbs = CHARS_TO_LIMBS(n_bytes);
622
const size_t overhead = (limbs * ciL) - n_bytes;
623
624
if (X_limbs < limbs) {
625
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
626
}
627
628
memset(X, 0, overhead);
629
memset((unsigned char *) X + limbs * ciL, 0, (X_limbs - limbs) * ciL);
630
MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X + overhead, n_bytes));
631
mbedtls_mpi_core_bigendian_to_host(X, limbs);
632
633
cleanup:
634
return ret;
635
}
636
637
int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
638
mbedtls_mpi_uint min,
639
const mbedtls_mpi_uint *N,
640
size_t limbs,
641
int (*f_rng)(void *, unsigned char *, size_t),
642
void *p_rng)
643
{
644
mbedtls_ct_condition_t ge_lower = MBEDTLS_CT_TRUE, lt_upper = MBEDTLS_CT_FALSE;
645
size_t n_bits = mbedtls_mpi_core_bitlen(N, limbs);
646
size_t n_bytes = (n_bits + 7) / 8;
647
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
648
649
/*
650
* When min == 0, each try has at worst a probability 1/2 of failing
651
* (the msb has a probability 1/2 of being 0, and then the result will
652
* be < N), so after 30 tries failure probability is a most 2**(-30).
653
*
654
* When N is just below a power of 2, as is the case when generating
655
* a random scalar on most elliptic curves, 1 try is enough with
656
* overwhelming probability. When N is just above a power of 2,
657
* as when generating a random scalar on secp224k1, each try has
658
* a probability of failing that is almost 1/2.
659
*
660
* The probabilities are almost the same if min is nonzero but negligible
661
* compared to N. This is always the case when N is crypto-sized, but
662
* it's convenient to support small N for testing purposes. When N
663
* is small, use a higher repeat count, otherwise the probability of
664
* failure is macroscopic.
665
*/
666
int count = (n_bytes > 4 ? 30 : 250);
667
668
/*
669
* Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
670
* when f_rng is a suitably parametrized instance of HMAC_DRBG:
671
* - use the same byte ordering;
672
* - keep the leftmost n_bits bits of the generated octet string;
673
* - try until result is in the desired range.
674
* This also avoids any bias, which is especially important for ECDSA.
675
*/
676
do {
677
MBEDTLS_MPI_CHK(mbedtls_mpi_core_fill_random(X, limbs,
678
n_bytes,
679
f_rng, p_rng));
680
mbedtls_mpi_core_shift_r(X, limbs, 8 * n_bytes - n_bits);
681
682
if (--count == 0) {
683
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
684
goto cleanup;
685
}
686
687
ge_lower = mbedtls_mpi_core_uint_le_mpi(min, X, limbs);
688
lt_upper = mbedtls_mpi_core_lt_ct(X, N, limbs);
689
} while (mbedtls_ct_bool_and(ge_lower, lt_upper) == MBEDTLS_CT_FALSE);
690
691
cleanup:
692
return ret;
693
}
694
695
static size_t exp_mod_get_window_size(size_t Ebits)
696
{
697
#if MBEDTLS_MPI_WINDOW_SIZE >= 6
698
return (Ebits > 671) ? 6 : (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1;
699
#elif MBEDTLS_MPI_WINDOW_SIZE == 5
700
return (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1;
701
#elif MBEDTLS_MPI_WINDOW_SIZE > 1
702
return (Ebits > 79) ? MBEDTLS_MPI_WINDOW_SIZE : 1;
703
#else
704
(void) Ebits;
705
return 1;
706
#endif
707
}
708
709
size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs)
710
{
711
const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
712
const size_t welem = ((size_t) 1) << wsize;
713
714
/* How big does each part of the working memory pool need to be? */
715
const size_t table_limbs = welem * AN_limbs;
716
const size_t select_limbs = AN_limbs;
717
const size_t temp_limbs = 2 * AN_limbs + 1;
718
719
return table_limbs + select_limbs + temp_limbs;
720
}
721
722
static void exp_mod_precompute_window(const mbedtls_mpi_uint *A,
723
const mbedtls_mpi_uint *N,
724
size_t AN_limbs,
725
mbedtls_mpi_uint mm,
726
const mbedtls_mpi_uint *RR,
727
size_t welem,
728
mbedtls_mpi_uint *Wtable,
729
mbedtls_mpi_uint *temp)
730
{
731
/* W[0] = 1 (in Montgomery presentation) */
732
memset(Wtable, 0, AN_limbs * ciL);
733
Wtable[0] = 1;
734
mbedtls_mpi_core_montmul(Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp);
735
736
/* W[1] = A (already in Montgomery presentation) */
737
mbedtls_mpi_uint *W1 = Wtable + AN_limbs;
738
memcpy(W1, A, AN_limbs * ciL);
739
740
/* W[i+1] = W[i] * W[1], i >= 2 */
741
mbedtls_mpi_uint *Wprev = W1;
742
for (size_t i = 2; i < welem; i++) {
743
mbedtls_mpi_uint *Wcur = Wprev + AN_limbs;
744
mbedtls_mpi_core_montmul(Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp);
745
Wprev = Wcur;
746
}
747
}
748
749
#if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
750
void (*mbedtls_safe_codepath_hook)(void) = NULL;
751
void (*mbedtls_unsafe_codepath_hook)(void) = NULL;
752
#endif
753
754
/*
755
* This function calculates the indices of the exponent where the exponentiation algorithm should
756
* start processing.
757
*
758
* Warning! If the parameter E_public has MBEDTLS_MPI_IS_PUBLIC as its value,
759
* this function is not constant time with respect to the exponent (parameter E).
760
*/
761
static inline void exp_mod_calc_first_bit_optionally_safe(const mbedtls_mpi_uint *E,
762
size_t E_limbs,
763
int E_public,
764
size_t *E_limb_index,
765
size_t *E_bit_index)
766
{
767
if (E_public == MBEDTLS_MPI_IS_PUBLIC) {
768
/*
769
* Skip leading zero bits.
770
*/
771
size_t E_bits = mbedtls_mpi_core_bitlen(E, E_limbs);
772
if (E_bits == 0) {
773
/*
774
* If E is 0 mbedtls_mpi_core_bitlen() returns 0. Even if that is the case, we will want
775
* to represent it as a single 0 bit and as such the bitlength will be 1.
776
*/
777
E_bits = 1;
778
}
779
780
*E_limb_index = E_bits / biL;
781
*E_bit_index = E_bits % biL;
782
783
#if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
784
if (mbedtls_unsafe_codepath_hook != NULL) {
785
mbedtls_unsafe_codepath_hook();
786
}
787
#endif
788
} else {
789
/*
790
* Here we need to be constant time with respect to E and can't do anything better than
791
* start at the first allocated bit.
792
*/
793
*E_limb_index = E_limbs;
794
*E_bit_index = 0;
795
#if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
796
if (mbedtls_safe_codepath_hook != NULL) {
797
mbedtls_safe_codepath_hook();
798
}
799
#endif
800
}
801
}
802
803
/*
804
* Warning! If the parameter window_public has MBEDTLS_MPI_IS_PUBLIC as its value, this function is
805
* not constant time with respect to the window parameter and consequently the exponent of the
806
* exponentiation (parameter E of mbedtls_mpi_core_exp_mod_optionally_safe).
807
*/
808
static inline void exp_mod_table_lookup_optionally_safe(mbedtls_mpi_uint *Wselect,
809
mbedtls_mpi_uint *Wtable,
810
size_t AN_limbs, size_t welem,
811
mbedtls_mpi_uint window,
812
int window_public)
813
{
814
if (window_public == MBEDTLS_MPI_IS_PUBLIC) {
815
memcpy(Wselect, Wtable + window * AN_limbs, AN_limbs * ciL);
816
#if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
817
if (mbedtls_unsafe_codepath_hook != NULL) {
818
mbedtls_unsafe_codepath_hook();
819
}
820
#endif
821
} else {
822
/* Select Wtable[window] without leaking window through
823
* memory access patterns. */
824
mbedtls_mpi_core_ct_uint_table_lookup(Wselect, Wtable,
825
AN_limbs, welem, window);
826
#if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
827
if (mbedtls_safe_codepath_hook != NULL) {
828
mbedtls_safe_codepath_hook();
829
}
830
#endif
831
}
832
}
833
834
/* Exponentiation: X := A^E mod N.
835
*
836
* Warning! If the parameter E_public has MBEDTLS_MPI_IS_PUBLIC as its value,
837
* this function is not constant time with respect to the exponent (parameter E).
838
*
839
* A must already be in Montgomery form.
840
*
841
* As in other bignum functions, assume that AN_limbs and E_limbs are nonzero.
842
*
843
* RR must contain 2^{2*biL} mod N.
844
*
845
* The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82
846
* (The difference is that the body in our loop processes a single bit instead
847
* of a full window.)
848
*/
849
static void mbedtls_mpi_core_exp_mod_optionally_safe(mbedtls_mpi_uint *X,
850
const mbedtls_mpi_uint *A,
851
const mbedtls_mpi_uint *N,
852
size_t AN_limbs,
853
const mbedtls_mpi_uint *E,
854
size_t E_limbs,
855
int E_public,
856
const mbedtls_mpi_uint *RR,
857
mbedtls_mpi_uint *T)
858
{
859
/* We'll process the bits of E from most significant
860
* (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant
861
* (limb_index=0, E_bit_index=0). */
862
size_t E_limb_index = E_limbs;
863
size_t E_bit_index = 0;
864
exp_mod_calc_first_bit_optionally_safe(E, E_limbs, E_public,
865
&E_limb_index, &E_bit_index);
866
867
const size_t wsize = exp_mod_get_window_size(E_limb_index * biL);
868
const size_t welem = ((size_t) 1) << wsize;
869
870
/* This is how we will use the temporary storage T, which must have space
871
* for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */
872
const size_t table_limbs = welem * AN_limbs;
873
const size_t select_limbs = AN_limbs;
874
875
/* Pointers to specific parts of the temporary working memory pool */
876
mbedtls_mpi_uint *const Wtable = T;
877
mbedtls_mpi_uint *const Wselect = Wtable + table_limbs;
878
mbedtls_mpi_uint *const temp = Wselect + select_limbs;
879
880
/*
881
* Window precomputation
882
*/
883
884
const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N);
885
886
/* Set Wtable[i] = A^i (in Montgomery representation) */
887
exp_mod_precompute_window(A, N, AN_limbs,
888
mm, RR,
889
welem, Wtable, temp);
890
891
/*
892
* Fixed window exponentiation
893
*/
894
895
/* X = 1 (in Montgomery presentation) initially */
896
memcpy(X, Wtable, AN_limbs * ciL);
897
898
/* At any given time, window contains window_bits bits from E.
899
* window_bits can go up to wsize. */
900
size_t window_bits = 0;
901
mbedtls_mpi_uint window = 0;
902
903
do {
904
/* Square */
905
mbedtls_mpi_core_montmul(X, X, X, AN_limbs, N, AN_limbs, mm, temp);
906
907
/* Move to the next bit of the exponent */
908
if (E_bit_index == 0) {
909
--E_limb_index;
910
E_bit_index = biL - 1;
911
} else {
912
--E_bit_index;
913
}
914
/* Insert next exponent bit into window */
915
++window_bits;
916
window <<= 1;
917
window |= (E[E_limb_index] >> E_bit_index) & 1;
918
919
/* Clear window if it's full. Also clear the window at the end,
920
* when we've finished processing the exponent. */
921
if (window_bits == wsize ||
922
(E_bit_index == 0 && E_limb_index == 0)) {
923
924
exp_mod_table_lookup_optionally_safe(Wselect, Wtable, AN_limbs, welem,
925
window, E_public);
926
/* Multiply X by the selected element. */
927
mbedtls_mpi_core_montmul(X, X, Wselect, AN_limbs, N, AN_limbs, mm,
928
temp);
929
window = 0;
930
window_bits = 0;
931
}
932
} while (!(E_bit_index == 0 && E_limb_index == 0));
933
}
934
935
void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
936
const mbedtls_mpi_uint *A,
937
const mbedtls_mpi_uint *N, size_t AN_limbs,
938
const mbedtls_mpi_uint *E, size_t E_limbs,
939
const mbedtls_mpi_uint *RR,
940
mbedtls_mpi_uint *T)
941
{
942
mbedtls_mpi_core_exp_mod_optionally_safe(X,
943
A,
944
N,
945
AN_limbs,
946
E,
947
E_limbs,
948
MBEDTLS_MPI_IS_SECRET,
949
RR,
950
T);
951
}
952
953
void mbedtls_mpi_core_exp_mod_unsafe(mbedtls_mpi_uint *X,
954
const mbedtls_mpi_uint *A,
955
const mbedtls_mpi_uint *N, size_t AN_limbs,
956
const mbedtls_mpi_uint *E, size_t E_limbs,
957
const mbedtls_mpi_uint *RR,
958
mbedtls_mpi_uint *T)
959
{
960
mbedtls_mpi_core_exp_mod_optionally_safe(X,
961
A,
962
N,
963
AN_limbs,
964
E,
965
E_limbs,
966
MBEDTLS_MPI_IS_PUBLIC,
967
RR,
968
T);
969
}
970
971
mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
972
const mbedtls_mpi_uint *A,
973
mbedtls_mpi_uint c, /* doubles as carry */
974
size_t limbs)
975
{
976
for (size_t i = 0; i < limbs; i++) {
977
mbedtls_mpi_uint s = A[i];
978
mbedtls_mpi_uint t = s - c;
979
c = (t > s);
980
X[i] = t;
981
}
982
983
return c;
984
}
985
986
mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
987
size_t limbs)
988
{
989
volatile const mbedtls_mpi_uint *force_read_A = A;
990
mbedtls_mpi_uint bits = 0;
991
992
for (size_t i = 0; i < limbs; i++) {
993
bits |= force_read_A[i];
994
}
995
996
return mbedtls_ct_bool(bits);
997
}
998
999
void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
1000
const mbedtls_mpi_uint *A,
1001
const mbedtls_mpi_uint *N,
1002
size_t AN_limbs,
1003
mbedtls_mpi_uint mm,
1004
const mbedtls_mpi_uint *rr,
1005
mbedtls_mpi_uint *T)
1006
{
1007
mbedtls_mpi_core_montmul(X, A, rr, AN_limbs, N, AN_limbs, mm, T);
1008
}
1009
1010
void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
1011
const mbedtls_mpi_uint *A,
1012
const mbedtls_mpi_uint *N,
1013
size_t AN_limbs,
1014
mbedtls_mpi_uint mm,
1015
mbedtls_mpi_uint *T)
1016
{
1017
const mbedtls_mpi_uint Rinv = 1; /* 1/R in Mont. rep => 1 */
1018
1019
mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T);
1020
}
1021
1022
#endif /* MBEDTLS_BIGNUM_C */
1023
1024