Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/mbedtls/library/ecp.c
9898 views
1
/*
2
* Elliptic curves over GF(p): generic functions
3
*
4
* Copyright The Mbed TLS Contributors
5
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6
*/
7
8
/*
9
* References:
10
*
11
* SEC1 https://www.secg.org/sec1-v2.pdf
12
* GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
13
* FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
14
* RFC 4492 for the related TLS structures and constants
15
* - https://www.rfc-editor.org/rfc/rfc4492
16
* RFC 7748 for the Curve448 and Curve25519 curve definitions
17
* - https://www.rfc-editor.org/rfc/rfc7748
18
*
19
* [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
20
*
21
* [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
22
* for elliptic curve cryptosystems. In : Cryptographic Hardware and
23
* Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
24
* <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
25
*
26
* [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
27
* render ECC resistant against Side Channel Attacks. IACR Cryptology
28
* ePrint Archive, 2004, vol. 2004, p. 342.
29
* <http://eprint.iacr.org/2004/342.pdf>
30
*/
31
32
#include "common.h"
33
34
/**
35
* \brief Function level alternative implementation.
36
*
37
* The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
38
* replace certain functions in this module. The alternative implementations are
39
* typically hardware accelerators and need to activate the hardware before the
40
* computation starts and deactivate it after it finishes. The
41
* mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
42
* this purpose.
43
*
44
* To preserve the correct functionality the following conditions must hold:
45
*
46
* - The alternative implementation must be activated by
47
* mbedtls_internal_ecp_init() before any of the replaceable functions is
48
* called.
49
* - mbedtls_internal_ecp_free() must \b only be called when the alternative
50
* implementation is activated.
51
* - mbedtls_internal_ecp_init() must \b not be called when the alternative
52
* implementation is activated.
53
* - Public functions must not return while the alternative implementation is
54
* activated.
55
* - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
56
* before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
57
* \endcode ensures that the alternative implementation supports the current
58
* group.
59
*/
60
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
61
#endif
62
63
#if defined(MBEDTLS_ECP_LIGHT)
64
65
#include "mbedtls/ecp.h"
66
#include "mbedtls/threading.h"
67
#include "mbedtls/platform_util.h"
68
#include "mbedtls/error.h"
69
70
#include "bn_mul.h"
71
#include "ecp_invasive.h"
72
73
#include <string.h>
74
75
#if !defined(MBEDTLS_ECP_ALT)
76
77
#include "mbedtls/platform.h"
78
79
#include "ecp_internal_alt.h"
80
81
#if defined(MBEDTLS_SELF_TEST)
82
/*
83
* Counts of point addition and doubling, and field multiplications.
84
* Used to test resistance of point multiplication to simple timing attacks.
85
*/
86
#if defined(MBEDTLS_ECP_C)
87
static unsigned long add_count, dbl_count;
88
#endif /* MBEDTLS_ECP_C */
89
static unsigned long mul_count;
90
#endif
91
92
#if defined(MBEDTLS_ECP_RESTARTABLE)
93
/*
94
* Maximum number of "basic operations" to be done in a row.
95
*
96
* Default value 0 means that ECC operations will not yield.
97
* Note that regardless of the value of ecp_max_ops, always at
98
* least one step is performed before yielding.
99
*
100
* Setting ecp_max_ops=1 can be suitable for testing purposes
101
* as it will interrupt computation at all possible points.
102
*/
103
static unsigned ecp_max_ops = 0;
104
105
/*
106
* Set ecp_max_ops
107
*/
108
void mbedtls_ecp_set_max_ops(unsigned max_ops)
109
{
110
ecp_max_ops = max_ops;
111
}
112
113
/*
114
* Check if restart is enabled
115
*/
116
int mbedtls_ecp_restart_is_enabled(void)
117
{
118
return ecp_max_ops != 0;
119
}
120
121
/*
122
* Restart sub-context for ecp_mul_comb()
123
*/
124
struct mbedtls_ecp_restart_mul {
125
mbedtls_ecp_point R; /* current intermediate result */
126
size_t i; /* current index in various loops, 0 outside */
127
mbedtls_ecp_point *T; /* table for precomputed points */
128
unsigned char T_size; /* number of points in table T */
129
enum { /* what were we doing last time we returned? */
130
ecp_rsm_init = 0, /* nothing so far, dummy initial state */
131
ecp_rsm_pre_dbl, /* precompute 2^n multiples */
132
ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
133
ecp_rsm_pre_add, /* precompute remaining points by adding */
134
ecp_rsm_pre_norm_add, /* normalize all precomputed points */
135
ecp_rsm_comb_core, /* ecp_mul_comb_core() */
136
ecp_rsm_final_norm, /* do the final normalization */
137
} state;
138
};
139
140
/*
141
* Init restart_mul sub-context
142
*/
143
static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
144
{
145
mbedtls_ecp_point_init(&ctx->R);
146
ctx->i = 0;
147
ctx->T = NULL;
148
ctx->T_size = 0;
149
ctx->state = ecp_rsm_init;
150
}
151
152
/*
153
* Free the components of a restart_mul sub-context
154
*/
155
static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
156
{
157
unsigned char i;
158
159
if (ctx == NULL) {
160
return;
161
}
162
163
mbedtls_ecp_point_free(&ctx->R);
164
165
if (ctx->T != NULL) {
166
for (i = 0; i < ctx->T_size; i++) {
167
mbedtls_ecp_point_free(ctx->T + i);
168
}
169
mbedtls_free(ctx->T);
170
}
171
172
ecp_restart_rsm_init(ctx);
173
}
174
175
/*
176
* Restart context for ecp_muladd()
177
*/
178
struct mbedtls_ecp_restart_muladd {
179
mbedtls_ecp_point mP; /* mP value */
180
mbedtls_ecp_point R; /* R intermediate result */
181
enum { /* what should we do next? */
182
ecp_rsma_mul1 = 0, /* first multiplication */
183
ecp_rsma_mul2, /* second multiplication */
184
ecp_rsma_add, /* addition */
185
ecp_rsma_norm, /* normalization */
186
} state;
187
};
188
189
/*
190
* Init restart_muladd sub-context
191
*/
192
static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
193
{
194
mbedtls_ecp_point_init(&ctx->mP);
195
mbedtls_ecp_point_init(&ctx->R);
196
ctx->state = ecp_rsma_mul1;
197
}
198
199
/*
200
* Free the components of a restart_muladd sub-context
201
*/
202
static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
203
{
204
if (ctx == NULL) {
205
return;
206
}
207
208
mbedtls_ecp_point_free(&ctx->mP);
209
mbedtls_ecp_point_free(&ctx->R);
210
211
ecp_restart_ma_init(ctx);
212
}
213
214
/*
215
* Initialize a restart context
216
*/
217
void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
218
{
219
ctx->ops_done = 0;
220
ctx->depth = 0;
221
ctx->rsm = NULL;
222
ctx->ma = NULL;
223
}
224
225
/*
226
* Free the components of a restart context
227
*/
228
void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
229
{
230
if (ctx == NULL) {
231
return;
232
}
233
234
ecp_restart_rsm_free(ctx->rsm);
235
mbedtls_free(ctx->rsm);
236
237
ecp_restart_ma_free(ctx->ma);
238
mbedtls_free(ctx->ma);
239
240
mbedtls_ecp_restart_init(ctx);
241
}
242
243
/*
244
* Check if we can do the next step
245
*/
246
int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
247
mbedtls_ecp_restart_ctx *rs_ctx,
248
unsigned ops)
249
{
250
if (rs_ctx != NULL && ecp_max_ops != 0) {
251
/* scale depending on curve size: the chosen reference is 256-bit,
252
* and multiplication is quadratic. Round to the closest integer. */
253
if (grp->pbits >= 512) {
254
ops *= 4;
255
} else if (grp->pbits >= 384) {
256
ops *= 2;
257
}
258
259
/* Avoid infinite loops: always allow first step.
260
* Because of that, however, it's not generally true
261
* that ops_done <= ecp_max_ops, so the check
262
* ops_done > ecp_max_ops below is mandatory. */
263
if ((rs_ctx->ops_done != 0) &&
264
(rs_ctx->ops_done > ecp_max_ops ||
265
ops > ecp_max_ops - rs_ctx->ops_done)) {
266
return MBEDTLS_ERR_ECP_IN_PROGRESS;
267
}
268
269
/* update running count */
270
rs_ctx->ops_done += ops;
271
}
272
273
return 0;
274
}
275
276
/* Call this when entering a function that needs its own sub-context */
277
#define ECP_RS_ENTER(SUB) do { \
278
/* reset ops count for this call if top-level */ \
279
if (rs_ctx != NULL && rs_ctx->depth++ == 0) \
280
rs_ctx->ops_done = 0; \
281
\
282
/* set up our own sub-context if needed */ \
283
if (mbedtls_ecp_restart_is_enabled() && \
284
rs_ctx != NULL && rs_ctx->SUB == NULL) \
285
{ \
286
rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB)); \
287
if (rs_ctx->SUB == NULL) \
288
return MBEDTLS_ERR_ECP_ALLOC_FAILED; \
289
\
290
ecp_restart_## SUB ##_init(rs_ctx->SUB); \
291
} \
292
} while (0)
293
294
/* Call this when leaving a function that needs its own sub-context */
295
#define ECP_RS_LEAVE(SUB) do { \
296
/* clear our sub-context when not in progress (done or error) */ \
297
if (rs_ctx != NULL && rs_ctx->SUB != NULL && \
298
ret != MBEDTLS_ERR_ECP_IN_PROGRESS) \
299
{ \
300
ecp_restart_## SUB ##_free(rs_ctx->SUB); \
301
mbedtls_free(rs_ctx->SUB); \
302
rs_ctx->SUB = NULL; \
303
} \
304
\
305
if (rs_ctx != NULL) \
306
rs_ctx->depth--; \
307
} while (0)
308
309
#else /* MBEDTLS_ECP_RESTARTABLE */
310
311
#define ECP_RS_ENTER(sub) (void) rs_ctx;
312
#define ECP_RS_LEAVE(sub) (void) rs_ctx;
313
314
#endif /* MBEDTLS_ECP_RESTARTABLE */
315
316
#if defined(MBEDTLS_ECP_C)
317
static void mpi_init_many(mbedtls_mpi *arr, size_t size)
318
{
319
while (size--) {
320
mbedtls_mpi_init(arr++);
321
}
322
}
323
324
static void mpi_free_many(mbedtls_mpi *arr, size_t size)
325
{
326
while (size--) {
327
mbedtls_mpi_free(arr++);
328
}
329
}
330
#endif /* MBEDTLS_ECP_C */
331
332
/*
333
* List of supported curves:
334
* - internal ID
335
* - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
336
* - size in bits
337
* - readable name
338
*
339
* Curves are listed in order: largest curves first, and for a given size,
340
* fastest curves first.
341
*
342
* Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
343
*/
344
static const mbedtls_ecp_curve_info ecp_supported_curves[] =
345
{
346
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
347
{ MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
348
#endif
349
#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
350
{ MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
351
#endif
352
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
353
{ MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
354
#endif
355
#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
356
{ MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
357
#endif
358
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
359
{ MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
360
#endif
361
#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
362
{ MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
363
#endif
364
#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
365
{ MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
366
#endif
367
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
368
{ MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
369
#endif
370
#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
371
{ MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
372
#endif
373
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
374
{ MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
375
#endif
376
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
377
{ MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
378
#endif
379
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
380
{ MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" },
381
#endif
382
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
383
{ MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" },
384
#endif
385
{ MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
386
};
387
388
#define ECP_NB_CURVES sizeof(ecp_supported_curves) / \
389
sizeof(ecp_supported_curves[0])
390
391
static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
392
393
/*
394
* List of supported curves and associated info
395
*/
396
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
397
{
398
return ecp_supported_curves;
399
}
400
401
/*
402
* List of supported curves, group ID only
403
*/
404
const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
405
{
406
static int init_done = 0;
407
408
if (!init_done) {
409
size_t i = 0;
410
const mbedtls_ecp_curve_info *curve_info;
411
412
for (curve_info = mbedtls_ecp_curve_list();
413
curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
414
curve_info++) {
415
ecp_supported_grp_id[i++] = curve_info->grp_id;
416
}
417
ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
418
419
init_done = 1;
420
}
421
422
return ecp_supported_grp_id;
423
}
424
425
/*
426
* Get the curve info for the internal identifier
427
*/
428
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
429
{
430
const mbedtls_ecp_curve_info *curve_info;
431
432
for (curve_info = mbedtls_ecp_curve_list();
433
curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
434
curve_info++) {
435
if (curve_info->grp_id == grp_id) {
436
return curve_info;
437
}
438
}
439
440
return NULL;
441
}
442
443
/*
444
* Get the curve info from the TLS identifier
445
*/
446
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
447
{
448
const mbedtls_ecp_curve_info *curve_info;
449
450
for (curve_info = mbedtls_ecp_curve_list();
451
curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
452
curve_info++) {
453
if (curve_info->tls_id == tls_id) {
454
return curve_info;
455
}
456
}
457
458
return NULL;
459
}
460
461
/*
462
* Get the curve info from the name
463
*/
464
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
465
{
466
const mbedtls_ecp_curve_info *curve_info;
467
468
if (name == NULL) {
469
return NULL;
470
}
471
472
for (curve_info = mbedtls_ecp_curve_list();
473
curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
474
curve_info++) {
475
if (strcmp(curve_info->name, name) == 0) {
476
return curve_info;
477
}
478
}
479
480
return NULL;
481
}
482
483
/*
484
* Get the type of a curve
485
*/
486
mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
487
{
488
if (grp->G.X.p == NULL) {
489
return MBEDTLS_ECP_TYPE_NONE;
490
}
491
492
if (grp->G.Y.p == NULL) {
493
return MBEDTLS_ECP_TYPE_MONTGOMERY;
494
} else {
495
return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
496
}
497
}
498
499
/*
500
* Initialize (the components of) a point
501
*/
502
void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
503
{
504
mbedtls_mpi_init(&pt->X);
505
mbedtls_mpi_init(&pt->Y);
506
mbedtls_mpi_init(&pt->Z);
507
}
508
509
/*
510
* Initialize (the components of) a group
511
*/
512
void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
513
{
514
grp->id = MBEDTLS_ECP_DP_NONE;
515
mbedtls_mpi_init(&grp->P);
516
mbedtls_mpi_init(&grp->A);
517
mbedtls_mpi_init(&grp->B);
518
mbedtls_ecp_point_init(&grp->G);
519
mbedtls_mpi_init(&grp->N);
520
grp->pbits = 0;
521
grp->nbits = 0;
522
grp->h = 0;
523
grp->modp = NULL;
524
grp->t_pre = NULL;
525
grp->t_post = NULL;
526
grp->t_data = NULL;
527
grp->T = NULL;
528
grp->T_size = 0;
529
}
530
531
/*
532
* Initialize (the components of) a key pair
533
*/
534
void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
535
{
536
mbedtls_ecp_group_init(&key->grp);
537
mbedtls_mpi_init(&key->d);
538
mbedtls_ecp_point_init(&key->Q);
539
}
540
541
/*
542
* Unallocate (the components of) a point
543
*/
544
void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
545
{
546
if (pt == NULL) {
547
return;
548
}
549
550
mbedtls_mpi_free(&(pt->X));
551
mbedtls_mpi_free(&(pt->Y));
552
mbedtls_mpi_free(&(pt->Z));
553
}
554
555
/*
556
* Check that the comb table (grp->T) is static initialized.
557
*/
558
static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
559
{
560
#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
561
return grp->T != NULL && grp->T_size == 0;
562
#else
563
(void) grp;
564
return 0;
565
#endif
566
}
567
568
/*
569
* Unallocate (the components of) a group
570
*/
571
void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
572
{
573
size_t i;
574
575
if (grp == NULL) {
576
return;
577
}
578
579
if (grp->h != 1) {
580
mbedtls_mpi_free(&grp->A);
581
mbedtls_mpi_free(&grp->B);
582
mbedtls_ecp_point_free(&grp->G);
583
584
#if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
585
mbedtls_mpi_free(&grp->N);
586
mbedtls_mpi_free(&grp->P);
587
#endif
588
}
589
590
if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
591
for (i = 0; i < grp->T_size; i++) {
592
mbedtls_ecp_point_free(&grp->T[i]);
593
}
594
mbedtls_free(grp->T);
595
}
596
597
mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
598
}
599
600
/*
601
* Unallocate (the components of) a key pair
602
*/
603
void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
604
{
605
if (key == NULL) {
606
return;
607
}
608
609
mbedtls_ecp_group_free(&key->grp);
610
mbedtls_mpi_free(&key->d);
611
mbedtls_ecp_point_free(&key->Q);
612
}
613
614
/*
615
* Copy the contents of a point
616
*/
617
int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
618
{
619
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
620
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
621
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
622
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
623
624
cleanup:
625
return ret;
626
}
627
628
/*
629
* Copy the contents of a group object
630
*/
631
int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
632
{
633
return mbedtls_ecp_group_load(dst, src->id);
634
}
635
636
/*
637
* Set point to zero
638
*/
639
int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
640
{
641
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
642
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
643
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
644
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
645
646
cleanup:
647
return ret;
648
}
649
650
/*
651
* Tell if a point is zero
652
*/
653
int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
654
{
655
return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
656
}
657
658
/*
659
* Compare two points lazily
660
*/
661
int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
662
const mbedtls_ecp_point *Q)
663
{
664
if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
665
mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
666
mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
667
return 0;
668
}
669
670
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
671
}
672
673
/*
674
* Import a non-zero point from ASCII strings
675
*/
676
int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
677
const char *x, const char *y)
678
{
679
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
680
MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
681
MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
682
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
683
684
cleanup:
685
return ret;
686
}
687
688
/*
689
* Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
690
*/
691
int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
692
const mbedtls_ecp_point *P,
693
int format, size_t *olen,
694
unsigned char *buf, size_t buflen)
695
{
696
int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
697
size_t plen;
698
if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
699
format != MBEDTLS_ECP_PF_COMPRESSED) {
700
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
701
}
702
703
plen = mbedtls_mpi_size(&grp->P);
704
705
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
706
(void) format; /* Montgomery curves always use the same point format */
707
if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
708
*olen = plen;
709
if (buflen < *olen) {
710
return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
711
}
712
713
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
714
}
715
#endif
716
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
717
if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
718
/*
719
* Common case: P == 0
720
*/
721
if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
722
if (buflen < 1) {
723
return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
724
}
725
726
buf[0] = 0x00;
727
*olen = 1;
728
729
return 0;
730
}
731
732
if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
733
*olen = 2 * plen + 1;
734
735
if (buflen < *olen) {
736
return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
737
}
738
739
buf[0] = 0x04;
740
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
741
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
742
} else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
743
*olen = plen + 1;
744
745
if (buflen < *olen) {
746
return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
747
}
748
749
buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
750
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
751
}
752
}
753
#endif
754
755
cleanup:
756
return ret;
757
}
758
759
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
760
static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
761
const mbedtls_mpi *X,
762
mbedtls_mpi *Y,
763
int parity_bit);
764
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
765
766
/*
767
* Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
768
*/
769
int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
770
mbedtls_ecp_point *pt,
771
const unsigned char *buf, size_t ilen)
772
{
773
int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
774
size_t plen;
775
if (ilen < 1) {
776
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
777
}
778
779
plen = mbedtls_mpi_size(&grp->P);
780
781
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
782
if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
783
if (plen != ilen) {
784
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
785
}
786
787
MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
788
mbedtls_mpi_free(&pt->Y);
789
790
if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
791
/* Set most significant bit to 0 as prescribed in RFC7748 §5 */
792
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
793
}
794
795
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
796
}
797
#endif
798
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
799
if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
800
if (buf[0] == 0x00) {
801
if (ilen == 1) {
802
return mbedtls_ecp_set_zero(pt);
803
} else {
804
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
805
}
806
}
807
808
if (ilen < 1 + plen) {
809
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
810
}
811
812
MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
813
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
814
815
if (buf[0] == 0x04) {
816
/* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
817
if (ilen != 1 + plen * 2) {
818
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
819
}
820
return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
821
} else if (buf[0] == 0x02 || buf[0] == 0x03) {
822
/* format == MBEDTLS_ECP_PF_COMPRESSED */
823
if (ilen != 1 + plen) {
824
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
825
}
826
return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
827
(buf[0] & 1));
828
} else {
829
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
830
}
831
}
832
#endif
833
834
cleanup:
835
return ret;
836
}
837
838
/*
839
* Import a point from a TLS ECPoint record (RFC 4492)
840
* struct {
841
* opaque point <1..2^8-1>;
842
* } ECPoint;
843
*/
844
int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
845
mbedtls_ecp_point *pt,
846
const unsigned char **buf, size_t buf_len)
847
{
848
unsigned char data_len;
849
const unsigned char *buf_start;
850
/*
851
* We must have at least two bytes (1 for length, at least one for data)
852
*/
853
if (buf_len < 2) {
854
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
855
}
856
857
data_len = *(*buf)++;
858
if (data_len < 1 || data_len > buf_len - 1) {
859
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
860
}
861
862
/*
863
* Save buffer start for read_binary and update buf
864
*/
865
buf_start = *buf;
866
*buf += data_len;
867
868
return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
869
}
870
871
/*
872
* Export a point as a TLS ECPoint record (RFC 4492)
873
* struct {
874
* opaque point <1..2^8-1>;
875
* } ECPoint;
876
*/
877
int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
878
int format, size_t *olen,
879
unsigned char *buf, size_t blen)
880
{
881
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
882
if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
883
format != MBEDTLS_ECP_PF_COMPRESSED) {
884
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
885
}
886
887
/*
888
* buffer length must be at least one, for our length byte
889
*/
890
if (blen < 1) {
891
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
892
}
893
894
if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
895
olen, buf + 1, blen - 1)) != 0) {
896
return ret;
897
}
898
899
/*
900
* write length to the first byte and update total length
901
*/
902
buf[0] = (unsigned char) *olen;
903
++*olen;
904
905
return 0;
906
}
907
908
/*
909
* Set a group from an ECParameters record (RFC 4492)
910
*/
911
int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
912
const unsigned char **buf, size_t len)
913
{
914
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
915
mbedtls_ecp_group_id grp_id;
916
if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
917
return ret;
918
}
919
920
return mbedtls_ecp_group_load(grp, grp_id);
921
}
922
923
/*
924
* Read a group id from an ECParameters record (RFC 4492) and convert it to
925
* mbedtls_ecp_group_id.
926
*/
927
int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
928
const unsigned char **buf, size_t len)
929
{
930
uint16_t tls_id;
931
const mbedtls_ecp_curve_info *curve_info;
932
/*
933
* We expect at least three bytes (see below)
934
*/
935
if (len < 3) {
936
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
937
}
938
939
/*
940
* First byte is curve_type; only named_curve is handled
941
*/
942
if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
943
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
944
}
945
946
/*
947
* Next two bytes are the namedcurve value
948
*/
949
tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);
950
*buf += 2;
951
952
if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
953
return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
954
}
955
956
*grp = curve_info->grp_id;
957
958
return 0;
959
}
960
961
/*
962
* Write the ECParameters record corresponding to a group (RFC 4492)
963
*/
964
int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
965
unsigned char *buf, size_t blen)
966
{
967
const mbedtls_ecp_curve_info *curve_info;
968
if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
969
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
970
}
971
972
/*
973
* We are going to write 3 bytes (see below)
974
*/
975
*olen = 3;
976
if (blen < *olen) {
977
return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
978
}
979
980
/*
981
* First byte is curve_type, always named_curve
982
*/
983
*buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
984
985
/*
986
* Next two bytes are the namedcurve value
987
*/
988
MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
989
990
return 0;
991
}
992
993
/*
994
* Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
995
* See the documentation of struct mbedtls_ecp_group.
996
*
997
* This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
998
*/
999
static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
1000
{
1001
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1002
1003
if (grp->modp == NULL) {
1004
return mbedtls_mpi_mod_mpi(N, N, &grp->P);
1005
}
1006
1007
/* N->s < 0 is a much faster test, which fails only if N is 0 */
1008
if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
1009
mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
1010
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1011
}
1012
1013
MBEDTLS_MPI_CHK(grp->modp(N));
1014
1015
/* N->s < 0 is a much faster test, which fails only if N is 0 */
1016
while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
1017
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
1018
}
1019
1020
while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
1021
/* we known P, N and the result are positive */
1022
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
1023
}
1024
1025
cleanup:
1026
return ret;
1027
}
1028
1029
/*
1030
* Fast mod-p functions expect their argument to be in the 0..p^2 range.
1031
*
1032
* In order to guarantee that, we need to ensure that operands of
1033
* mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1034
* bring the result back to this range.
1035
*
1036
* The following macros are shortcuts for doing that.
1037
*/
1038
1039
/*
1040
* Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1041
*/
1042
#if defined(MBEDTLS_SELF_TEST)
1043
#define INC_MUL_COUNT mul_count++;
1044
#else
1045
#define INC_MUL_COUNT
1046
#endif
1047
1048
#define MOD_MUL(N) \
1049
do \
1050
{ \
1051
MBEDTLS_MPI_CHK(ecp_modp(&(N), grp)); \
1052
INC_MUL_COUNT \
1053
} while (0)
1054
1055
static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
1056
mbedtls_mpi *X,
1057
const mbedtls_mpi *A,
1058
const mbedtls_mpi *B)
1059
{
1060
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1061
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
1062
MOD_MUL(*X);
1063
cleanup:
1064
return ret;
1065
}
1066
1067
/*
1068
* Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1069
* N->s < 0 is a very fast test, which fails only if N is 0
1070
*/
1071
#define MOD_SUB(N) \
1072
do { \
1073
while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0) \
1074
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P)); \
1075
} while (0)
1076
1077
MBEDTLS_MAYBE_UNUSED
1078
static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
1079
mbedtls_mpi *X,
1080
const mbedtls_mpi *A,
1081
const mbedtls_mpi *B)
1082
{
1083
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1084
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
1085
MOD_SUB(X);
1086
cleanup:
1087
return ret;
1088
}
1089
1090
/*
1091
* Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1092
* We known P, N and the result are positive, so sub_abs is correct, and
1093
* a bit faster.
1094
*/
1095
#define MOD_ADD(N) \
1096
while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0) \
1097
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
1098
1099
static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
1100
mbedtls_mpi *X,
1101
const mbedtls_mpi *A,
1102
const mbedtls_mpi *B)
1103
{
1104
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1105
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
1106
MOD_ADD(X);
1107
cleanup:
1108
return ret;
1109
}
1110
1111
MBEDTLS_MAYBE_UNUSED
1112
static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
1113
mbedtls_mpi *X,
1114
const mbedtls_mpi *A,
1115
mbedtls_mpi_uint c)
1116
{
1117
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1118
1119
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
1120
MOD_ADD(X);
1121
cleanup:
1122
return ret;
1123
}
1124
1125
MBEDTLS_MAYBE_UNUSED
1126
static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
1127
mbedtls_mpi *X,
1128
const mbedtls_mpi *A,
1129
mbedtls_mpi_uint c)
1130
{
1131
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1132
1133
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
1134
MOD_SUB(X);
1135
cleanup:
1136
return ret;
1137
}
1138
1139
#define MPI_ECP_SUB_INT(X, A, c) \
1140
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
1141
1142
MBEDTLS_MAYBE_UNUSED
1143
static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
1144
mbedtls_mpi *X,
1145
size_t count)
1146
{
1147
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1148
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
1149
MOD_ADD(X);
1150
cleanup:
1151
return ret;
1152
}
1153
1154
/*
1155
* Macro wrappers around ECP modular arithmetic
1156
*
1157
* Currently, these wrappers are defined via the bignum module.
1158
*/
1159
1160
#define MPI_ECP_ADD(X, A, B) \
1161
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
1162
1163
#define MPI_ECP_SUB(X, A, B) \
1164
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
1165
1166
#define MPI_ECP_MUL(X, A, B) \
1167
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
1168
1169
#define MPI_ECP_SQR(X, A) \
1170
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
1171
1172
#define MPI_ECP_MUL_INT(X, A, c) \
1173
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
1174
1175
#define MPI_ECP_INV(dst, src) \
1176
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
1177
1178
#define MPI_ECP_MOV(X, A) \
1179
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
1180
1181
#define MPI_ECP_SHIFT_L(X, count) \
1182
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
1183
1184
#define MPI_ECP_LSET(X, c) \
1185
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
1186
1187
#define MPI_ECP_CMP_INT(X, c) \
1188
mbedtls_mpi_cmp_int(X, c)
1189
1190
#define MPI_ECP_CMP(X, Y) \
1191
mbedtls_mpi_cmp_mpi(X, Y)
1192
1193
/* Needs f_rng, p_rng to be defined. */
1194
#define MPI_ECP_RAND(X) \
1195
MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
1196
1197
/* Conditional negation
1198
* Needs grp and a temporary MPI tmp to be defined. */
1199
#define MPI_ECP_COND_NEG(X, cond) \
1200
do \
1201
{ \
1202
unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0; \
1203
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X))); \
1204
MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp, \
1205
nonzero & cond)); \
1206
} while (0)
1207
1208
#define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
1209
1210
#define MPI_ECP_VALID(X) \
1211
((X)->p != NULL)
1212
1213
#define MPI_ECP_COND_ASSIGN(X, Y, cond) \
1214
MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
1215
1216
#define MPI_ECP_COND_SWAP(X, Y, cond) \
1217
MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
1218
1219
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1220
1221
/*
1222
* Computes the right-hand side of the Short Weierstrass equation
1223
* RHS = X^3 + A X + B
1224
*/
1225
static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
1226
mbedtls_mpi *rhs,
1227
const mbedtls_mpi *X)
1228
{
1229
int ret;
1230
1231
/* Compute X^3 + A X + B as X (X^2 + A) + B */
1232
MPI_ECP_SQR(rhs, X);
1233
1234
/* Special case for A = -3 */
1235
if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1236
MPI_ECP_SUB_INT(rhs, rhs, 3);
1237
} else {
1238
MPI_ECP_ADD(rhs, rhs, &grp->A);
1239
}
1240
1241
MPI_ECP_MUL(rhs, rhs, X);
1242
MPI_ECP_ADD(rhs, rhs, &grp->B);
1243
1244
cleanup:
1245
return ret;
1246
}
1247
1248
/*
1249
* Derive Y from X and a parity bit
1250
*/
1251
static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
1252
const mbedtls_mpi *X,
1253
mbedtls_mpi *Y,
1254
int parity_bit)
1255
{
1256
/* w = y^2 = x^3 + ax + b
1257
* y = sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4)
1258
*
1259
* Note: this method for extracting square root does not validate that w
1260
* was indeed a square so this function will return garbage in Y if X
1261
* does not correspond to a point on the curve.
1262
*/
1263
1264
/* Check prerequisite p = 3 mod 4 */
1265
if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
1266
mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
1267
return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1268
}
1269
1270
int ret;
1271
mbedtls_mpi exp;
1272
mbedtls_mpi_init(&exp);
1273
1274
/* use Y to store intermediate result, actually w above */
1275
MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
1276
1277
/* w = y^2 */ /* Y contains y^2 intermediate result */
1278
/* exp = ((p+1)/4) */
1279
MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
1280
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
1281
/* sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4) */
1282
MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
1283
1284
/* check parity bit match or else invert Y */
1285
/* This quick inversion implementation is valid because Y != 0 for all
1286
* Short Weierstrass curves supported by mbedtls, as each supported curve
1287
* has an order that is a large prime, so each supported curve does not
1288
* have any point of order 2, and a point with Y == 0 would be of order 2 */
1289
if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
1290
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
1291
}
1292
1293
cleanup:
1294
1295
mbedtls_mpi_free(&exp);
1296
return ret;
1297
}
1298
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
1299
1300
#if defined(MBEDTLS_ECP_C)
1301
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1302
/*
1303
* For curves in short Weierstrass form, we do all the internal operations in
1304
* Jacobian coordinates.
1305
*
1306
* For multiplication, we'll use a comb method with countermeasures against
1307
* SPA, hence timing attacks.
1308
*/
1309
1310
/*
1311
* Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
1312
* Cost: 1N := 1I + 3M + 1S
1313
*/
1314
static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
1315
{
1316
if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
1317
return 0;
1318
}
1319
1320
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1321
if (mbedtls_internal_ecp_grp_capable(grp)) {
1322
return mbedtls_internal_ecp_normalize_jac(grp, pt);
1323
}
1324
#endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1325
1326
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1327
return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1328
#else
1329
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1330
mbedtls_mpi T;
1331
mbedtls_mpi_init(&T);
1332
1333
MPI_ECP_INV(&T, &pt->Z); /* T <- 1 / Z */
1334
MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y' <- Y*T = Y / Z */
1335
MPI_ECP_SQR(&T, &T); /* T <- T^2 = 1 / Z^2 */
1336
MPI_ECP_MUL(&pt->X, &pt->X, &T); /* X <- X * T = X / Z^2 */
1337
MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y'' <- Y' * T = Y / Z^3 */
1338
1339
MPI_ECP_LSET(&pt->Z, 1);
1340
1341
cleanup:
1342
1343
mbedtls_mpi_free(&T);
1344
1345
return ret;
1346
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1347
}
1348
1349
/*
1350
* Normalize jacobian coordinates of an array of (pointers to) points,
1351
* using Montgomery's trick to perform only one inversion mod P.
1352
* (See for example Cohen's "A Course in Computational Algebraic Number
1353
* Theory", Algorithm 10.3.4.)
1354
*
1355
* Warning: fails (returning an error) if one of the points is zero!
1356
* This should never happen, see choice of w in ecp_mul_comb().
1357
*
1358
* Cost: 1N(t) := 1I + (6t - 3)M + 1S
1359
*/
1360
static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
1361
mbedtls_ecp_point *T[], size_t T_size)
1362
{
1363
if (T_size < 2) {
1364
return ecp_normalize_jac(grp, *T);
1365
}
1366
1367
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1368
if (mbedtls_internal_ecp_grp_capable(grp)) {
1369
return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
1370
}
1371
#endif
1372
1373
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1374
return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1375
#else
1376
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1377
size_t i;
1378
mbedtls_mpi *c, t;
1379
1380
if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
1381
return MBEDTLS_ERR_ECP_ALLOC_FAILED;
1382
}
1383
1384
mbedtls_mpi_init(&t);
1385
1386
mpi_init_many(c, T_size);
1387
/*
1388
* c[i] = Z_0 * ... * Z_i, i = 0,..,n := T_size-1
1389
*/
1390
MPI_ECP_MOV(&c[0], &T[0]->Z);
1391
for (i = 1; i < T_size; i++) {
1392
MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
1393
}
1394
1395
/*
1396
* c[n] = 1 / (Z_0 * ... * Z_n) mod P
1397
*/
1398
MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
1399
1400
for (i = T_size - 1;; i--) {
1401
/* At the start of iteration i (note that i decrements), we have
1402
* - c[j] = Z_0 * .... * Z_j for j < i,
1403
* - c[j] = 1 / (Z_0 * .... * Z_j) for j == i,
1404
*
1405
* This is maintained via
1406
* - c[i-1] <- c[i] * Z_i
1407
*
1408
* We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
1409
* to do the actual normalization. For i==0, we already have
1410
* c[0] = 1 / Z_0.
1411
*/
1412
1413
if (i > 0) {
1414
/* Compute 1/Z_i and establish invariant for the next iteration. */
1415
MPI_ECP_MUL(&t, &c[i], &c[i-1]);
1416
MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
1417
} else {
1418
MPI_ECP_MOV(&t, &c[0]);
1419
}
1420
1421
/* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
1422
MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1423
MPI_ECP_SQR(&t, &t);
1424
MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
1425
MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1426
1427
/*
1428
* Post-precessing: reclaim some memory by shrinking coordinates
1429
* - not storing Z (always 1)
1430
* - shrinking other coordinates, but still keeping the same number of
1431
* limbs as P, as otherwise it will too likely be regrown too fast.
1432
*/
1433
MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
1434
MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
1435
1436
MPI_ECP_LSET(&T[i]->Z, 1);
1437
1438
if (i == 0) {
1439
break;
1440
}
1441
}
1442
1443
cleanup:
1444
1445
mbedtls_mpi_free(&t);
1446
mpi_free_many(c, T_size);
1447
mbedtls_free(c);
1448
1449
return ret;
1450
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1451
}
1452
1453
/*
1454
* Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1455
* "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1456
*/
1457
static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
1458
mbedtls_ecp_point *Q,
1459
unsigned char inv)
1460
{
1461
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1462
mbedtls_mpi tmp;
1463
mbedtls_mpi_init(&tmp);
1464
1465
MPI_ECP_COND_NEG(&Q->Y, inv);
1466
1467
cleanup:
1468
mbedtls_mpi_free(&tmp);
1469
return ret;
1470
}
1471
1472
/*
1473
* Point doubling R = 2 P, Jacobian coordinates
1474
*
1475
* Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1476
*
1477
* We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1478
* (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1479
*
1480
* Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1481
*
1482
* Cost: 1D := 3M + 4S (A == 0)
1483
* 4M + 4S (A == -3)
1484
* 3M + 6S + 1a otherwise
1485
*/
1486
static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1487
const mbedtls_ecp_point *P,
1488
mbedtls_mpi tmp[4])
1489
{
1490
#if defined(MBEDTLS_SELF_TEST)
1491
dbl_count++;
1492
#endif
1493
1494
#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1495
if (mbedtls_internal_ecp_grp_capable(grp)) {
1496
return mbedtls_internal_ecp_double_jac(grp, R, P);
1497
}
1498
#endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1499
1500
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1501
return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1502
#else
1503
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1504
1505
/* Special case for A = -3 */
1506
if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1507
/* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
1508
MPI_ECP_SQR(&tmp[1], &P->Z);
1509
MPI_ECP_ADD(&tmp[2], &P->X, &tmp[1]);
1510
MPI_ECP_SUB(&tmp[3], &P->X, &tmp[1]);
1511
MPI_ECP_MUL(&tmp[1], &tmp[2], &tmp[3]);
1512
MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
1513
} else {
1514
/* tmp[0] <- M = 3.X^2 + A.Z^4 */
1515
MPI_ECP_SQR(&tmp[1], &P->X);
1516
MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
1517
1518
/* Optimize away for "koblitz" curves with A = 0 */
1519
if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
1520
/* M += A.Z^4 */
1521
MPI_ECP_SQR(&tmp[1], &P->Z);
1522
MPI_ECP_SQR(&tmp[2], &tmp[1]);
1523
MPI_ECP_MUL(&tmp[1], &tmp[2], &grp->A);
1524
MPI_ECP_ADD(&tmp[0], &tmp[0], &tmp[1]);
1525
}
1526
}
1527
1528
/* tmp[1] <- S = 4.X.Y^2 */
1529
MPI_ECP_SQR(&tmp[2], &P->Y);
1530
MPI_ECP_SHIFT_L(&tmp[2], 1);
1531
MPI_ECP_MUL(&tmp[1], &P->X, &tmp[2]);
1532
MPI_ECP_SHIFT_L(&tmp[1], 1);
1533
1534
/* tmp[3] <- U = 8.Y^4 */
1535
MPI_ECP_SQR(&tmp[3], &tmp[2]);
1536
MPI_ECP_SHIFT_L(&tmp[3], 1);
1537
1538
/* tmp[2] <- T = M^2 - 2.S */
1539
MPI_ECP_SQR(&tmp[2], &tmp[0]);
1540
MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
1541
MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
1542
1543
/* tmp[1] <- S = M(S - T) - U */
1544
MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[2]);
1545
MPI_ECP_MUL(&tmp[1], &tmp[1], &tmp[0]);
1546
MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[3]);
1547
1548
/* tmp[3] <- U = 2.Y.Z */
1549
MPI_ECP_MUL(&tmp[3], &P->Y, &P->Z);
1550
MPI_ECP_SHIFT_L(&tmp[3], 1);
1551
1552
/* Store results */
1553
MPI_ECP_MOV(&R->X, &tmp[2]);
1554
MPI_ECP_MOV(&R->Y, &tmp[1]);
1555
MPI_ECP_MOV(&R->Z, &tmp[3]);
1556
1557
cleanup:
1558
1559
return ret;
1560
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1561
}
1562
1563
/*
1564
* Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1565
*
1566
* The coordinates of Q must be normalized (= affine),
1567
* but those of P don't need to. R is not normalized.
1568
*
1569
* P,Q,R may alias, but only at the level of EC points: they must be either
1570
* equal as pointers, or disjoint (including the coordinate data buffers).
1571
* Fine-grained aliasing at the level of coordinates is not supported.
1572
*
1573
* Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1574
* None of these cases can happen as intermediate step in ecp_mul_comb():
1575
* - at each step, P, Q and R are multiples of the base point, the factor
1576
* being less than its order, so none of them is zero;
1577
* - Q is an odd multiple of the base point, P an even multiple,
1578
* due to the choice of precomputed points in the modified comb method.
1579
* So branches for these cases do not leak secret information.
1580
*
1581
* Cost: 1A := 8M + 3S
1582
*/
1583
static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1584
const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1585
mbedtls_mpi tmp[4])
1586
{
1587
#if defined(MBEDTLS_SELF_TEST)
1588
add_count++;
1589
#endif
1590
1591
#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1592
if (mbedtls_internal_ecp_grp_capable(grp)) {
1593
return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
1594
}
1595
#endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1596
1597
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1598
return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1599
#else
1600
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1601
1602
/* NOTE: Aliasing between input and output is allowed, so one has to make
1603
* sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
1604
* longer read from. */
1605
mbedtls_mpi * const X = &R->X;
1606
mbedtls_mpi * const Y = &R->Y;
1607
mbedtls_mpi * const Z = &R->Z;
1608
1609
if (!MPI_ECP_VALID(&Q->Z)) {
1610
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1611
}
1612
1613
/*
1614
* Trivial cases: P == 0 or Q == 0 (case 1)
1615
*/
1616
if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
1617
return mbedtls_ecp_copy(R, Q);
1618
}
1619
1620
if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
1621
return mbedtls_ecp_copy(R, P);
1622
}
1623
1624
/*
1625
* Make sure Q coordinates are normalized
1626
*/
1627
if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
1628
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1629
}
1630
1631
MPI_ECP_SQR(&tmp[0], &P->Z);
1632
MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
1633
MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
1634
MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
1635
MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
1636
MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
1637
1638
/* Special cases (2) and (3) */
1639
if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
1640
if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
1641
ret = ecp_double_jac(grp, R, P, tmp);
1642
goto cleanup;
1643
} else {
1644
ret = mbedtls_ecp_set_zero(R);
1645
goto cleanup;
1646
}
1647
}
1648
1649
/* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
1650
MPI_ECP_MUL(Z, &P->Z, &tmp[0]);
1651
MPI_ECP_SQR(&tmp[2], &tmp[0]);
1652
MPI_ECP_MUL(&tmp[3], &tmp[2], &tmp[0]);
1653
MPI_ECP_MUL(&tmp[2], &tmp[2], &P->X);
1654
1655
MPI_ECP_MOV(&tmp[0], &tmp[2]);
1656
MPI_ECP_SHIFT_L(&tmp[0], 1);
1657
1658
/* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
1659
MPI_ECP_SQR(X, &tmp[1]);
1660
MPI_ECP_SUB(X, X, &tmp[0]);
1661
MPI_ECP_SUB(X, X, &tmp[3]);
1662
MPI_ECP_SUB(&tmp[2], &tmp[2], X);
1663
MPI_ECP_MUL(&tmp[2], &tmp[2], &tmp[1]);
1664
MPI_ECP_MUL(&tmp[3], &tmp[3], &P->Y);
1665
/* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
1666
MPI_ECP_SUB(Y, &tmp[2], &tmp[3]);
1667
1668
cleanup:
1669
1670
return ret;
1671
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1672
}
1673
1674
/*
1675
* Randomize jacobian coordinates:
1676
* (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1677
* This is sort of the reverse operation of ecp_normalize_jac().
1678
*
1679
* This countermeasure was first suggested in [2].
1680
*/
1681
static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1682
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1683
{
1684
#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1685
if (mbedtls_internal_ecp_grp_capable(grp)) {
1686
return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
1687
}
1688
#endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1689
1690
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1691
return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1692
#else
1693
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1694
mbedtls_mpi l;
1695
1696
mbedtls_mpi_init(&l);
1697
1698
/* Generate l such that 1 < l < p */
1699
MPI_ECP_RAND(&l);
1700
1701
/* Z' = l * Z */
1702
MPI_ECP_MUL(&pt->Z, &pt->Z, &l);
1703
1704
/* Y' = l * Y */
1705
MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
1706
1707
/* X' = l^2 * X */
1708
MPI_ECP_SQR(&l, &l);
1709
MPI_ECP_MUL(&pt->X, &pt->X, &l);
1710
1711
/* Y'' = l^2 * Y' = l^3 * Y */
1712
MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
1713
1714
cleanup:
1715
mbedtls_mpi_free(&l);
1716
1717
if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1718
ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1719
}
1720
return ret;
1721
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1722
}
1723
1724
/*
1725
* Check and define parameters used by the comb method (see below for details)
1726
*/
1727
#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1728
#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1729
#endif
1730
1731
/* d = ceil( n / w ) */
1732
#define COMB_MAX_D (MBEDTLS_ECP_MAX_BITS + 1) / 2
1733
1734
/* number of precomputed points */
1735
#define COMB_MAX_PRE (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
1736
1737
/*
1738
* Compute the representation of m that will be used with our comb method.
1739
*
1740
* The basic comb method is described in GECC 3.44 for example. We use a
1741
* modified version that provides resistance to SPA by avoiding zero
1742
* digits in the representation as in [3]. We modify the method further by
1743
* requiring that all K_i be odd, which has the small cost that our
1744
* representation uses one more K_i, due to carries, but saves on the size of
1745
* the precomputed table.
1746
*
1747
* Summary of the comb method and its modifications:
1748
*
1749
* - The goal is to compute m*P for some w*d-bit integer m.
1750
*
1751
* - The basic comb method splits m into the w-bit integers
1752
* x[0] .. x[d-1] where x[i] consists of the bits in m whose
1753
* index has residue i modulo d, and computes m * P as
1754
* S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1755
* S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1756
*
1757
* - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1758
* .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1759
* thereby successively converting it into a form where all summands
1760
* are nonzero, at the cost of negative summands. This is the basic idea of [3].
1761
*
1762
* - More generally, even if x[i+1] != 0, we can first transform the sum as
1763
* .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1764
* and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1765
* Performing and iterating this procedure for those x[i] that are even
1766
* (keeping track of carry), we can transform the original sum into one of the form
1767
* S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1768
* with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1769
* which is why we are only computing half of it in the first place in
1770
* ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1771
*
1772
* - For the sake of compactness, only the seven low-order bits of x[i]
1773
* are used to represent its absolute value (K_i in the paper), and the msb
1774
* of x[i] encodes the sign (s_i in the paper): it is set if and only if
1775
* if s_i == -1;
1776
*
1777
* Calling conventions:
1778
* - x is an array of size d + 1
1779
* - w is the size, ie number of teeth, of the comb, and must be between
1780
* 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1781
* - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1782
* (the result will be incorrect if these assumptions are not satisfied)
1783
*/
1784
static void ecp_comb_recode_core(unsigned char x[], size_t d,
1785
unsigned char w, const mbedtls_mpi *m)
1786
{
1787
size_t i, j;
1788
unsigned char c, cc, adjust;
1789
1790
memset(x, 0, d+1);
1791
1792
/* First get the classical comb values (except for x_d = 0) */
1793
for (i = 0; i < d; i++) {
1794
for (j = 0; j < w; j++) {
1795
x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
1796
}
1797
}
1798
1799
/* Now make sure x_1 .. x_d are odd */
1800
c = 0;
1801
for (i = 1; i <= d; i++) {
1802
/* Add carry and update it */
1803
cc = x[i] & c;
1804
x[i] = x[i] ^ c;
1805
c = cc;
1806
1807
/* Adjust if needed, avoiding branches */
1808
adjust = 1 - (x[i] & 0x01);
1809
c |= x[i] & (x[i-1] * adjust);
1810
x[i] = x[i] ^ (x[i-1] * adjust);
1811
x[i-1] |= adjust << 7;
1812
}
1813
}
1814
1815
/*
1816
* Precompute points for the adapted comb method
1817
*
1818
* Assumption: T must be able to hold 2^{w - 1} elements.
1819
*
1820
* Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1821
* sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1822
*
1823
* Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1824
*
1825
* Note: Even comb values (those where P would be omitted from the
1826
* sum defining T[i] above) are not needed in our adaption
1827
* the comb method. See ecp_comb_recode_core().
1828
*
1829
* This function currently works in four steps:
1830
* (1) [dbl] Computation of intermediate T[i] for 2-power values of i
1831
* (2) [norm_dbl] Normalization of coordinates of these T[i]
1832
* (3) [add] Computation of all T[i]
1833
* (4) [norm_add] Normalization of all T[i]
1834
*
1835
* Step 1 can be interrupted but not the others; together with the final
1836
* coordinate normalization they are the largest steps done at once, depending
1837
* on the window size. Here are operation counts for P-256:
1838
*
1839
* step (2) (3) (4)
1840
* w = 5 142 165 208
1841
* w = 4 136 77 160
1842
* w = 3 130 33 136
1843
* w = 2 124 11 124
1844
*
1845
* So if ECC operations are blocking for too long even with a low max_ops
1846
* value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1847
* to minimize maximum blocking time.
1848
*/
1849
static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
1850
mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1851
unsigned char w, size_t d,
1852
mbedtls_ecp_restart_ctx *rs_ctx)
1853
{
1854
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1855
unsigned char i;
1856
size_t j = 0;
1857
const unsigned char T_size = 1U << (w - 1);
1858
mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
1859
1860
mbedtls_mpi tmp[4];
1861
1862
mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1863
1864
#if defined(MBEDTLS_ECP_RESTARTABLE)
1865
if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1866
if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1867
goto dbl;
1868
}
1869
if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
1870
goto norm_dbl;
1871
}
1872
if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
1873
goto add;
1874
}
1875
if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
1876
goto norm_add;
1877
}
1878
}
1879
#else
1880
(void) rs_ctx;
1881
#endif
1882
1883
#if defined(MBEDTLS_ECP_RESTARTABLE)
1884
if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1885
rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1886
1887
/* initial state for the loop */
1888
rs_ctx->rsm->i = 0;
1889
}
1890
1891
dbl:
1892
#endif
1893
/*
1894
* Set T[0] = P and
1895
* T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1896
*/
1897
MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
1898
1899
#if defined(MBEDTLS_ECP_RESTARTABLE)
1900
if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
1901
j = rs_ctx->rsm->i;
1902
} else
1903
#endif
1904
j = 0;
1905
1906
for (; j < d * (w - 1); j++) {
1907
MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
1908
1909
i = 1U << (j / d);
1910
cur = T + i;
1911
1912
if (j % d == 0) {
1913
MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
1914
}
1915
1916
MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
1917
}
1918
1919
#if defined(MBEDTLS_ECP_RESTARTABLE)
1920
if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1921
rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1922
}
1923
1924
norm_dbl:
1925
#endif
1926
/*
1927
* Normalize current elements in T to allow them to be used in
1928
* ecp_add_mixed() below, which requires one normalized input.
1929
*
1930
* As T has holes, use an auxiliary array of pointers to elements in T.
1931
*
1932
*/
1933
j = 0;
1934
for (i = 1; i < T_size; i <<= 1) {
1935
TT[j++] = T + i;
1936
}
1937
1938
MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1939
1940
MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1941
1942
#if defined(MBEDTLS_ECP_RESTARTABLE)
1943
if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1944
rs_ctx->rsm->state = ecp_rsm_pre_add;
1945
}
1946
1947
add:
1948
#endif
1949
/*
1950
* Compute the remaining ones using the minimal number of additions
1951
* Be careful to update T[2^l] only after using it!
1952
*/
1953
MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
1954
1955
for (i = 1; i < T_size; i <<= 1) {
1956
j = i;
1957
while (j--) {
1958
MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
1959
}
1960
}
1961
1962
#if defined(MBEDTLS_ECP_RESTARTABLE)
1963
if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1964
rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1965
}
1966
1967
norm_add:
1968
#endif
1969
/*
1970
* Normalize final elements in T. Even though there are no holes now, we
1971
* still need the auxiliary array for homogeneity with the previous
1972
* call. Also, skip T[0] which is already normalised, being a copy of P.
1973
*/
1974
for (j = 0; j + 1 < T_size; j++) {
1975
TT[j] = T + j + 1;
1976
}
1977
1978
MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1979
1980
MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1981
1982
/* Free Z coordinate (=1 after normalization) to save RAM.
1983
* This makes T[i] invalid as mbedtls_ecp_points, but this is OK
1984
* since from this point onwards, they are only accessed indirectly
1985
* via the getter function ecp_select_comb() which does set the
1986
* target's Z coordinate to 1. */
1987
for (i = 0; i < T_size; i++) {
1988
mbedtls_mpi_free(&T[i].Z);
1989
}
1990
1991
cleanup:
1992
1993
mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1994
1995
#if defined(MBEDTLS_ECP_RESTARTABLE)
1996
if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
1997
ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
1998
if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1999
rs_ctx->rsm->i = j;
2000
}
2001
}
2002
#endif
2003
2004
return ret;
2005
}
2006
2007
/*
2008
* Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
2009
*
2010
* See ecp_comb_recode_core() for background
2011
*/
2012
static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2013
const mbedtls_ecp_point T[], unsigned char T_size,
2014
unsigned char i)
2015
{
2016
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2017
unsigned char ii, j;
2018
2019
/* Ignore the "sign" bit and scale down */
2020
ii = (i & 0x7Fu) >> 1;
2021
2022
/* Read the whole table to thwart cache-based timing attacks */
2023
for (j = 0; j < T_size; j++) {
2024
MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
2025
MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
2026
}
2027
2028
/* Safely invert result if i is "negative" */
2029
MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
2030
2031
MPI_ECP_LSET(&R->Z, 1);
2032
2033
cleanup:
2034
return ret;
2035
}
2036
2037
/*
2038
* Core multiplication algorithm for the (modified) comb method.
2039
* This part is actually common with the basic comb method (GECC 3.44)
2040
*
2041
* Cost: d A + d D + 1 R
2042
*/
2043
static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2044
const mbedtls_ecp_point T[], unsigned char T_size,
2045
const unsigned char x[], size_t d,
2046
int (*f_rng)(void *, unsigned char *, size_t),
2047
void *p_rng,
2048
mbedtls_ecp_restart_ctx *rs_ctx)
2049
{
2050
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2051
mbedtls_ecp_point Txi;
2052
mbedtls_mpi tmp[4];
2053
size_t i;
2054
2055
mbedtls_ecp_point_init(&Txi);
2056
mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2057
2058
#if !defined(MBEDTLS_ECP_RESTARTABLE)
2059
(void) rs_ctx;
2060
#endif
2061
2062
#if defined(MBEDTLS_ECP_RESTARTABLE)
2063
if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2064
rs_ctx->rsm->state != ecp_rsm_comb_core) {
2065
rs_ctx->rsm->i = 0;
2066
rs_ctx->rsm->state = ecp_rsm_comb_core;
2067
}
2068
2069
/* new 'if' instead of nested for the sake of the 'else' branch */
2070
if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
2071
/* restore current index (R already pointing to rs_ctx->rsm->R) */
2072
i = rs_ctx->rsm->i;
2073
} else
2074
#endif
2075
{
2076
/* Start with a non-zero point and randomize its coordinates */
2077
i = d;
2078
MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
2079
if (f_rng != 0) {
2080
MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
2081
}
2082
}
2083
2084
while (i != 0) {
2085
MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
2086
--i;
2087
2088
MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
2089
MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
2090
MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
2091
}
2092
2093
cleanup:
2094
2095
mbedtls_ecp_point_free(&Txi);
2096
mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2097
2098
#if defined(MBEDTLS_ECP_RESTARTABLE)
2099
if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2100
ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2101
rs_ctx->rsm->i = i;
2102
/* no need to save R, already pointing to rs_ctx->rsm->R */
2103
}
2104
#endif
2105
2106
return ret;
2107
}
2108
2109
/*
2110
* Recode the scalar to get constant-time comb multiplication
2111
*
2112
* As the actual scalar recoding needs an odd scalar as a starting point,
2113
* this wrapper ensures that by replacing m by N - m if necessary, and
2114
* informs the caller that the result of multiplication will be negated.
2115
*
2116
* This works because we only support large prime order for Short Weierstrass
2117
* curves, so N is always odd hence either m or N - m is.
2118
*
2119
* See ecp_comb_recode_core() for background.
2120
*/
2121
static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
2122
const mbedtls_mpi *m,
2123
unsigned char k[COMB_MAX_D + 1],
2124
size_t d,
2125
unsigned char w,
2126
unsigned char *parity_trick)
2127
{
2128
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2129
mbedtls_mpi M, mm;
2130
2131
mbedtls_mpi_init(&M);
2132
mbedtls_mpi_init(&mm);
2133
2134
/* N is always odd (see above), just make extra sure */
2135
if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
2136
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2137
}
2138
2139
/* do we need the parity trick? */
2140
*parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
2141
2142
/* execute parity fix in constant time */
2143
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
2144
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
2145
MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
2146
2147
/* actual scalar recoding */
2148
ecp_comb_recode_core(k, d, w, &M);
2149
2150
cleanup:
2151
mbedtls_mpi_free(&mm);
2152
mbedtls_mpi_free(&M);
2153
2154
return ret;
2155
}
2156
2157
/*
2158
* Perform comb multiplication (for short Weierstrass curves)
2159
* once the auxiliary table has been pre-computed.
2160
*
2161
* Scalar recoding may use a parity trick that makes us compute -m * P,
2162
* if that is the case we'll need to recover m * P at the end.
2163
*/
2164
static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
2165
mbedtls_ecp_point *R,
2166
const mbedtls_mpi *m,
2167
const mbedtls_ecp_point *T,
2168
unsigned char T_size,
2169
unsigned char w,
2170
size_t d,
2171
int (*f_rng)(void *, unsigned char *, size_t),
2172
void *p_rng,
2173
mbedtls_ecp_restart_ctx *rs_ctx)
2174
{
2175
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2176
unsigned char parity_trick;
2177
unsigned char k[COMB_MAX_D + 1];
2178
mbedtls_ecp_point *RR = R;
2179
2180
#if defined(MBEDTLS_ECP_RESTARTABLE)
2181
if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2182
RR = &rs_ctx->rsm->R;
2183
2184
if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
2185
goto final_norm;
2186
}
2187
}
2188
#endif
2189
2190
MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
2191
&parity_trick));
2192
MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
2193
f_rng, p_rng, rs_ctx));
2194
MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
2195
2196
#if defined(MBEDTLS_ECP_RESTARTABLE)
2197
if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2198
rs_ctx->rsm->state = ecp_rsm_final_norm;
2199
}
2200
2201
final_norm:
2202
MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2203
#endif
2204
/*
2205
* Knowledge of the jacobian coordinates may leak the last few bits of the
2206
* scalar [1], and since our MPI implementation isn't constant-flow,
2207
* inversion (used for coordinate normalization) may leak the full value
2208
* of its input via side-channels [2].
2209
*
2210
* [1] https://eprint.iacr.org/2003/191
2211
* [2] https://eprint.iacr.org/2020/055
2212
*
2213
* Avoid the leak by randomizing coordinates before we normalize them.
2214
*/
2215
if (f_rng != 0) {
2216
MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
2217
}
2218
2219
MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
2220
2221
#if defined(MBEDTLS_ECP_RESTARTABLE)
2222
if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2223
MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
2224
}
2225
#endif
2226
2227
cleanup:
2228
return ret;
2229
}
2230
2231
/*
2232
* Pick window size based on curve size and whether we optimize for base point
2233
*/
2234
static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
2235
unsigned char p_eq_g)
2236
{
2237
unsigned char w;
2238
2239
/*
2240
* Minimize the number of multiplications, that is minimize
2241
* 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2242
* (see costs of the various parts, with 1S = 1M)
2243
*/
2244
w = grp->nbits >= 384 ? 5 : 4;
2245
2246
/*
2247
* If P == G, pre-compute a bit more, since this may be re-used later.
2248
* Just adding one avoids upping the cost of the first mul too much,
2249
* and the memory cost too.
2250
*/
2251
if (p_eq_g) {
2252
w++;
2253
}
2254
2255
/*
2256
* If static comb table may not be used (!p_eq_g) or static comb table does
2257
* not exists, make sure w is within bounds.
2258
* (The last test is useful only for very small curves in the test suite.)
2259
*
2260
* The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2261
* static comb table, because the size of static comb table is fixed when
2262
* it is generated.
2263
*/
2264
#if (MBEDTLS_ECP_WINDOW_SIZE < 6)
2265
if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
2266
w = MBEDTLS_ECP_WINDOW_SIZE;
2267
}
2268
#endif
2269
if (w >= grp->nbits) {
2270
w = 2;
2271
}
2272
2273
return w;
2274
}
2275
2276
/*
2277
* Multiplication using the comb method - for curves in short Weierstrass form
2278
*
2279
* This function is mainly responsible for administrative work:
2280
* - managing the restart context if enabled
2281
* - managing the table of precomputed points (passed between the below two
2282
* functions): allocation, computation, ownership transfer, freeing.
2283
*
2284
* It delegates the actual arithmetic work to:
2285
* ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2286
*
2287
* See comments on ecp_comb_recode_core() regarding the computation strategy.
2288
*/
2289
static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2290
const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2291
int (*f_rng)(void *, unsigned char *, size_t),
2292
void *p_rng,
2293
mbedtls_ecp_restart_ctx *rs_ctx)
2294
{
2295
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2296
unsigned char w, p_eq_g, i;
2297
size_t d;
2298
unsigned char T_size = 0, T_ok = 0;
2299
mbedtls_ecp_point *T = NULL;
2300
2301
ECP_RS_ENTER(rsm);
2302
2303
/* Is P the base point ? */
2304
#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2305
p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
2306
MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
2307
#else
2308
p_eq_g = 0;
2309
#endif
2310
2311
/* Pick window size and deduce related sizes */
2312
w = ecp_pick_window_size(grp, p_eq_g);
2313
T_size = 1U << (w - 1);
2314
d = (grp->nbits + w - 1) / w;
2315
2316
/* Pre-computed table: do we have it already for the base point? */
2317
if (p_eq_g && grp->T != NULL) {
2318
/* second pointer to the same table, will be deleted on exit */
2319
T = grp->T;
2320
T_ok = 1;
2321
} else
2322
#if defined(MBEDTLS_ECP_RESTARTABLE)
2323
/* Pre-computed table: do we have one in progress? complete? */
2324
if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
2325
/* transfer ownership of T from rsm to local function */
2326
T = rs_ctx->rsm->T;
2327
rs_ctx->rsm->T = NULL;
2328
rs_ctx->rsm->T_size = 0;
2329
2330
/* This effectively jumps to the call to mul_comb_after_precomp() */
2331
T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2332
} else
2333
#endif
2334
/* Allocate table if we didn't have any */
2335
{
2336
T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
2337
if (T == NULL) {
2338
ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2339
goto cleanup;
2340
}
2341
2342
for (i = 0; i < T_size; i++) {
2343
mbedtls_ecp_point_init(&T[i]);
2344
}
2345
2346
T_ok = 0;
2347
}
2348
2349
/* Compute table (or finish computing it) if not done already */
2350
if (!T_ok) {
2351
MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
2352
2353
if (p_eq_g) {
2354
/* almost transfer ownership of T to the group, but keep a copy of
2355
* the pointer to use for calling the next function more easily */
2356
grp->T = T;
2357
grp->T_size = T_size;
2358
}
2359
}
2360
2361
/* Actual comb multiplication using precomputed points */
2362
MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
2363
T, T_size, w, d,
2364
f_rng, p_rng, rs_ctx));
2365
2366
cleanup:
2367
2368
/* does T belong to the group? */
2369
if (T == grp->T) {
2370
T = NULL;
2371
}
2372
2373
/* does T belong to the restart context? */
2374
#if defined(MBEDTLS_ECP_RESTARTABLE)
2375
if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
2376
/* transfer ownership of T from local function to rsm */
2377
rs_ctx->rsm->T_size = T_size;
2378
rs_ctx->rsm->T = T;
2379
T = NULL;
2380
}
2381
#endif
2382
2383
/* did T belong to us? then let's destroy it! */
2384
if (T != NULL) {
2385
for (i = 0; i < T_size; i++) {
2386
mbedtls_ecp_point_free(&T[i]);
2387
}
2388
mbedtls_free(T);
2389
}
2390
2391
/* prevent caller from using invalid value */
2392
int should_free_R = (ret != 0);
2393
#if defined(MBEDTLS_ECP_RESTARTABLE)
2394
/* don't free R while in progress in case R == P */
2395
if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2396
should_free_R = 0;
2397
}
2398
#endif
2399
if (should_free_R) {
2400
mbedtls_ecp_point_free(R);
2401
}
2402
2403
ECP_RS_LEAVE(rsm);
2404
2405
return ret;
2406
}
2407
2408
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2409
2410
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2411
/*
2412
* For Montgomery curves, we do all the internal arithmetic in projective
2413
* coordinates. Import/export of points uses only the x coordinates, which is
2414
* internally represented as X / Z.
2415
*
2416
* For scalar multiplication, we'll use a Montgomery ladder.
2417
*/
2418
2419
/*
2420
* Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2421
* Cost: 1M + 1I
2422
*/
2423
static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
2424
{
2425
#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2426
if (mbedtls_internal_ecp_grp_capable(grp)) {
2427
return mbedtls_internal_ecp_normalize_mxz(grp, P);
2428
}
2429
#endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2430
2431
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2432
return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2433
#else
2434
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2435
MPI_ECP_INV(&P->Z, &P->Z);
2436
MPI_ECP_MUL(&P->X, &P->X, &P->Z);
2437
MPI_ECP_LSET(&P->Z, 1);
2438
2439
cleanup:
2440
return ret;
2441
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2442
}
2443
2444
/*
2445
* Randomize projective x/z coordinates:
2446
* (X, Z) -> (l X, l Z) for random l
2447
* This is sort of the reverse operation of ecp_normalize_mxz().
2448
*
2449
* This countermeasure was first suggested in [2].
2450
* Cost: 2M
2451
*/
2452
static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2453
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2454
{
2455
#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2456
if (mbedtls_internal_ecp_grp_capable(grp)) {
2457
return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
2458
}
2459
#endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2460
2461
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2462
return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2463
#else
2464
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2465
mbedtls_mpi l;
2466
mbedtls_mpi_init(&l);
2467
2468
/* Generate l such that 1 < l < p */
2469
MPI_ECP_RAND(&l);
2470
2471
MPI_ECP_MUL(&P->X, &P->X, &l);
2472
MPI_ECP_MUL(&P->Z, &P->Z, &l);
2473
2474
cleanup:
2475
mbedtls_mpi_free(&l);
2476
2477
if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2478
ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2479
}
2480
return ret;
2481
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2482
}
2483
2484
/*
2485
* Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2486
* for Montgomery curves in x/z coordinates.
2487
*
2488
* http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2489
* with
2490
* d = X1
2491
* P = (X2, Z2)
2492
* Q = (X3, Z3)
2493
* R = (X4, Z4)
2494
* S = (X5, Z5)
2495
* and eliminating temporary variables tO, ..., t4.
2496
*
2497
* Cost: 5M + 4S
2498
*/
2499
static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
2500
mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2501
const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2502
const mbedtls_mpi *d,
2503
mbedtls_mpi T[4])
2504
{
2505
#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2506
if (mbedtls_internal_ecp_grp_capable(grp)) {
2507
return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
2508
}
2509
#endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2510
2511
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2512
return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2513
#else
2514
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2515
2516
MPI_ECP_ADD(&T[0], &P->X, &P->Z); /* Pp := PX + PZ */
2517
MPI_ECP_SUB(&T[1], &P->X, &P->Z); /* Pm := PX - PZ */
2518
MPI_ECP_ADD(&T[2], &Q->X, &Q->Z); /* Qp := QX + XZ */
2519
MPI_ECP_SUB(&T[3], &Q->X, &Q->Z); /* Qm := QX - QZ */
2520
MPI_ECP_MUL(&T[3], &T[3], &T[0]); /* Qm * Pp */
2521
MPI_ECP_MUL(&T[2], &T[2], &T[1]); /* Qp * Pm */
2522
MPI_ECP_SQR(&T[0], &T[0]); /* Pp^2 */
2523
MPI_ECP_SQR(&T[1], &T[1]); /* Pm^2 */
2524
MPI_ECP_MUL(&R->X, &T[0], &T[1]); /* Pp^2 * Pm^2 */
2525
MPI_ECP_SUB(&T[0], &T[0], &T[1]); /* Pp^2 - Pm^2 */
2526
MPI_ECP_MUL(&R->Z, &grp->A, &T[0]); /* A * (Pp^2 - Pm^2) */
2527
MPI_ECP_ADD(&R->Z, &T[1], &R->Z); /* [ A * (Pp^2-Pm^2) ] + Pm^2 */
2528
MPI_ECP_ADD(&S->X, &T[3], &T[2]); /* Qm*Pp + Qp*Pm */
2529
MPI_ECP_SQR(&S->X, &S->X); /* (Qm*Pp + Qp*Pm)^2 */
2530
MPI_ECP_SUB(&S->Z, &T[3], &T[2]); /* Qm*Pp - Qp*Pm */
2531
MPI_ECP_SQR(&S->Z, &S->Z); /* (Qm*Pp - Qp*Pm)^2 */
2532
MPI_ECP_MUL(&S->Z, d, &S->Z); /* d * ( Qm*Pp - Qp*Pm )^2 */
2533
MPI_ECP_MUL(&R->Z, &T[0], &R->Z); /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
2534
2535
cleanup:
2536
2537
return ret;
2538
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2539
}
2540
2541
/*
2542
* Multiplication with Montgomery ladder in x/z coordinates,
2543
* for curves in Montgomery form
2544
*/
2545
static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2546
const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2547
int (*f_rng)(void *, unsigned char *, size_t),
2548
void *p_rng)
2549
{
2550
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2551
size_t i;
2552
unsigned char b;
2553
mbedtls_ecp_point RP;
2554
mbedtls_mpi PX;
2555
mbedtls_mpi tmp[4];
2556
mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
2557
2558
mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2559
2560
if (f_rng == NULL) {
2561
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2562
}
2563
2564
/* Save PX and read from P before writing to R, in case P == R */
2565
MPI_ECP_MOV(&PX, &P->X);
2566
MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
2567
2568
/* Set R to zero in modified x/z coordinates */
2569
MPI_ECP_LSET(&R->X, 1);
2570
MPI_ECP_LSET(&R->Z, 0);
2571
mbedtls_mpi_free(&R->Y);
2572
2573
/* RP.X might be slightly larger than P, so reduce it */
2574
MOD_ADD(&RP.X);
2575
2576
/* Randomize coordinates of the starting point */
2577
MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
2578
2579
/* Loop invariant: R = result so far, RP = R + P */
2580
i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
2581
while (i-- > 0) {
2582
b = mbedtls_mpi_get_bit(m, i);
2583
/*
2584
* if (b) R = 2R + P else R = 2R,
2585
* which is:
2586
* if (b) double_add( RP, R, RP, R )
2587
* else double_add( R, RP, R, RP )
2588
* but using safe conditional swaps to avoid leaks
2589
*/
2590
MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2591
MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2592
MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
2593
MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2594
MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2595
}
2596
2597
/*
2598
* Knowledge of the projective coordinates may leak the last few bits of the
2599
* scalar [1], and since our MPI implementation isn't constant-flow,
2600
* inversion (used for coordinate normalization) may leak the full value
2601
* of its input via side-channels [2].
2602
*
2603
* [1] https://eprint.iacr.org/2003/191
2604
* [2] https://eprint.iacr.org/2020/055
2605
*
2606
* Avoid the leak by randomizing coordinates before we normalize them.
2607
*/
2608
MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
2609
MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
2610
2611
cleanup:
2612
mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
2613
2614
mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2615
return ret;
2616
}
2617
2618
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2619
2620
/*
2621
* Restartable multiplication R = m * P
2622
*
2623
* This internal function can be called without an RNG in case where we know
2624
* the inputs are not sensitive.
2625
*/
2626
static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2627
const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2628
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2629
mbedtls_ecp_restart_ctx *rs_ctx)
2630
{
2631
int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2632
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2633
char is_grp_capable = 0;
2634
#endif
2635
2636
#if defined(MBEDTLS_ECP_RESTARTABLE)
2637
/* reset ops count for this call if top-level */
2638
if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
2639
rs_ctx->ops_done = 0;
2640
}
2641
#else
2642
(void) rs_ctx;
2643
#endif
2644
2645
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2646
if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2647
MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2648
}
2649
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2650
2651
int restarting = 0;
2652
#if defined(MBEDTLS_ECP_RESTARTABLE)
2653
restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
2654
#endif
2655
/* skip argument check when restarting */
2656
if (!restarting) {
2657
/* check_privkey is free */
2658
MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
2659
2660
/* Common sanity checks */
2661
MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
2662
MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2663
}
2664
2665
ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2666
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2667
if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
2668
MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
2669
}
2670
#endif
2671
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2672
if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2673
MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
2674
}
2675
#endif
2676
2677
cleanup:
2678
2679
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2680
if (is_grp_capable) {
2681
mbedtls_internal_ecp_free(grp);
2682
}
2683
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2684
2685
#if defined(MBEDTLS_ECP_RESTARTABLE)
2686
if (rs_ctx != NULL) {
2687
rs_ctx->depth--;
2688
}
2689
#endif
2690
2691
return ret;
2692
}
2693
2694
/*
2695
* Restartable multiplication R = m * P
2696
*/
2697
int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2698
const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2699
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2700
mbedtls_ecp_restart_ctx *rs_ctx)
2701
{
2702
if (f_rng == NULL) {
2703
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2704
}
2705
2706
return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
2707
}
2708
2709
/*
2710
* Multiplication R = m * P
2711
*/
2712
int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2713
const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2714
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2715
{
2716
return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
2717
}
2718
#endif /* MBEDTLS_ECP_C */
2719
2720
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2721
/*
2722
* Check that an affine point is valid as a public key,
2723
* short weierstrass curves (SEC1 3.2.3.1)
2724
*/
2725
static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2726
{
2727
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2728
mbedtls_mpi YY, RHS;
2729
2730
/* pt coordinates must be normalized for our checks */
2731
if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
2732
mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
2733
mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
2734
mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
2735
return MBEDTLS_ERR_ECP_INVALID_KEY;
2736
}
2737
2738
mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
2739
2740
/*
2741
* YY = Y^2
2742
* RHS = X^3 + A X + B
2743
*/
2744
MPI_ECP_SQR(&YY, &pt->Y);
2745
MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
2746
2747
if (MPI_ECP_CMP(&YY, &RHS) != 0) {
2748
ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2749
}
2750
2751
cleanup:
2752
2753
mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
2754
2755
return ret;
2756
}
2757
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2758
2759
#if defined(MBEDTLS_ECP_C)
2760
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2761
/*
2762
* R = m * P with shortcuts for m == 0, m == 1 and m == -1
2763
* NOT constant-time - ONLY for short Weierstrass!
2764
*/
2765
static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
2766
mbedtls_ecp_point *R,
2767
const mbedtls_mpi *m,
2768
const mbedtls_ecp_point *P,
2769
mbedtls_ecp_restart_ctx *rs_ctx)
2770
{
2771
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2772
mbedtls_mpi tmp;
2773
mbedtls_mpi_init(&tmp);
2774
2775
if (mbedtls_mpi_cmp_int(m, 0) == 0) {
2776
MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2777
MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
2778
} else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
2779
MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2780
MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2781
} else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
2782
MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2783
MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2784
MPI_ECP_NEG(&R->Y);
2785
} else {
2786
MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
2787
NULL, NULL, rs_ctx));
2788
}
2789
2790
cleanup:
2791
mbedtls_mpi_free(&tmp);
2792
2793
return ret;
2794
}
2795
2796
/*
2797
* Restartable linear combination
2798
* NOT constant-time
2799
*/
2800
int mbedtls_ecp_muladd_restartable(
2801
mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2802
const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2803
const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2804
mbedtls_ecp_restart_ctx *rs_ctx)
2805
{
2806
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2807
mbedtls_ecp_point mP;
2808
mbedtls_ecp_point *pmP = &mP;
2809
mbedtls_ecp_point *pR = R;
2810
mbedtls_mpi tmp[4];
2811
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2812
char is_grp_capable = 0;
2813
#endif
2814
if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2815
return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2816
}
2817
2818
mbedtls_ecp_point_init(&mP);
2819
mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2820
2821
ECP_RS_ENTER(ma);
2822
2823
#if defined(MBEDTLS_ECP_RESTARTABLE)
2824
if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2825
/* redirect intermediate results to restart context */
2826
pmP = &rs_ctx->ma->mP;
2827
pR = &rs_ctx->ma->R;
2828
2829
/* jump to next operation */
2830
if (rs_ctx->ma->state == ecp_rsma_mul2) {
2831
goto mul2;
2832
}
2833
if (rs_ctx->ma->state == ecp_rsma_add) {
2834
goto add;
2835
}
2836
if (rs_ctx->ma->state == ecp_rsma_norm) {
2837
goto norm;
2838
}
2839
}
2840
#endif /* MBEDTLS_ECP_RESTARTABLE */
2841
2842
MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
2843
#if defined(MBEDTLS_ECP_RESTARTABLE)
2844
if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2845
rs_ctx->ma->state = ecp_rsma_mul2;
2846
}
2847
2848
mul2:
2849
#endif
2850
MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR, n, Q, rs_ctx));
2851
2852
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2853
if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2854
MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2855
}
2856
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2857
2858
#if defined(MBEDTLS_ECP_RESTARTABLE)
2859
if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2860
rs_ctx->ma->state = ecp_rsma_add;
2861
}
2862
2863
add:
2864
#endif
2865
MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
2866
MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
2867
#if defined(MBEDTLS_ECP_RESTARTABLE)
2868
if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2869
rs_ctx->ma->state = ecp_rsma_norm;
2870
}
2871
2872
norm:
2873
#endif
2874
MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2875
MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
2876
2877
#if defined(MBEDTLS_ECP_RESTARTABLE)
2878
if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2879
MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
2880
}
2881
#endif
2882
2883
cleanup:
2884
2885
mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2886
2887
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2888
if (is_grp_capable) {
2889
mbedtls_internal_ecp_free(grp);
2890
}
2891
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2892
2893
mbedtls_ecp_point_free(&mP);
2894
2895
ECP_RS_LEAVE(ma);
2896
2897
return ret;
2898
}
2899
2900
/*
2901
* Linear combination
2902
* NOT constant-time
2903
*/
2904
int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2905
const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2906
const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
2907
{
2908
return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
2909
}
2910
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2911
#endif /* MBEDTLS_ECP_C */
2912
2913
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2914
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2915
#define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
2916
#define ECP_MPI_INIT_ARRAY(x) \
2917
ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
2918
/*
2919
* Constants for the two points other than 0, 1, -1 (mod p) in
2920
* https://cr.yp.to/ecdh.html#validate
2921
* See ecp_check_pubkey_x25519().
2922
*/
2923
static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2924
MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
2925
MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
2926
MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
2927
MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
2928
};
2929
static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2930
MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
2931
MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
2932
MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
2933
MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
2934
};
2935
static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2936
x25519_bad_point_1);
2937
static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2938
x25519_bad_point_2);
2939
#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2940
2941
/*
2942
* Check that the input point is not one of the low-order points.
2943
* This is recommended by the "May the Fourth" paper:
2944
* https://eprint.iacr.org/2017/806.pdf
2945
* Those points are never sent by an honest peer.
2946
*/
2947
static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
2948
const mbedtls_ecp_group_id grp_id)
2949
{
2950
int ret;
2951
mbedtls_mpi XmP;
2952
2953
mbedtls_mpi_init(&XmP);
2954
2955
/* Reduce X mod P so that we only need to check values less than P.
2956
* We know X < 2^256 so we can proceed by subtraction. */
2957
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
2958
while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
2959
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
2960
}
2961
2962
/* Check against the known bad values that are less than P. For Curve448
2963
* these are 0, 1 and -1. For Curve25519 we check the values less than P
2964
* from the following list: https://cr.yp.to/ecdh.html#validate */
2965
if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) { /* takes care of 0 and 1 */
2966
ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2967
goto cleanup;
2968
}
2969
2970
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2971
if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
2972
if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
2973
ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2974
goto cleanup;
2975
}
2976
2977
if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
2978
ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2979
goto cleanup;
2980
}
2981
}
2982
#else
2983
(void) grp_id;
2984
#endif
2985
2986
/* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2987
MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
2988
if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
2989
ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2990
goto cleanup;
2991
}
2992
2993
ret = 0;
2994
2995
cleanup:
2996
mbedtls_mpi_free(&XmP);
2997
2998
return ret;
2999
}
3000
3001
/*
3002
* Check validity of a public key for Montgomery curves with x-only schemes
3003
*/
3004
static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
3005
{
3006
/* [Curve25519 p. 5] Just check X is the correct number of bytes */
3007
/* Allow any public value, if it's too big then we'll just reduce it mod p
3008
* (RFC 7748 sec. 5 para. 3). */
3009
if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
3010
return MBEDTLS_ERR_ECP_INVALID_KEY;
3011
}
3012
3013
/* Implicit in all standards (as they don't consider negative numbers):
3014
* X must be non-negative. This is normally ensured by the way it's
3015
* encoded for transmission, but let's be extra sure. */
3016
if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
3017
return MBEDTLS_ERR_ECP_INVALID_KEY;
3018
}
3019
3020
return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
3021
}
3022
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3023
3024
/*
3025
* Check that a point is valid as a public key
3026
*/
3027
int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
3028
const mbedtls_ecp_point *pt)
3029
{
3030
/* Must use affine coordinates */
3031
if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
3032
return MBEDTLS_ERR_ECP_INVALID_KEY;
3033
}
3034
3035
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3036
if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3037
return ecp_check_pubkey_mx(grp, pt);
3038
}
3039
#endif
3040
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3041
if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3042
return ecp_check_pubkey_sw(grp, pt);
3043
}
3044
#endif
3045
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3046
}
3047
3048
/*
3049
* Check that an mbedtls_mpi is valid as a private key
3050
*/
3051
int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
3052
const mbedtls_mpi *d)
3053
{
3054
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3055
if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3056
/* see RFC 7748 sec. 5 para. 5 */
3057
if (mbedtls_mpi_get_bit(d, 0) != 0 ||
3058
mbedtls_mpi_get_bit(d, 1) != 0 ||
3059
mbedtls_mpi_bitlen(d) != grp->nbits + 1) { /* mbedtls_mpi_bitlen is one-based! */
3060
return MBEDTLS_ERR_ECP_INVALID_KEY;
3061
}
3062
3063
/* see [Curve25519] page 5 */
3064
if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
3065
return MBEDTLS_ERR_ECP_INVALID_KEY;
3066
}
3067
3068
return 0;
3069
}
3070
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3071
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3072
if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3073
/* see SEC1 3.2 */
3074
if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
3075
mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
3076
return MBEDTLS_ERR_ECP_INVALID_KEY;
3077
} else {
3078
return 0;
3079
}
3080
}
3081
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3082
3083
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3084
}
3085
3086
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3087
MBEDTLS_STATIC_TESTABLE
3088
int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
3089
mbedtls_mpi *d,
3090
int (*f_rng)(void *, unsigned char *, size_t),
3091
void *p_rng)
3092
{
3093
int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3094
size_t n_random_bytes = high_bit / 8 + 1;
3095
3096
/* [Curve25519] page 5 */
3097
/* Generate a (high_bit+1)-bit random number by generating just enough
3098
* random bytes, then shifting out extra bits from the top (necessary
3099
* when (high_bit+1) is not a multiple of 8). */
3100
MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
3101
f_rng, p_rng));
3102
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
3103
3104
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
3105
3106
/* Make sure the last two bits are unset for Curve448, three bits for
3107
Curve25519 */
3108
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
3109
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
3110
if (high_bit == 254) {
3111
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
3112
}
3113
3114
cleanup:
3115
return ret;
3116
}
3117
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3118
3119
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3120
static int mbedtls_ecp_gen_privkey_sw(
3121
const mbedtls_mpi *N, mbedtls_mpi *d,
3122
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3123
{
3124
int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
3125
switch (ret) {
3126
case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3127
return MBEDTLS_ERR_ECP_RANDOM_FAILED;
3128
default:
3129
return ret;
3130
}
3131
}
3132
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3133
3134
/*
3135
* Generate a private key
3136
*/
3137
int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
3138
mbedtls_mpi *d,
3139
int (*f_rng)(void *, unsigned char *, size_t),
3140
void *p_rng)
3141
{
3142
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3143
if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3144
return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
3145
}
3146
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3147
3148
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3149
if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3150
return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
3151
}
3152
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3153
3154
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3155
}
3156
3157
#if defined(MBEDTLS_ECP_C)
3158
/*
3159
* Generate a keypair with configurable base point
3160
*/
3161
int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
3162
const mbedtls_ecp_point *G,
3163
mbedtls_mpi *d, mbedtls_ecp_point *Q,
3164
int (*f_rng)(void *, unsigned char *, size_t),
3165
void *p_rng)
3166
{
3167
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3168
MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
3169
MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
3170
3171
cleanup:
3172
return ret;
3173
}
3174
3175
/*
3176
* Generate key pair, wrapper for conventional base point
3177
*/
3178
int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
3179
mbedtls_mpi *d, mbedtls_ecp_point *Q,
3180
int (*f_rng)(void *, unsigned char *, size_t),
3181
void *p_rng)
3182
{
3183
return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
3184
}
3185
3186
/*
3187
* Generate a keypair, prettier wrapper
3188
*/
3189
int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3190
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3191
{
3192
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3193
if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3194
return ret;
3195
}
3196
3197
return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
3198
}
3199
#endif /* MBEDTLS_ECP_C */
3200
3201
int mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,
3202
mbedtls_ecp_keypair *key,
3203
const mbedtls_ecp_point *Q)
3204
{
3205
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3206
3207
if (key->grp.id == MBEDTLS_ECP_DP_NONE) {
3208
/* Group not set yet */
3209
if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3210
return ret;
3211
}
3212
} else if (key->grp.id != grp_id) {
3213
/* Group mismatch */
3214
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3215
}
3216
return mbedtls_ecp_copy(&key->Q, Q);
3217
}
3218
3219
3220
#define ECP_CURVE25519_KEY_SIZE 32
3221
#define ECP_CURVE448_KEY_SIZE 56
3222
/*
3223
* Read a private key.
3224
*/
3225
int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3226
const unsigned char *buf, size_t buflen)
3227
{
3228
int ret = 0;
3229
3230
if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3231
return ret;
3232
}
3233
3234
ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3235
3236
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3237
if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3238
/*
3239
* Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3240
*/
3241
if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
3242
if (buflen != ECP_CURVE25519_KEY_SIZE) {
3243
return MBEDTLS_ERR_ECP_INVALID_KEY;
3244
}
3245
3246
MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3247
3248
/* Set the three least significant bits to 0 */
3249
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3250
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3251
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
3252
3253
/* Set the most significant bit to 0 */
3254
MBEDTLS_MPI_CHK(
3255
mbedtls_mpi_set_bit(&key->d,
3256
ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
3257
);
3258
3259
/* Set the second most significant bit to 1 */
3260
MBEDTLS_MPI_CHK(
3261
mbedtls_mpi_set_bit(&key->d,
3262
ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
3263
);
3264
} else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
3265
if (buflen != ECP_CURVE448_KEY_SIZE) {
3266
return MBEDTLS_ERR_ECP_INVALID_KEY;
3267
}
3268
3269
MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3270
3271
/* Set the two least significant bits to 0 */
3272
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3273
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3274
3275
/* Set the most significant bit to 1 */
3276
MBEDTLS_MPI_CHK(
3277
mbedtls_mpi_set_bit(&key->d,
3278
ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
3279
);
3280
}
3281
}
3282
#endif
3283
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3284
if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3285
MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
3286
}
3287
#endif
3288
3289
if (ret == 0) {
3290
MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
3291
}
3292
3293
cleanup:
3294
3295
if (ret != 0) {
3296
mbedtls_mpi_free(&key->d);
3297
}
3298
3299
return ret;
3300
}
3301
3302
/*
3303
* Write a private key.
3304
*/
3305
#if !defined MBEDTLS_DEPRECATED_REMOVED
3306
int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
3307
unsigned char *buf, size_t buflen)
3308
{
3309
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3310
3311
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3312
if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3313
if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
3314
if (buflen < ECP_CURVE25519_KEY_SIZE) {
3315
return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3316
}
3317
3318
} else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
3319
if (buflen < ECP_CURVE448_KEY_SIZE) {
3320
return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3321
}
3322
}
3323
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
3324
}
3325
#endif
3326
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3327
if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3328
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
3329
}
3330
3331
#endif
3332
cleanup:
3333
3334
return ret;
3335
}
3336
#endif /* MBEDTLS_DEPRECATED_REMOVED */
3337
3338
int mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair *key,
3339
size_t *olen, unsigned char *buf, size_t buflen)
3340
{
3341
size_t len = (key->grp.nbits + 7) / 8;
3342
if (len > buflen) {
3343
/* For robustness, ensure *olen <= buflen even on error. */
3344
*olen = 0;
3345
return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3346
}
3347
*olen = len;
3348
3349
/* Private key not set */
3350
if (key->d.n == 0) {
3351
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3352
}
3353
3354
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3355
if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3356
return mbedtls_mpi_write_binary_le(&key->d, buf, len);
3357
}
3358
#endif
3359
3360
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3361
if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3362
return mbedtls_mpi_write_binary(&key->d, buf, len);
3363
}
3364
#endif
3365
3366
/* Private key set but no recognized curve type? This shouldn't happen. */
3367
return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3368
}
3369
3370
/*
3371
* Write a public key.
3372
*/
3373
int mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair *key,
3374
int format, size_t *olen,
3375
unsigned char *buf, size_t buflen)
3376
{
3377
return mbedtls_ecp_point_write_binary(&key->grp, &key->Q,
3378
format, olen, buf, buflen);
3379
}
3380
3381
3382
#if defined(MBEDTLS_ECP_C)
3383
/*
3384
* Check a public-private key pair
3385
*/
3386
int mbedtls_ecp_check_pub_priv(
3387
const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3388
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3389
{
3390
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3391
mbedtls_ecp_point Q;
3392
mbedtls_ecp_group grp;
3393
if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3394
pub->grp.id != prv->grp.id ||
3395
mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
3396
mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
3397
mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
3398
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3399
}
3400
3401
mbedtls_ecp_point_init(&Q);
3402
mbedtls_ecp_group_init(&grp);
3403
3404
/* mbedtls_ecp_mul() needs a non-const group... */
3405
mbedtls_ecp_group_copy(&grp, &prv->grp);
3406
3407
/* Also checks d is valid */
3408
MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
3409
3410
if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
3411
mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
3412
mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
3413
ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3414
goto cleanup;
3415
}
3416
3417
cleanup:
3418
mbedtls_ecp_point_free(&Q);
3419
mbedtls_ecp_group_free(&grp);
3420
3421
return ret;
3422
}
3423
3424
int mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair *key,
3425
int (*f_rng)(void *, unsigned char *, size_t),
3426
void *p_rng)
3427
{
3428
return mbedtls_ecp_mul(&key->grp, &key->Q, &key->d, &key->grp.G,
3429
f_rng, p_rng);
3430
}
3431
#endif /* MBEDTLS_ECP_C */
3432
3433
mbedtls_ecp_group_id mbedtls_ecp_keypair_get_group_id(
3434
const mbedtls_ecp_keypair *key)
3435
{
3436
return key->grp.id;
3437
}
3438
3439
/*
3440
* Export generic key-pair parameters.
3441
*/
3442
int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
3443
mbedtls_mpi *d, mbedtls_ecp_point *Q)
3444
{
3445
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3446
3447
if (grp != NULL && (ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
3448
return ret;
3449
}
3450
3451
if (d != NULL && (ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
3452
return ret;
3453
}
3454
3455
if (Q != NULL && (ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
3456
return ret;
3457
}
3458
3459
return 0;
3460
}
3461
3462
#if defined(MBEDTLS_SELF_TEST)
3463
3464
#if defined(MBEDTLS_ECP_C)
3465
/*
3466
* PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3467
*
3468
* This is the linear congruential generator from numerical recipes,
3469
* except we only use the low byte as the output. See
3470
* https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3471
*/
3472
static int self_test_rng(void *ctx, unsigned char *out, size_t len)
3473
{
3474
static uint32_t state = 42;
3475
3476
(void) ctx;
3477
3478
for (size_t i = 0; i < len; i++) {
3479
state = state * 1664525u + 1013904223u;
3480
out[i] = (unsigned char) state;
3481
}
3482
3483
return 0;
3484
}
3485
3486
/* Adjust the exponent to be a valid private point for the specified curve.
3487
* This is sometimes necessary because we use a single set of exponents
3488
* for all curves but the validity of values depends on the curve. */
3489
static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
3490
mbedtls_mpi *m)
3491
{
3492
int ret = 0;
3493
switch (grp->id) {
3494
/* If Curve25519 is available, then that's what we use for the
3495
* Montgomery test, so we don't need the adjustment code. */
3496
#if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3497
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3498
case MBEDTLS_ECP_DP_CURVE448:
3499
/* Move highest bit from 254 to N-1. Setting bit N-1 is
3500
* necessary to enforce the highest-bit-set constraint. */
3501
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
3502
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
3503
/* Copy second-highest bit from 253 to N-2. This is not
3504
* necessary but improves the test variety a bit. */
3505
MBEDTLS_MPI_CHK(
3506
mbedtls_mpi_set_bit(m, grp->nbits - 1,
3507
mbedtls_mpi_get_bit(m, 253)));
3508
break;
3509
#endif
3510
#endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3511
default:
3512
/* Non-Montgomery curves and Curve25519 need no adjustment. */
3513
(void) grp;
3514
(void) m;
3515
goto cleanup;
3516
}
3517
cleanup:
3518
return ret;
3519
}
3520
3521
/* Calculate R = m.P for each m in exponents. Check that the number of
3522
* basic operations doesn't depend on the value of m. */
3523
static int self_test_point(int verbose,
3524
mbedtls_ecp_group *grp,
3525
mbedtls_ecp_point *R,
3526
mbedtls_mpi *m,
3527
const mbedtls_ecp_point *P,
3528
const char *const *exponents,
3529
size_t n_exponents)
3530
{
3531
int ret = 0;
3532
size_t i = 0;
3533
unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3534
add_count = 0;
3535
dbl_count = 0;
3536
mul_count = 0;
3537
3538
MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
3539
MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3540
MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3541
3542
for (i = 1; i < n_exponents; i++) {
3543
add_c_prev = add_count;
3544
dbl_c_prev = dbl_count;
3545
mul_c_prev = mul_count;
3546
add_count = 0;
3547
dbl_count = 0;
3548
mul_count = 0;
3549
3550
MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
3551
MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3552
MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3553
3554
if (add_count != add_c_prev ||
3555
dbl_count != dbl_c_prev ||
3556
mul_count != mul_c_prev) {
3557
ret = 1;
3558
break;
3559
}
3560
}
3561
3562
cleanup:
3563
if (verbose != 0) {
3564
if (ret != 0) {
3565
mbedtls_printf("failed (%u)\n", (unsigned int) i);
3566
} else {
3567
mbedtls_printf("passed\n");
3568
}
3569
}
3570
return ret;
3571
}
3572
#endif /* MBEDTLS_ECP_C */
3573
3574
/*
3575
* Checkup routine
3576
*/
3577
int mbedtls_ecp_self_test(int verbose)
3578
{
3579
#if defined(MBEDTLS_ECP_C)
3580
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3581
mbedtls_ecp_group grp;
3582
mbedtls_ecp_point R, P;
3583
mbedtls_mpi m;
3584
3585
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3586
/* Exponents especially adapted for secp192k1, which has the lowest
3587
* order n of all supported curves (secp192r1 is in a slightly larger
3588
* field but the order of its base point is slightly smaller). */
3589
const char *sw_exponents[] =
3590
{
3591
"000000000000000000000000000000000000000000000001", /* one */
3592
"FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3593
"5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3594
"400000000000000000000000000000000000000000000000", /* one and zeros */
3595
"7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3596
"555555555555555555555555555555555555555555555555", /* 101010... */
3597
};
3598
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3599
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3600
const char *m_exponents[] =
3601
{
3602
/* Valid private values for Curve25519. In a build with Curve448
3603
* but not Curve25519, they will be adjusted in
3604
* self_test_adjust_exponent(). */
3605
"4000000000000000000000000000000000000000000000000000000000000000",
3606
"5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3607
"5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3608
"41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3609
"5555555555555555555555555555555555555555555555555555555555555550",
3610
"7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3611
};
3612
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3613
3614
mbedtls_ecp_group_init(&grp);
3615
mbedtls_ecp_point_init(&R);
3616
mbedtls_ecp_point_init(&P);
3617
mbedtls_mpi_init(&m);
3618
3619
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3620
/* Use secp192r1 if available, or any available curve */
3621
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3622
MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
3623
#else
3624
MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
3625
#endif
3626
3627
if (verbose != 0) {
3628
mbedtls_printf(" ECP SW test #1 (constant op_count, base point G): ");
3629
}
3630
/* Do a dummy multiplication first to trigger precomputation */
3631
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
3632
MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
3633
ret = self_test_point(verbose,
3634
&grp, &R, &m, &grp.G,
3635
sw_exponents,
3636
sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3637
if (ret != 0) {
3638
goto cleanup;
3639
}
3640
3641
if (verbose != 0) {
3642
mbedtls_printf(" ECP SW test #2 (constant op_count, other point): ");
3643
}
3644
/* We computed P = 2G last time, use it */
3645
ret = self_test_point(verbose,
3646
&grp, &R, &m, &P,
3647
sw_exponents,
3648
sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3649
if (ret != 0) {
3650
goto cleanup;
3651
}
3652
3653
mbedtls_ecp_group_free(&grp);
3654
mbedtls_ecp_point_free(&R);
3655
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3656
3657
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3658
if (verbose != 0) {
3659
mbedtls_printf(" ECP Montgomery test (constant op_count): ");
3660
}
3661
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3662
MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
3663
#elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3664
MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
3665
#else
3666
#error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3667
#endif
3668
ret = self_test_point(verbose,
3669
&grp, &R, &m, &grp.G,
3670
m_exponents,
3671
sizeof(m_exponents) / sizeof(m_exponents[0]));
3672
if (ret != 0) {
3673
goto cleanup;
3674
}
3675
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3676
3677
cleanup:
3678
3679
if (ret < 0 && verbose != 0) {
3680
mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3681
}
3682
3683
mbedtls_ecp_group_free(&grp);
3684
mbedtls_ecp_point_free(&R);
3685
mbedtls_ecp_point_free(&P);
3686
mbedtls_mpi_free(&m);
3687
3688
if (verbose != 0) {
3689
mbedtls_printf("\n");
3690
}
3691
3692
return ret;
3693
#else /* MBEDTLS_ECP_C */
3694
(void) verbose;
3695
return 0;
3696
#endif /* MBEDTLS_ECP_C */
3697
}
3698
3699
#endif /* MBEDTLS_SELF_TEST */
3700
3701
#endif /* !MBEDTLS_ECP_ALT */
3702
3703
#endif /* MBEDTLS_ECP_LIGHT */
3704
3705