Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/mbedtls/library/ecp_internal_alt.h
9898 views
1
/**
2
* \file ecp_internal_alt.h
3
*
4
* \brief Function declarations for alternative implementation of elliptic curve
5
* point arithmetic.
6
*/
7
/*
8
* Copyright The Mbed TLS Contributors
9
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
10
*/
11
12
/*
13
* References:
14
*
15
* [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
16
* <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
17
*
18
* [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
19
* for elliptic curve cryptosystems. In : Cryptographic Hardware and
20
* Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
21
* <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
22
*
23
* [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
24
* render ECC resistant against Side Channel Attacks. IACR Cryptology
25
* ePrint Archive, 2004, vol. 2004, p. 342.
26
* <http://eprint.iacr.org/2004/342.pdf>
27
*
28
* [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
29
* <http://www.secg.org/sec2-v2.pdf>
30
*
31
* [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
32
* Curve Cryptography.
33
*
34
* [6] Digital Signature Standard (DSS), FIPS 186-4.
35
* <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
36
*
37
* [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
38
* Security (TLS), RFC 4492.
39
* <https://tools.ietf.org/search/rfc4492>
40
*
41
* [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
42
*
43
* [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
44
* Springer Science & Business Media, 1 Aug 2000
45
*/
46
47
#ifndef MBEDTLS_ECP_INTERNAL_H
48
#define MBEDTLS_ECP_INTERNAL_H
49
50
#include "mbedtls/build_info.h"
51
52
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
53
54
/**
55
* \brief Indicate if the Elliptic Curve Point module extension can
56
* handle the group.
57
*
58
* \param grp The pointer to the elliptic curve group that will be the
59
* basis of the cryptographic computations.
60
*
61
* \return Non-zero if successful.
62
*/
63
unsigned char mbedtls_internal_ecp_grp_capable(const mbedtls_ecp_group *grp);
64
65
/**
66
* \brief Initialise the Elliptic Curve Point module extension.
67
*
68
* If mbedtls_internal_ecp_grp_capable returns true for a
69
* group, this function has to be able to initialise the
70
* module for it.
71
*
72
* This module can be a driver to a crypto hardware
73
* accelerator, for which this could be an initialise function.
74
*
75
* \param grp The pointer to the group the module needs to be
76
* initialised for.
77
*
78
* \return 0 if successful.
79
*/
80
int mbedtls_internal_ecp_init(const mbedtls_ecp_group *grp);
81
82
/**
83
* \brief Frees and deallocates the Elliptic Curve Point module
84
* extension.
85
*
86
* \param grp The pointer to the group the module was initialised for.
87
*/
88
void mbedtls_internal_ecp_free(const mbedtls_ecp_group *grp);
89
90
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
91
92
#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
93
/**
94
* \brief Randomize jacobian coordinates:
95
* (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
96
*
97
* \param grp Pointer to the group representing the curve.
98
*
99
* \param pt The point on the curve to be randomised, given with Jacobian
100
* coordinates.
101
*
102
* \param f_rng A function pointer to the random number generator.
103
*
104
* \param p_rng A pointer to the random number generator state.
105
*
106
* \return 0 if successful.
107
*/
108
int mbedtls_internal_ecp_randomize_jac(const mbedtls_ecp_group *grp,
109
mbedtls_ecp_point *pt, int (*f_rng)(void *,
110
unsigned char *,
111
size_t),
112
void *p_rng);
113
#endif
114
115
#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
116
/**
117
* \brief Addition: R = P + Q, mixed affine-Jacobian coordinates.
118
*
119
* The coordinates of Q must be normalized (= affine),
120
* but those of P don't need to. R is not normalized.
121
*
122
* This function is used only as a subrutine of
123
* ecp_mul_comb().
124
*
125
* Special cases: (1) P or Q is zero, (2) R is zero,
126
* (3) P == Q.
127
* None of these cases can happen as intermediate step in
128
* ecp_mul_comb():
129
* - at each step, P, Q and R are multiples of the base
130
* point, the factor being less than its order, so none of
131
* them is zero;
132
* - Q is an odd multiple of the base point, P an even
133
* multiple, due to the choice of precomputed points in the
134
* modified comb method.
135
* So branches for these cases do not leak secret information.
136
*
137
* We accept Q->Z being unset (saving memory in tables) as
138
* meaning 1.
139
*
140
* Cost in field operations if done by [5] 3.22:
141
* 1A := 8M + 3S
142
*
143
* \param grp Pointer to the group representing the curve.
144
*
145
* \param R Pointer to a point structure to hold the result.
146
*
147
* \param P Pointer to the first summand, given with Jacobian
148
* coordinates
149
*
150
* \param Q Pointer to the second summand, given with affine
151
* coordinates.
152
*
153
* \return 0 if successful.
154
*/
155
int mbedtls_internal_ecp_add_mixed(const mbedtls_ecp_group *grp,
156
mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
157
const mbedtls_ecp_point *Q);
158
#endif
159
160
/**
161
* \brief Point doubling R = 2 P, Jacobian coordinates.
162
*
163
* Cost: 1D := 3M + 4S (A == 0)
164
* 4M + 4S (A == -3)
165
* 3M + 6S + 1a otherwise
166
* when the implementation is based on the "dbl-1998-cmo-2"
167
* doubling formulas in [8] and standard optimizations are
168
* applied when curve parameter A is one of { 0, -3 }.
169
*
170
* \param grp Pointer to the group representing the curve.
171
*
172
* \param R Pointer to a point structure to hold the result.
173
*
174
* \param P Pointer to the point that has to be doubled, given with
175
* Jacobian coordinates.
176
*
177
* \return 0 if successful.
178
*/
179
#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
180
int mbedtls_internal_ecp_double_jac(const mbedtls_ecp_group *grp,
181
mbedtls_ecp_point *R, const mbedtls_ecp_point *P);
182
#endif
183
184
/**
185
* \brief Normalize jacobian coordinates of an array of (pointers to)
186
* points.
187
*
188
* Using Montgomery's trick to perform only one inversion mod P
189
* the cost is:
190
* 1N(t) := 1I + (6t - 3)M + 1S
191
* (See for example Algorithm 10.3.4. in [9])
192
*
193
* This function is used only as a subrutine of
194
* ecp_mul_comb().
195
*
196
* Warning: fails (returning an error) if one of the points is
197
* zero!
198
* This should never happen, see choice of w in ecp_mul_comb().
199
*
200
* \param grp Pointer to the group representing the curve.
201
*
202
* \param T Array of pointers to the points to normalise.
203
*
204
* \param t_len Number of elements in the array.
205
*
206
* \return 0 if successful,
207
* an error if one of the points is zero.
208
*/
209
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
210
int mbedtls_internal_ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
211
mbedtls_ecp_point *T[], size_t t_len);
212
#endif
213
214
/**
215
* \brief Normalize jacobian coordinates so that Z == 0 || Z == 1.
216
*
217
* Cost in field operations if done by [5] 3.2.1:
218
* 1N := 1I + 3M + 1S
219
*
220
* \param grp Pointer to the group representing the curve.
221
*
222
* \param pt pointer to the point to be normalised. This is an
223
* input/output parameter.
224
*
225
* \return 0 if successful.
226
*/
227
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
228
int mbedtls_internal_ecp_normalize_jac(const mbedtls_ecp_group *grp,
229
mbedtls_ecp_point *pt);
230
#endif
231
232
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
233
234
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
235
236
#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
237
int mbedtls_internal_ecp_double_add_mxz(const mbedtls_ecp_group *grp,
238
mbedtls_ecp_point *R,
239
mbedtls_ecp_point *S,
240
const mbedtls_ecp_point *P,
241
const mbedtls_ecp_point *Q,
242
const mbedtls_mpi *d);
243
#endif
244
245
/**
246
* \brief Randomize projective x/z coordinates:
247
* (X, Z) -> (l X, l Z) for random l
248
*
249
* \param grp pointer to the group representing the curve
250
*
251
* \param P the point on the curve to be randomised given with
252
* projective coordinates. This is an input/output parameter.
253
*
254
* \param f_rng a function pointer to the random number generator
255
*
256
* \param p_rng a pointer to the random number generator state
257
*
258
* \return 0 if successful
259
*/
260
#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
261
int mbedtls_internal_ecp_randomize_mxz(const mbedtls_ecp_group *grp,
262
mbedtls_ecp_point *P, int (*f_rng)(void *,
263
unsigned char *,
264
size_t),
265
void *p_rng);
266
#endif
267
268
/**
269
* \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
270
*
271
* \param grp pointer to the group representing the curve
272
*
273
* \param P pointer to the point to be normalised. This is an
274
* input/output parameter.
275
*
276
* \return 0 if successful
277
*/
278
#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
279
int mbedtls_internal_ecp_normalize_mxz(const mbedtls_ecp_group *grp,
280
mbedtls_ecp_point *P);
281
#endif
282
283
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
284
285
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
286
287
#endif /* ecp_internal_alt.h */
288
289