Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/meshoptimizer/indexanalyzer.cpp
9903 views
1
// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
2
#include "meshoptimizer.h"
3
4
#include <assert.h>
5
#include <string.h>
6
7
meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int primgroup_size)
8
{
9
assert(index_count % 3 == 0);
10
assert(cache_size >= 3);
11
assert(warp_size == 0 || warp_size >= 3);
12
13
meshopt_Allocator allocator;
14
15
meshopt_VertexCacheStatistics result = {};
16
17
unsigned int warp_offset = 0;
18
unsigned int primgroup_offset = 0;
19
20
unsigned int* cache_timestamps = allocator.allocate<unsigned int>(vertex_count);
21
memset(cache_timestamps, 0, vertex_count * sizeof(unsigned int));
22
23
unsigned int timestamp = cache_size + 1;
24
25
for (size_t i = 0; i < index_count; i += 3)
26
{
27
unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
28
assert(a < vertex_count && b < vertex_count && c < vertex_count);
29
30
bool ac = (timestamp - cache_timestamps[a]) > cache_size;
31
bool bc = (timestamp - cache_timestamps[b]) > cache_size;
32
bool cc = (timestamp - cache_timestamps[c]) > cache_size;
33
34
// flush cache if triangle doesn't fit into warp or into the primitive buffer
35
if ((primgroup_size && primgroup_offset == primgroup_size) || (warp_size && warp_offset + ac + bc + cc > warp_size))
36
{
37
result.warps_executed += warp_offset > 0;
38
39
warp_offset = 0;
40
primgroup_offset = 0;
41
42
// reset cache
43
timestamp += cache_size + 1;
44
}
45
46
// update cache and add vertices to warp
47
for (int j = 0; j < 3; ++j)
48
{
49
unsigned int index = indices[i + j];
50
51
if (timestamp - cache_timestamps[index] > cache_size)
52
{
53
cache_timestamps[index] = timestamp++;
54
result.vertices_transformed++;
55
warp_offset++;
56
}
57
}
58
59
primgroup_offset++;
60
}
61
62
size_t unique_vertex_count = 0;
63
64
for (size_t i = 0; i < vertex_count; ++i)
65
unique_vertex_count += cache_timestamps[i] > 0;
66
67
result.warps_executed += warp_offset > 0;
68
69
result.acmr = index_count == 0 ? 0 : float(result.vertices_transformed) / float(index_count / 3);
70
result.atvr = unique_vertex_count == 0 ? 0 : float(result.vertices_transformed) / float(unique_vertex_count);
71
72
return result;
73
}
74
75
meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const unsigned int* indices, size_t index_count, size_t vertex_count, size_t vertex_size)
76
{
77
assert(index_count % 3 == 0);
78
assert(vertex_size > 0 && vertex_size <= 256);
79
80
meshopt_Allocator allocator;
81
82
meshopt_VertexFetchStatistics result = {};
83
84
unsigned char* vertex_visited = allocator.allocate<unsigned char>(vertex_count);
85
memset(vertex_visited, 0, vertex_count);
86
87
const size_t kCacheLine = 64;
88
const size_t kCacheSize = 128 * 1024;
89
90
// simple direct mapped cache; on typical mesh data this is close to 4-way cache, and this model is a gross approximation anyway
91
size_t cache[kCacheSize / kCacheLine] = {};
92
93
for (size_t i = 0; i < index_count; ++i)
94
{
95
unsigned int index = indices[i];
96
assert(index < vertex_count);
97
98
vertex_visited[index] = 1;
99
100
size_t start_address = index * vertex_size;
101
size_t end_address = start_address + vertex_size;
102
103
size_t start_tag = start_address / kCacheLine;
104
size_t end_tag = (end_address + kCacheLine - 1) / kCacheLine;
105
106
assert(start_tag < end_tag);
107
108
for (size_t tag = start_tag; tag < end_tag; ++tag)
109
{
110
size_t line = tag % (sizeof(cache) / sizeof(cache[0]));
111
112
// we store +1 since cache is filled with 0 by default
113
result.bytes_fetched += (cache[line] != tag + 1) * kCacheLine;
114
cache[line] = tag + 1;
115
}
116
}
117
118
size_t unique_vertex_count = 0;
119
120
for (size_t i = 0; i < vertex_count; ++i)
121
unique_vertex_count += vertex_visited[i];
122
123
result.overfetch = unique_vertex_count == 0 ? 0 : float(result.bytes_fetched) / float(unique_vertex_count * vertex_size);
124
125
return result;
126
}
127
128