Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/meshoptimizer/meshoptimizer.h
21025 views
1
/**
2
* meshoptimizer - version 1.0
3
*
4
* Copyright (C) 2016-2025, by Arseny Kapoulkine ([email protected])
5
* Report bugs and download new versions at https://github.com/zeux/meshoptimizer
6
*
7
* This library is distributed under the MIT License. See notice at the end of this file.
8
*/
9
#pragma once
10
11
#include <assert.h>
12
#include <stddef.h>
13
14
/* Version macro; major * 1000 + minor * 10 + patch */
15
#define MESHOPTIMIZER_VERSION 1000 /* 1.0 */
16
17
/* If no API is defined, assume default */
18
#ifndef MESHOPTIMIZER_API
19
#define MESHOPTIMIZER_API
20
#endif
21
22
/* Set the calling-convention for alloc/dealloc function pointers */
23
#ifndef MESHOPTIMIZER_ALLOC_CALLCONV
24
#ifdef _MSC_VER
25
#define MESHOPTIMIZER_ALLOC_CALLCONV __cdecl
26
#else
27
#define MESHOPTIMIZER_ALLOC_CALLCONV
28
#endif
29
#endif
30
31
/* Experimental APIs have unstable interface and might have implementation that's not fully tested or optimized */
32
#ifndef MESHOPTIMIZER_EXPERIMENTAL
33
#define MESHOPTIMIZER_EXPERIMENTAL MESHOPTIMIZER_API
34
#endif
35
36
/* C interface */
37
#ifdef __cplusplus
38
extern "C"
39
{
40
#endif
41
42
/**
43
* Vertex attribute stream
44
* Each element takes size bytes, beginning at data, with stride controlling the spacing between successive elements (stride >= size).
45
*/
46
struct meshopt_Stream
47
{
48
const void* data;
49
size_t size;
50
size_t stride;
51
};
52
53
/**
54
* Generates a vertex remap table from the vertex buffer and an optional index buffer and returns number of unique vertices
55
* As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence.
56
* Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer.
57
* Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized.
58
*
59
* destination must contain enough space for the resulting remap table (vertex_count elements)
60
* indices can be NULL if the input is unindexed
61
*/
62
MESHOPTIMIZER_API size_t meshopt_generateVertexRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size);
63
64
/**
65
* Generates a vertex remap table from multiple vertex streams and an optional index buffer and returns number of unique vertices
66
* As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence.
67
* Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer.
68
* To remap vertex buffers, you will need to call meshopt_remapVertexBuffer for each vertex stream.
69
* Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized.
70
*
71
* destination must contain enough space for the resulting remap table (vertex_count elements)
72
* indices can be NULL if the input is unindexed
73
* stream_count must be <= 16
74
*/
75
MESHOPTIMIZER_API size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count);
76
77
/**
78
* Generates a vertex remap table from the vertex buffer and an optional index buffer and returns number of unique vertices
79
* As a result, all vertices that are equivalent map to the same (new) location, with no gaps in the resulting sequence.
80
* Equivalence is checked in two steps: vertex positions are compared for equality, and then the user-specified equality function is called (if provided).
81
* Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer.
82
*
83
* destination must contain enough space for the resulting remap table (vertex_count elements)
84
* indices can be NULL if the input is unindexed
85
* vertex_positions should have float3 position in the first 12 bytes of each vertex
86
* callback can be NULL if no additional equality check is needed; otherwise, it should return 1 if vertices with specified indices are equivalent and 0 if they are not
87
*/
88
MESHOPTIMIZER_API size_t meshopt_generateVertexRemapCustom(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, int (*callback)(void*, unsigned int, unsigned int), void* context);
89
90
/**
91
* Generates vertex buffer from the source vertex buffer and remap table generated by meshopt_generateVertexRemap
92
*
93
* destination must contain enough space for the resulting vertex buffer (unique_vertex_count elements, returned by meshopt_generateVertexRemap)
94
* vertex_count should be the initial vertex count and not the value returned by meshopt_generateVertexRemap
95
*/
96
MESHOPTIMIZER_API void meshopt_remapVertexBuffer(void* destination, const void* vertices, size_t vertex_count, size_t vertex_size, const unsigned int* remap);
97
98
/**
99
* Generate index buffer from the source index buffer and remap table generated by meshopt_generateVertexRemap
100
*
101
* destination must contain enough space for the resulting index buffer (index_count elements)
102
* indices can be NULL if the input is unindexed
103
*/
104
MESHOPTIMIZER_API void meshopt_remapIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const unsigned int* remap);
105
106
/**
107
* Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary
108
* All vertices that are binary equivalent (wrt first vertex_size bytes) map to the first vertex in the original vertex buffer.
109
* This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering.
110
* Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized.
111
*
112
* destination must contain enough space for the resulting index buffer (index_count elements)
113
*/
114
MESHOPTIMIZER_API void meshopt_generateShadowIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride);
115
116
/**
117
* Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary
118
* All vertices that are binary equivalent (wrt specified streams) map to the first vertex in the original vertex buffer.
119
* This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering.
120
* Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized.
121
*
122
* destination must contain enough space for the resulting index buffer (index_count elements)
123
* stream_count must be <= 16
124
*/
125
MESHOPTIMIZER_API void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count);
126
127
/**
128
* Generates a remap table that maps all vertices with the same position to the same (existing) index.
129
* Similarly to meshopt_generateShadowIndexBuffer, this can be helpful to pre-process meshes for position-only rendering.
130
* This can also be used to implement algorithms that require positional-only connectivity, such as hierarchical simplification.
131
*
132
* destination must contain enough space for the resulting remap table (vertex_count elements)
133
* vertex_positions should have float3 position in the first 12 bytes of each vertex
134
*/
135
MESHOPTIMIZER_API void meshopt_generatePositionRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
136
137
/**
138
* Generate index buffer that can be used as a geometry shader input with triangle adjacency topology
139
* Each triangle is converted into a 6-vertex patch with the following layout:
140
* - 0, 2, 4: original triangle vertices
141
* - 1, 3, 5: vertices adjacent to edges 02, 24 and 40
142
* The resulting patch can be rendered with geometry shaders using e.g. VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY.
143
* This can be used to implement algorithms like silhouette detection/expansion and other forms of GS-driven rendering.
144
*
145
* destination must contain enough space for the resulting index buffer (index_count*2 elements)
146
* vertex_positions should have float3 position in the first 12 bytes of each vertex
147
*/
148
MESHOPTIMIZER_API void meshopt_generateAdjacencyIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
149
150
/**
151
* Generate index buffer that can be used for PN-AEN tessellation with crack-free displacement
152
* Each triangle is converted into a 12-vertex patch with the following layout:
153
* - 0, 1, 2: original triangle vertices
154
* - 3, 4: opposing edge for edge 0, 1
155
* - 5, 6: opposing edge for edge 1, 2
156
* - 7, 8: opposing edge for edge 2, 0
157
* - 9, 10, 11: dominant vertices for corners 0, 1, 2
158
* The resulting patch can be rendered with hardware tessellation using PN-AEN and displacement mapping.
159
* See "Tessellation on Any Budget" (John McDonald, GDC 2011) for implementation details.
160
*
161
* destination must contain enough space for the resulting index buffer (index_count*4 elements)
162
* vertex_positions should have float3 position in the first 12 bytes of each vertex
163
*/
164
MESHOPTIMIZER_API void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
165
166
/**
167
* Generate index buffer that can be used for visibility buffer rendering and returns the size of the reorder table
168
* Each triangle's provoking vertex index is equal to primitive id; this allows passing it to the fragment shader using flat/nointerpolation attribute.
169
* This is important for performance on hardware where primitive id can't be accessed efficiently in fragment shader.
170
* The reorder table stores the original vertex id for each vertex in the new index buffer, and should be used in the vertex shader to load vertex data.
171
* The provoking vertex is assumed to be the first vertex in the triangle; if this is not the case (OpenGL), rotate each triangle (abc -> bca) before rendering.
172
* For maximum efficiency the input index buffer should be optimized for vertex cache first.
173
*
174
* destination must contain enough space for the resulting index buffer (index_count elements)
175
* reorder must contain enough space for the worst case reorder table (vertex_count + index_count/3 elements)
176
*/
177
MESHOPTIMIZER_API size_t meshopt_generateProvokingIndexBuffer(unsigned int* destination, unsigned int* reorder, const unsigned int* indices, size_t index_count, size_t vertex_count);
178
179
/**
180
* Vertex transform cache optimizer
181
* Reorders indices to reduce the number of GPU vertex shader invocations
182
* If index buffer contains multiple ranges for multiple draw calls, this function needs to be called on each range individually.
183
*
184
* destination must contain enough space for the resulting index buffer (index_count elements)
185
*/
186
MESHOPTIMIZER_API void meshopt_optimizeVertexCache(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count);
187
188
/**
189
* Vertex transform cache optimizer for strip-like caches
190
* Produces inferior results to meshopt_optimizeVertexCache from the GPU vertex cache perspective
191
* However, the resulting index order is more optimal if the goal is to reduce the triangle strip length or improve compression efficiency
192
*
193
* destination must contain enough space for the resulting index buffer (index_count elements)
194
*/
195
MESHOPTIMIZER_API void meshopt_optimizeVertexCacheStrip(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count);
196
197
/**
198
* Vertex transform cache optimizer for FIFO caches
199
* Reorders indices to reduce the number of GPU vertex shader invocations
200
* Generally takes ~3x less time to optimize meshes but produces inferior results compared to meshopt_optimizeVertexCache
201
* If index buffer contains multiple ranges for multiple draw calls, this function needs to be called on each range individually.
202
*
203
* destination must contain enough space for the resulting index buffer (index_count elements)
204
* cache_size should be less than the actual GPU cache size to avoid cache thrashing
205
*/
206
MESHOPTIMIZER_API void meshopt_optimizeVertexCacheFifo(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size);
207
208
/**
209
* Overdraw optimizer
210
* Reorders indices to reduce the number of GPU vertex shader invocations and the pixel overdraw
211
* If index buffer contains multiple ranges for multiple draw calls, this function needs to be called on each range individually.
212
*
213
* destination must contain enough space for the resulting index buffer (index_count elements)
214
* indices must contain index data that is the result of meshopt_optimizeVertexCache (*not* the original mesh indices!)
215
* vertex_positions should have float3 position in the first 12 bytes of each vertex
216
* threshold indicates how much the overdraw optimizer can degrade vertex cache efficiency (1.05 = up to 5%) to reduce overdraw more efficiently
217
*/
218
MESHOPTIMIZER_API void meshopt_optimizeOverdraw(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold);
219
220
/**
221
* Vertex fetch cache optimizer
222
* Reorders vertices and changes indices to reduce the amount of GPU memory fetches during vertex processing
223
* Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused
224
* This function works for a single vertex stream; for multiple vertex streams, use meshopt_optimizeVertexFetchRemap + meshopt_remapVertexBuffer for each stream.
225
*
226
* destination must contain enough space for the resulting vertex buffer (vertex_count elements)
227
* indices is used both as an input and as an output index buffer
228
*/
229
MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetch(void* destination, unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size);
230
231
/**
232
* Vertex fetch cache optimizer
233
* Generates vertex remap to reduce the amount of GPU memory fetches during vertex processing
234
* Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused
235
* The resulting remap table should be used to reorder vertex/index buffers using meshopt_remapVertexBuffer/meshopt_remapIndexBuffer
236
*
237
* destination must contain enough space for the resulting remap table (vertex_count elements)
238
*/
239
MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count);
240
241
/**
242
* Index buffer encoder
243
* Encodes index data into an array of bytes that is generally much smaller (<1.5 bytes/triangle) and compresses better (<1 bytes/triangle) compared to original.
244
* Input index buffer must represent a triangle list.
245
* Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space
246
* For maximum efficiency the index buffer being encoded has to be optimized for vertex cache and vertex fetch first.
247
*
248
* buffer must contain enough space for the encoded index buffer (use meshopt_encodeIndexBufferBound to compute worst case size)
249
*/
250
MESHOPTIMIZER_API size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count);
251
MESHOPTIMIZER_API size_t meshopt_encodeIndexBufferBound(size_t index_count, size_t vertex_count);
252
253
/**
254
* Set index encoder format version (defaults to 1)
255
*
256
* version must specify the data format version to encode; valid values are 0 (decodable by all library versions) and 1 (decodable by 0.14+)
257
*/
258
MESHOPTIMIZER_API void meshopt_encodeIndexVersion(int version);
259
260
/**
261
* Index buffer decoder
262
* Decodes index data from an array of bytes generated by meshopt_encodeIndexBuffer
263
* Returns 0 if decoding was successful, and an error code otherwise
264
* The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices).
265
*
266
* destination must contain enough space for the resulting index buffer (index_count elements)
267
*/
268
MESHOPTIMIZER_API int meshopt_decodeIndexBuffer(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size);
269
270
/**
271
* Get encoded index format version
272
* Returns format version of the encoded index buffer/sequence, or -1 if the buffer header is invalid
273
* Note that a non-negative value doesn't guarantee that the buffer will be decoded correctly if the input is malformed.
274
*/
275
MESHOPTIMIZER_API int meshopt_decodeIndexVersion(const unsigned char* buffer, size_t buffer_size);
276
277
/**
278
* Index sequence encoder
279
* Encodes index sequence into an array of bytes that is generally smaller and compresses better compared to original.
280
* Input index sequence can represent arbitrary topology; for triangle lists meshopt_encodeIndexBuffer is likely to be better.
281
* Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space
282
*
283
* buffer must contain enough space for the encoded index sequence (use meshopt_encodeIndexSequenceBound to compute worst case size)
284
*/
285
MESHOPTIMIZER_API size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count);
286
MESHOPTIMIZER_API size_t meshopt_encodeIndexSequenceBound(size_t index_count, size_t vertex_count);
287
288
/**
289
* Index sequence decoder
290
* Decodes index data from an array of bytes generated by meshopt_encodeIndexSequence
291
* Returns 0 if decoding was successful, and an error code otherwise
292
* The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices).
293
*
294
* destination must contain enough space for the resulting index sequence (index_count elements)
295
*/
296
MESHOPTIMIZER_API int meshopt_decodeIndexSequence(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size);
297
298
/**
299
* Vertex buffer encoder
300
* Encodes vertex data into an array of bytes that is generally smaller and compresses better compared to original.
301
* Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space
302
* This function works for a single vertex stream; for multiple vertex streams, call meshopt_encodeVertexBuffer for each stream.
303
* Note that all vertex_size bytes of each vertex are encoded verbatim, including padding which should be zero-initialized.
304
* For maximum efficiency the vertex buffer being encoded has to be quantized and optimized for locality of reference (cache/fetch) first.
305
*
306
* buffer must contain enough space for the encoded vertex buffer (use meshopt_encodeVertexBufferBound to compute worst case size)
307
* vertex_size must be a multiple of 4 (and <= 256)
308
*/
309
MESHOPTIMIZER_API size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size);
310
MESHOPTIMIZER_API size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size);
311
312
/**
313
* Vertex buffer encoder
314
* Encodes vertex data just like meshopt_encodeVertexBuffer, but allows to override compression level.
315
* For compression level to take effect, the vertex encoding version must be set to 1.
316
* The default compression level implied by meshopt_encodeVertexBuffer is 2.
317
*
318
* buffer must contain enough space for the encoded vertex buffer (use meshopt_encodeVertexBufferBound to compute worst case size)
319
* vertex_size must be a multiple of 4 (and <= 256)
320
* level should be in the range [0, 3] with 0 being the fastest and 3 being the slowest and producing the best compression ratio.
321
* version should be -1 to use the default version (specified via meshopt_encodeVertexVersion), or 0/1 to override the version; per above, level won't take effect if version is 0.
322
*/
323
MESHOPTIMIZER_API size_t meshopt_encodeVertexBufferLevel(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size, int level, int version);
324
325
/**
326
* Set vertex encoder format version (defaults to 1)
327
*
328
* version must specify the data format version to encode; valid values are 0 (decodable by all library versions) and 1 (decodable by 0.23+)
329
*/
330
MESHOPTIMIZER_API void meshopt_encodeVertexVersion(int version);
331
332
/**
333
* Vertex buffer decoder
334
* Decodes vertex data from an array of bytes generated by meshopt_encodeVertexBuffer
335
* Returns 0 if decoding was successful, and an error code otherwise
336
* The decoder is safe to use for untrusted input, but it may produce garbage data.
337
*
338
* destination must contain enough space for the resulting vertex buffer (vertex_count * vertex_size bytes)
339
* vertex_size must be a multiple of 4 (and <= 256)
340
*/
341
MESHOPTIMIZER_API int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size);
342
343
/**
344
* Get encoded vertex format version
345
* Returns format version of the encoded vertex buffer, or -1 if the buffer header is invalid
346
* Note that a non-negative value doesn't guarantee that the buffer will be decoded correctly if the input is malformed.
347
*/
348
MESHOPTIMIZER_API int meshopt_decodeVertexVersion(const unsigned char* buffer, size_t buffer_size);
349
350
/**
351
* Vertex buffer filters
352
* These functions can be used to filter output of meshopt_decodeVertexBuffer in-place.
353
*
354
* meshopt_decodeFilterOct decodes octahedral encoding of a unit vector with K-bit signed X/Y as an input; Z must store 1.0f.
355
* Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is.
356
*
357
* meshopt_decodeFilterQuat decodes 3-component quaternion encoding with K-bit component encoding and a 2-bit component index indicating which component to reconstruct.
358
* Each component is stored as an 16-bit integer; stride must be equal to 8.
359
*
360
* meshopt_decodeFilterExp decodes exponential encoding of floating-point data with 8-bit exponent and 24-bit integer mantissa as 2^E*M.
361
* Each 32-bit component is decoded in isolation; stride must be divisible by 4.
362
*
363
* meshopt_decodeFilterColor decodes RGBA colors from YCoCg (+A) color encoding where RGB is converted to YCoCg space with K-bit component encoding, and A is stored using K-1 bits.
364
* Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8.
365
*/
366
MESHOPTIMIZER_API void meshopt_decodeFilterOct(void* buffer, size_t count, size_t stride);
367
MESHOPTIMIZER_API void meshopt_decodeFilterQuat(void* buffer, size_t count, size_t stride);
368
MESHOPTIMIZER_API void meshopt_decodeFilterExp(void* buffer, size_t count, size_t stride);
369
MESHOPTIMIZER_API void meshopt_decodeFilterColor(void* buffer, size_t count, size_t stride);
370
371
/**
372
* Vertex buffer filter encoders
373
* These functions can be used to encode data in a format that meshopt_decodeFilter can decode
374
*
375
* meshopt_encodeFilterOct encodes unit vectors with K-bit (2 <= K <= 16) signed X/Y as an output.
376
* Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. Z will store 1.0f, W is preserved as is.
377
* Input data must contain 4 floats for every vector (count*4 total).
378
*
379
* meshopt_encodeFilterQuat encodes unit quaternions with K-bit (4 <= K <= 16) component encoding.
380
* Each component is stored as an 16-bit integer; stride must be equal to 8.
381
* Input data must contain 4 floats for every quaternion (count*4 total).
382
*
383
* meshopt_encodeFilterExp encodes arbitrary (finite) floating-point data with 8-bit exponent and K-bit integer mantissa (1 <= K <= 24).
384
* Exponent can be shared between all components of a given vector as defined by stride or all values of a given component; stride must be divisible by 4.
385
* Input data must contain stride/4 floats for every vector (count*stride/4 total).
386
*
387
* meshopt_encodeFilterColor encodes RGBA color data by converting RGB to YCoCg color space with K-bit (2 <= K <= 16) component encoding; A is stored using K-1 bits.
388
* Each component is stored as an 8-bit or 16-bit integer; stride must be equal to 4 or 8.
389
* Input data must contain 4 floats for every color (count*4 total).
390
*/
391
enum meshopt_EncodeExpMode
392
{
393
/* When encoding exponents, use separate values for each component (maximum quality) */
394
meshopt_EncodeExpSeparate,
395
/* When encoding exponents, use shared value for all components of each vector (better compression) */
396
meshopt_EncodeExpSharedVector,
397
/* When encoding exponents, use shared value for each component of all vectors (best compression) */
398
meshopt_EncodeExpSharedComponent,
399
/* When encoding exponents, use separate values for each component, but clamp to 0 (good quality if very small values are not important) */
400
meshopt_EncodeExpClamped,
401
};
402
403
MESHOPTIMIZER_API void meshopt_encodeFilterOct(void* destination, size_t count, size_t stride, int bits, const float* data);
404
MESHOPTIMIZER_API void meshopt_encodeFilterQuat(void* destination, size_t count, size_t stride, int bits, const float* data);
405
MESHOPTIMIZER_API void meshopt_encodeFilterExp(void* destination, size_t count, size_t stride, int bits, const float* data, enum meshopt_EncodeExpMode mode);
406
MESHOPTIMIZER_API void meshopt_encodeFilterColor(void* destination, size_t count, size_t stride, int bits, const float* data);
407
408
/**
409
* Simplification options
410
*/
411
enum
412
{
413
/* Do not move vertices that are located on the topological border (vertices on triangle edges that don't have a paired triangle). Useful for simplifying portions of the larger mesh. */
414
meshopt_SimplifyLockBorder = 1 << 0,
415
/* Improve simplification performance assuming input indices are a sparse subset of the mesh. Note that error becomes relative to subset extents. */
416
meshopt_SimplifySparse = 1 << 1,
417
/* Treat error limit and resulting error as absolute instead of relative to mesh extents. */
418
meshopt_SimplifyErrorAbsolute = 1 << 2,
419
/* Remove disconnected parts of the mesh during simplification incrementally, regardless of the topological restrictions inside components. */
420
meshopt_SimplifyPrune = 1 << 3,
421
/* Produce more regular triangle sizes and shapes during simplification, at some cost to geometric and attribute quality. */
422
meshopt_SimplifyRegularize = 1 << 4,
423
/* Experimental: Allow collapses across attribute discontinuities, except for vertices that are tagged with meshopt_SimplifyVertex_Protect in vertex_lock. */
424
meshopt_SimplifyPermissive = 1 << 5,
425
};
426
427
/**
428
* Experimental: Simplification vertex flags/locks, for use in `vertex_lock` arrays in simplification APIs
429
*/
430
enum
431
{
432
/* Do not move this vertex. */
433
meshopt_SimplifyVertex_Lock = 1 << 0,
434
/* Protect attribute discontinuity at this vertex; must be used together with meshopt_SimplifyPermissive option. */
435
meshopt_SimplifyVertex_Protect = 1 << 1,
436
};
437
438
/**
439
* Mesh simplifier
440
* Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible
441
* The algorithm tries to preserve mesh topology and can stop short of the target goal based on topology constraints or target error.
442
* If not all attributes from the input mesh are needed, it's recommended to reindex the mesh without them prior to simplification.
443
* Returns the number of indices after simplification, with destination containing new index data
444
*
445
* The resulting index buffer references vertices from the original vertex buffer.
446
* If the original vertex data isn't needed, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended.
447
*
448
* destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)!
449
* vertex_positions should have float3 position in the first 12 bytes of each vertex
450
* target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation; value range [0..1]
451
* options must be a bitmask composed of meshopt_SimplifyX options; 0 is a safe default
452
* result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification
453
*/
454
MESHOPTIMIZER_API size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* result_error);
455
456
/**
457
* Mesh simplifier with attribute metric
458
* Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible.
459
* Similar to meshopt_simplify, but incorporates attribute values into the error metric used to prioritize simplification order.
460
* The algorithm tries to preserve mesh topology and can stop short of the target goal based on topology constraints or target error.
461
* If not all attributes from the input mesh are needed, it's recommended to reindex the mesh without them prior to simplification.
462
* Returns the number of indices after simplification, with destination containing new index data
463
*
464
* The resulting index buffer references vertices from the original vertex buffer.
465
* If the original vertex data isn't needed, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended.
466
* Note that the number of attributes with non-zero weights affects memory requirements and running time.
467
*
468
* destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)!
469
* vertex_positions should have float3 position in the first 12 bytes of each vertex
470
* vertex_attributes should have attribute_count floats for each vertex
471
* attribute_weights should have attribute_count floats in total; the weights determine relative priority of attributes between each other and wrt position
472
* attribute_count must be <= 32
473
* vertex_lock can be NULL; when it's not NULL, it should have a value for each vertex; 1 denotes vertices that can't be moved
474
* target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation; value range [0..1]
475
* options must be a bitmask composed of meshopt_SimplifyX options; 0 is a safe default
476
* result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification
477
*/
478
MESHOPTIMIZER_API size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* result_error);
479
480
/**
481
* Mesh simplifier with position/attribute update
482
* Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible.
483
* Similar to meshopt_simplifyWithAttributes, but destructively updates positions and attribute values for optimal appearance.
484
* The algorithm tries to preserve mesh topology and can stop short of the target goal based on topology constraints or target error.
485
* If not all attributes from the input mesh are needed, it's recommended to reindex the mesh without them prior to simplification.
486
* Returns the number of indices after simplification, indices are destructively updated with new index data
487
*
488
* The updated index buffer references vertices from the original vertex buffer, however the vertex positions and attributes are updated in-place.
489
* Creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended; if the original vertex data is needed, it should be copied before simplification.
490
* Note that the number of attributes with non-zero weights affects memory requirements and running time. Attributes with zero weights are not updated.
491
*
492
* vertex_positions should have float3 position in the first 12 bytes of each vertex
493
* vertex_attributes should have attribute_count floats for each vertex
494
* attribute_weights should have attribute_count floats in total; the weights determine relative priority of attributes between each other and wrt position
495
* attribute_count must be <= 32
496
* vertex_lock can be NULL; when it's not NULL, it should have a value for each vertex; 1 denotes vertices that can't be moved
497
* target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation; value range [0..1]
498
* options must be a bitmask composed of meshopt_SimplifyX options; 0 is a safe default
499
* result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification
500
*/
501
MESHOPTIMIZER_API size_t meshopt_simplifyWithUpdate(unsigned int* indices, size_t index_count, float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* result_error);
502
503
/**
504
* Mesh simplifier (sloppy)
505
* Reduces the number of triangles in the mesh, sacrificing mesh appearance for simplification performance
506
* The algorithm doesn't preserve mesh topology but can stop short of the target goal based on target error.
507
* Returns the number of indices after simplification, with destination containing new index data
508
* The resulting index buffer references vertices from the original vertex buffer.
509
* If the original vertex data isn't needed, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended.
510
*
511
* destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)!
512
* vertex_positions should have float3 position in the first 12 bytes of each vertex
513
* vertex_lock can be NULL; when it's not NULL, it should have a value for each vertex; vertices that can't be moved should set 1 consistently for all indices with the same position
514
* target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation; value range [0..1]
515
* result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification
516
*/
517
MESHOPTIMIZER_API size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const unsigned char* vertex_lock, size_t target_index_count, float target_error, float* result_error);
518
519
/**
520
* Mesh simplifier (pruner)
521
* Reduces the number of triangles in the mesh by removing small isolated parts of the mesh
522
* Returns the number of indices after simplification, with destination containing new index data
523
* The resulting index buffer references vertices from the original vertex buffer.
524
* If the original vertex data isn't needed, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended.
525
*
526
* destination must contain enough space for the target index buffer, worst case is index_count elements
527
* vertex_positions should have float3 position in the first 12 bytes of each vertex
528
* target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation; value range [0..1]
529
*/
530
MESHOPTIMIZER_API size_t meshopt_simplifyPrune(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float target_error);
531
532
/**
533
* Point cloud simplifier
534
* Reduces the number of points in the cloud to reach the given target
535
* Returns the number of points after simplification, with destination containing new index data
536
* The resulting index buffer references vertices from the original vertex buffer.
537
* If the original vertex data isn't needed, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended.
538
*
539
* destination must contain enough space for the target index buffer (target_vertex_count elements)
540
* vertex_positions should have float3 position in the first 12 bytes of each vertex
541
* vertex_colors can be NULL; when it's not NULL, it should have float3 color in the first 12 bytes of each vertex
542
* color_weight determines relative priority of color wrt position; 1.0 is a safe default
543
*/
544
MESHOPTIMIZER_API size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_colors, size_t vertex_colors_stride, float color_weight, size_t target_vertex_count);
545
546
/**
547
* Returns the error scaling factor used by the simplifier to convert between absolute and relative extents
548
*
549
* Absolute error must be *divided* by the scaling factor before passing it to meshopt_simplify as target_error
550
* Relative error returned by meshopt_simplify via result_error must be *multiplied* by the scaling factor to get absolute error.
551
*/
552
MESHOPTIMIZER_API float meshopt_simplifyScale(const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
553
554
/**
555
* Mesh stripifier
556
* Converts a previously vertex cache optimized triangle list to triangle strip, stitching strips using restart index or degenerate triangles
557
* Returns the number of indices in the resulting strip, with destination containing new index data
558
* For maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
559
* Using restart indices can result in ~10% smaller index buffers, but on some GPUs restart indices may result in decreased performance.
560
*
561
* destination must contain enough space for the target index buffer, worst case can be computed with meshopt_stripifyBound
562
* restart_index should be 0xffff or 0xffffffff depending on index size, or 0 to use degenerate triangles
563
*/
564
MESHOPTIMIZER_API size_t meshopt_stripify(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int restart_index);
565
MESHOPTIMIZER_API size_t meshopt_stripifyBound(size_t index_count);
566
567
/**
568
* Mesh unstripifier
569
* Converts a triangle strip to a triangle list
570
* Returns the number of indices in the resulting list, with destination containing new index data
571
*
572
* destination must contain enough space for the target index buffer, worst case can be computed with meshopt_unstripifyBound
573
*/
574
MESHOPTIMIZER_API size_t meshopt_unstripify(unsigned int* destination, const unsigned int* indices, size_t index_count, unsigned int restart_index);
575
MESHOPTIMIZER_API size_t meshopt_unstripifyBound(size_t index_count);
576
577
struct meshopt_VertexCacheStatistics
578
{
579
unsigned int vertices_transformed;
580
unsigned int warps_executed;
581
float acmr; /* transformed vertices / triangle count; best case 0.5, worst case 3.0, optimum depends on topology */
582
float atvr; /* transformed vertices / vertex count; best case 1.0, worst case 6.0, optimum is 1.0 (each vertex is transformed once) */
583
};
584
585
/**
586
* Vertex transform cache analyzer
587
* Returns cache hit statistics using a simplified FIFO model
588
* Results may not match actual GPU performance
589
*/
590
MESHOPTIMIZER_API struct meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int primgroup_size);
591
592
struct meshopt_VertexFetchStatistics
593
{
594
unsigned int bytes_fetched;
595
float overfetch; /* fetched bytes / vertex buffer size; best case 1.0 (each byte is fetched once) */
596
};
597
598
/**
599
* Vertex fetch cache analyzer
600
* Returns cache hit statistics using a simplified direct mapped model
601
* Results may not match actual GPU performance
602
*/
603
MESHOPTIMIZER_API struct meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const unsigned int* indices, size_t index_count, size_t vertex_count, size_t vertex_size);
604
605
struct meshopt_OverdrawStatistics
606
{
607
unsigned int pixels_covered;
608
unsigned int pixels_shaded;
609
float overdraw; /* shaded pixels / covered pixels; best case 1.0 */
610
};
611
612
/**
613
* Overdraw analyzer
614
* Returns overdraw statistics using a software rasterizer
615
* Results may not match actual GPU performance
616
*
617
* vertex_positions should have float3 position in the first 12 bytes of each vertex
618
*/
619
MESHOPTIMIZER_API struct meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
620
621
struct meshopt_CoverageStatistics
622
{
623
float coverage[3];
624
float extent; /* viewport size in mesh coordinates */
625
};
626
627
/**
628
* Coverage analyzer
629
* Returns coverage statistics (ratio of viewport pixels covered from each axis) using a software rasterizer
630
*
631
* vertex_positions should have float3 position in the first 12 bytes of each vertex
632
*/
633
MESHOPTIMIZER_API struct meshopt_CoverageStatistics meshopt_analyzeCoverage(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
634
635
/**
636
* Meshlet is a small mesh cluster (subset) that consists of:
637
* - triangles, an 8-bit micro triangle (index) buffer, that for each triangle specifies three local vertices to use;
638
* - vertices, a 32-bit vertex indirection buffer, that for each local vertex specifies which mesh vertex to fetch vertex attributes from.
639
*
640
* For efficiency, meshlet triangles and vertices are packed into two large arrays; this structure contains offsets and counts to access the data.
641
*/
642
struct meshopt_Meshlet
643
{
644
/* offsets within meshlet_vertices and meshlet_triangles arrays with meshlet data */
645
unsigned int vertex_offset;
646
unsigned int triangle_offset;
647
648
/* number of vertices and triangles used in the meshlet; data is stored in consecutive range [offset..offset+count) for vertices and [offset..offset+count*3) for triangles */
649
unsigned int vertex_count;
650
unsigned int triangle_count;
651
};
652
653
/**
654
* Meshlet builder
655
* Splits the mesh into a set of meshlets where each meshlet has a micro index buffer indexing into meshlet vertices that refer to the original vertex buffer
656
* The resulting data can be used to render meshes using NVidia programmable mesh shading pipeline, or in other cluster-based renderers.
657
* When targeting mesh shading hardware, for maximum efficiency meshlets should be further optimized using meshopt_optimizeMeshlet.
658
* When using buildMeshlets, vertex positions need to be provided to minimize the size of the resulting clusters.
659
* When using buildMeshletsScan, for maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
660
*
661
* meshlets must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound
662
* meshlet_vertices must contain enough space for all meshlets, worst case is index_count elements (*not* vertex_count!)
663
* meshlet_triangles must contain enough space for all meshlets, worst case is index_count elements
664
* vertex_positions should have float3 position in the first 12 bytes of each vertex
665
* max_vertices and max_triangles must not exceed implementation limits (max_vertices <= 256, max_triangles <= 512)
666
* cone_weight should be set to 0 when cone culling is not used, and a value between 0 and 1 otherwise to balance between cluster size and cone culling efficiency
667
*/
668
MESHOPTIMIZER_API size_t meshopt_buildMeshlets(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight);
669
MESHOPTIMIZER_API size_t meshopt_buildMeshletsScan(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
670
MESHOPTIMIZER_API size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles);
671
672
/**
673
* Meshlet builder with flexible cluster sizes
674
* Splits the mesh into a set of meshlets, similarly to meshopt_buildMeshlets, but allows to specify minimum and maximum number of triangles per meshlet.
675
* Clusters between min and max triangle counts are split when the cluster size would have exceeded the expected cluster size by more than split_factor.
676
*
677
* meshlets must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound using min_triangles (*not* max!)
678
* meshlet_vertices must contain enough space for all meshlets, worst case is index_count elements (*not* vertex_count!)
679
* meshlet_triangles must contain enough space for all meshlets, worst case is index_count elements
680
* vertex_positions should have float3 position in the first 12 bytes of each vertex
681
* max_vertices, min_triangles and max_triangles must not exceed implementation limits (max_vertices <= 256, max_triangles <= 512; min_triangles <= max_triangles)
682
* cone_weight should be set to 0 when cone culling is not used, and a value between 0 and 1 otherwise to balance between cluster size and cone culling efficiency
683
* split_factor should be set to a non-negative value; when greater than 0, clusters that have large bounds may be split unless they are under the min_triangles threshold
684
*/
685
MESHOPTIMIZER_API size_t meshopt_buildMeshletsFlex(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t min_triangles, size_t max_triangles, float cone_weight, float split_factor);
686
687
/**
688
* Meshlet builder that produces clusters optimized for raytracing
689
* Splits the mesh into a set of meshlets, similarly to meshopt_buildMeshlets, but optimizes cluster subdivision for raytracing and allows to specify minimum and maximum number of triangles per meshlet.
690
*
691
* meshlets must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound using min_triangles (*not* max!)
692
* meshlet_vertices must contain enough space for all meshlets, worst case is index_count elements (*not* vertex_count!)
693
* meshlet_triangles must contain enough space for all meshlets, worst case is index_count elements
694
* vertex_positions should have float3 position in the first 12 bytes of each vertex
695
* max_vertices, min_triangles and max_triangles must not exceed implementation limits (max_vertices <= 256, max_triangles <= 512; min_triangles <= max_triangles)
696
* fill_weight allows to prioritize clusters that are closer to maximum size at some cost to SAH quality; 0.5 is a safe default
697
*/
698
MESHOPTIMIZER_API size_t meshopt_buildMeshletsSpatial(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t min_triangles, size_t max_triangles, float fill_weight);
699
700
/**
701
* Meshlet optimizer
702
* Reorders meshlet vertices and triangles to maximize locality which can improve rasterizer throughput or ray tracing performance when using fast-build modes.
703
*
704
* meshlet_triangles and meshlet_vertices must refer to meshlet data; when buildMeshlets* is used, these need to be computed from meshlet's vertex_offset and triangle_offset
705
* triangle_count and vertex_count must not exceed implementation limits (vertex_count <= 256, triangle_count <= 512)
706
*/
707
MESHOPTIMIZER_API void meshopt_optimizeMeshlet(unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t triangle_count, size_t vertex_count);
708
709
struct meshopt_Bounds
710
{
711
/* bounding sphere, useful for frustum and occlusion culling */
712
float center[3];
713
float radius;
714
715
/* normal cone, useful for backface culling */
716
float cone_apex[3];
717
float cone_axis[3];
718
float cone_cutoff; /* = cos(angle/2) */
719
720
/* normal cone axis and cutoff, stored in 8-bit SNORM format; decode using x/127.0 */
721
signed char cone_axis_s8[3];
722
signed char cone_cutoff_s8;
723
};
724
725
/**
726
* Cluster bounds generator
727
* Creates bounding volumes that can be used for frustum, backface and occlusion culling.
728
*
729
* For backface culling with orthographic projection, use the following formula to reject backfacing clusters:
730
* dot(view, cone_axis) >= cone_cutoff
731
*
732
* For perspective projection, you can use the formula that needs cone apex in addition to axis & cutoff:
733
* dot(normalize(cone_apex - camera_position), cone_axis) >= cone_cutoff
734
*
735
* Alternatively, you can use the formula that doesn't need cone apex and uses bounding sphere instead:
736
* dot(normalize(center - camera_position), cone_axis) >= cone_cutoff + radius / length(center - camera_position)
737
* or an equivalent formula that doesn't have a singularity at center = camera_position:
738
* dot(center - camera_position, cone_axis) >= cone_cutoff * length(center - camera_position) + radius
739
*
740
* The formula that uses the apex is slightly more accurate but needs the apex; if you are already using bounding sphere
741
* to do frustum/occlusion culling, the formula that doesn't use the apex may be preferable (for derivation see
742
* Real-Time Rendering 4th Edition, section 19.3).
743
*
744
* vertex_positions should have float3 position in the first 12 bytes of each vertex
745
* vertex_count should specify the number of vertices in the entire mesh, not cluster or meshlet
746
* index_count/3 and triangle_count must not exceed implementation limits (<= 512)
747
*/
748
MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
749
MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
750
751
/**
752
* Sphere bounds generator
753
* Creates bounding sphere around a set of points or a set of spheres; returns the center and radius of the sphere, with other fields of the result set to 0.
754
*
755
* positions should have float3 position in the first 12 bytes of each element
756
* radii can be NULL; when it's not NULL, it should have a non-negative float radius in the first 4 bytes of each element
757
*/
758
MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeSphereBounds(const float* positions, size_t count, size_t positions_stride, const float* radii, size_t radii_stride);
759
760
/**
761
* Cluster partitioner
762
* Partitions clusters into groups of similar size, prioritizing grouping clusters that share vertices or are close to each other.
763
* When vertex positions are not provided, only clusters that share vertices will be grouped together, which may result in small partitions for some inputs.
764
*
765
* destination must contain enough space for the resulting partition data (cluster_count elements)
766
* destination[i] will contain the partition id for cluster i, with the total number of partitions returned by the function
767
* cluster_indices should have the vertex indices referenced by each cluster, stored sequentially
768
* cluster_index_counts should have the number of indices in each cluster; sum of all cluster_index_counts must be equal to total_index_count
769
* vertex_positions can be NULL; when it's not NULL, it should have float3 position in the first 12 bytes of each vertex
770
* target_partition_size is a target size for each partition, in clusters; the resulting partitions may be smaller or larger (up to target + target/3)
771
*/
772
MESHOPTIMIZER_API size_t meshopt_partitionClusters(unsigned int* destination, const unsigned int* cluster_indices, size_t total_index_count, const unsigned int* cluster_index_counts, size_t cluster_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_partition_size);
773
774
/**
775
* Spatial sorter
776
* Generates a remap table that can be used to reorder points for spatial locality.
777
* Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer.
778
*
779
* destination must contain enough space for the resulting remap table (vertex_count elements)
780
* vertex_positions should have float3 position in the first 12 bytes of each vertex
781
*/
782
MESHOPTIMIZER_API void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
783
784
/**
785
* Spatial sorter
786
* Reorders triangles for spatial locality, and generates a new index buffer. The resulting index buffer can be used with other functions like optimizeVertexCache.
787
*
788
* destination must contain enough space for the resulting index buffer (index_count elements)
789
* vertex_positions should have float3 position in the first 12 bytes of each vertex
790
*/
791
MESHOPTIMIZER_API void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
792
793
/**
794
* Spatial clusterizer
795
* Reorders points into clusters optimized for spatial locality, and generates a new index buffer.
796
* Ensures the output can be split into cluster_size chunks where each chunk has good positional locality. Only the last chunk will be smaller than cluster_size.
797
*
798
* destination must contain enough space for the resulting index buffer (vertex_count elements)
799
* vertex_positions should have float3 position in the first 12 bytes of each vertex
800
*/
801
MESHOPTIMIZER_API void meshopt_spatialClusterPoints(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t cluster_size);
802
803
/**
804
* Quantize a float into half-precision (as defined by IEEE-754 fp16) floating point value
805
* Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest
806
* Representable magnitude range: [6e-5; 65504]
807
* Maximum relative reconstruction error: 5e-4
808
*/
809
MESHOPTIMIZER_API unsigned short meshopt_quantizeHalf(float v);
810
811
/**
812
* Quantize a float into a floating point value with a limited number of significant mantissa bits, preserving the IEEE-754 fp32 binary representation
813
* Preserves infinities/NaN, flushes denormals to zero, rounds to nearest
814
* Assumes N is in a valid mantissa precision range, which is 1..23
815
*/
816
MESHOPTIMIZER_API float meshopt_quantizeFloat(float v, int N);
817
818
/**
819
* Reverse quantization of a half-precision (as defined by IEEE-754 fp16) floating point value
820
* Preserves Inf/NaN, flushes denormals to zero
821
*/
822
MESHOPTIMIZER_API float meshopt_dequantizeHalf(unsigned short h);
823
824
/**
825
* Set allocation callbacks
826
* These callbacks will be used instead of the default operator new/operator delete for all temporary allocations in the library.
827
* Note that all algorithms only allocate memory for temporary use.
828
* allocate/deallocate are always called in a stack-like order - last pointer to be allocated is deallocated first.
829
*/
830
MESHOPTIMIZER_API void meshopt_setAllocator(void* (MESHOPTIMIZER_ALLOC_CALLCONV* allocate)(size_t), void (MESHOPTIMIZER_ALLOC_CALLCONV* deallocate)(void*));
831
832
#ifdef __cplusplus
833
} /* extern "C" */
834
#endif
835
836
/* Quantization into fixed point normalized formats; these are only available as inline C++ functions */
837
#ifdef __cplusplus
838
/**
839
* Quantize a float in [0..1] range into an N-bit fixed point unorm value
840
* Assumes reconstruction function (q / (2^N-1)), which is the case for fixed-function normalized fixed point conversion
841
* Maximum reconstruction error: 1/2^(N+1)
842
*/
843
inline int meshopt_quantizeUnorm(float v, int N);
844
845
/**
846
* Quantize a float in [-1..1] range into an N-bit fixed point snorm value
847
* Assumes reconstruction function (q / (2^(N-1)-1)), which is the case for fixed-function normalized fixed point conversion (except early OpenGL versions)
848
* Maximum reconstruction error: 1/2^N
849
*/
850
inline int meshopt_quantizeSnorm(float v, int N);
851
#endif
852
853
/**
854
* C++ template interface
855
*
856
* These functions mirror the C interface the library provides, providing template-based overloads so that
857
* the caller can use an arbitrary type for the index data, both for input and output.
858
* When the supplied type is the same size as that of unsigned int, the wrappers are zero-cost; when it's not,
859
* the wrappers end up allocating memory and copying index data to convert from one type to another.
860
*/
861
#if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS)
862
template <typename T>
863
inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size);
864
template <typename T>
865
inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count);
866
template <typename F>
867
inline size_t meshopt_generateVertexRemapCustom(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, F callback);
868
template <typename T, typename F>
869
inline size_t meshopt_generateVertexRemapCustom(unsigned int* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, F callback);
870
template <typename T>
871
inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap);
872
template <typename T>
873
inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride);
874
template <typename T>
875
inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count);
876
template <typename T>
877
inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
878
template <typename T>
879
inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
880
template <typename T>
881
inline size_t meshopt_generateProvokingIndexBuffer(T* destination, unsigned int* reorder, const T* indices, size_t index_count, size_t vertex_count);
882
template <typename T>
883
inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count);
884
template <typename T>
885
inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count);
886
template <typename T>
887
inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size);
888
template <typename T>
889
inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold);
890
template <typename T>
891
inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count);
892
template <typename T>
893
inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size);
894
template <typename T>
895
inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count);
896
template <typename T>
897
inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size);
898
template <typename T>
899
inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count);
900
template <typename T>
901
inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size);
902
inline size_t meshopt_encodeVertexBufferLevel(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size, int level);
903
template <typename T>
904
inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options = 0, float* result_error = NULL);
905
template <typename T>
906
inline size_t meshopt_simplifyWithAttributes(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options = 0, float* result_error = NULL);
907
template <typename T>
908
inline size_t meshopt_simplifyWithUpdate(T* indices, size_t index_count, float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options = 0, float* result_error = NULL);
909
template <typename T>
910
inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error = NULL);
911
template <typename T>
912
inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const unsigned char* vertex_lock, size_t target_index_count, float target_error, float* result_error = NULL);
913
template <typename T>
914
inline size_t meshopt_simplifyPrune(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float target_error);
915
template <typename T>
916
inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index);
917
template <typename T>
918
inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index);
919
template <typename T>
920
inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int primgroup_size);
921
template <typename T>
922
inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size);
923
template <typename T>
924
inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
925
template <typename T>
926
inline meshopt_CoverageStatistics meshopt_analyzeCoverage(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
927
template <typename T>
928
inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight);
929
template <typename T>
930
inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
931
template <typename T>
932
inline size_t meshopt_buildMeshletsFlex(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t min_triangles, size_t max_triangles, float cone_weight, float split_factor);
933
template <typename T>
934
inline size_t meshopt_buildMeshletsSpatial(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t min_triangles, size_t max_triangles, float fill_weight);
935
template <typename T>
936
inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
937
template <typename T>
938
inline size_t meshopt_partitionClusters(unsigned int* destination, const T* cluster_indices, size_t total_index_count, const unsigned int* cluster_index_counts, size_t cluster_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_partition_size);
939
template <typename T>
940
inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
941
#endif
942
943
/* Inline implementation */
944
#ifdef __cplusplus
945
inline int meshopt_quantizeUnorm(float v, int N)
946
{
947
const float scale = float((1 << N) - 1);
948
949
v = (v >= 0) ? v : 0;
950
v = (v <= 1) ? v : 1;
951
952
return int(v * scale + 0.5f);
953
}
954
955
inline int meshopt_quantizeSnorm(float v, int N)
956
{
957
const float scale = float((1 << (N - 1)) - 1);
958
959
float round = (v >= 0 ? 0.5f : -0.5f);
960
961
v = (v >= -1) ? v : -1;
962
v = (v <= +1) ? v : +1;
963
964
return int(v * scale + round);
965
}
966
#endif
967
968
/* Internal implementation helpers */
969
#ifdef __cplusplus
970
class meshopt_Allocator
971
{
972
public:
973
struct Storage
974
{
975
void* (MESHOPTIMIZER_ALLOC_CALLCONV* allocate)(size_t);
976
void (MESHOPTIMIZER_ALLOC_CALLCONV* deallocate)(void*);
977
};
978
979
#ifdef MESHOPTIMIZER_ALLOC_EXPORT
980
MESHOPTIMIZER_API static Storage& storage();
981
#else
982
static Storage& storage()
983
{
984
static Storage s = {::operator new, ::operator delete };
985
return s;
986
}
987
#endif
988
989
meshopt_Allocator()
990
: blocks()
991
, count(0)
992
{
993
}
994
995
~meshopt_Allocator()
996
{
997
for (size_t i = count; i > 0; --i)
998
storage().deallocate(blocks[i - 1]);
999
}
1000
1001
template <typename T>
1002
T* allocate(size_t size)
1003
{
1004
assert(count < sizeof(blocks) / sizeof(blocks[0]));
1005
T* result = static_cast<T*>(storage().allocate(size > size_t(-1) / sizeof(T) ? size_t(-1) : size * sizeof(T)));
1006
blocks[count++] = result;
1007
return result;
1008
}
1009
1010
void deallocate(void* ptr)
1011
{
1012
assert(count > 0 && blocks[count - 1] == ptr);
1013
storage().deallocate(ptr);
1014
count--;
1015
}
1016
1017
private:
1018
void* blocks[24];
1019
size_t count;
1020
};
1021
#endif
1022
1023
/* Inline implementation for C++ templated wrappers */
1024
#if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS)
1025
template <typename T, bool ZeroCopy = sizeof(T) == sizeof(unsigned int)>
1026
struct meshopt_IndexAdapter;
1027
1028
template <typename T>
1029
struct meshopt_IndexAdapter<T, false>
1030
{
1031
T* result;
1032
unsigned int* data;
1033
size_t count;
1034
1035
meshopt_IndexAdapter(T* result_, const T* input, size_t count_)
1036
: result(result_)
1037
, data(NULL)
1038
, count(count_)
1039
{
1040
size_t size = count > size_t(-1) / sizeof(unsigned int) ? size_t(-1) : count * sizeof(unsigned int);
1041
1042
data = static_cast<unsigned int*>(meshopt_Allocator::storage().allocate(size));
1043
1044
if (input)
1045
{
1046
for (size_t i = 0; i < count; ++i)
1047
data[i] = input[i];
1048
}
1049
}
1050
1051
~meshopt_IndexAdapter()
1052
{
1053
if (result)
1054
{
1055
for (size_t i = 0; i < count; ++i)
1056
result[i] = T(data[i]);
1057
}
1058
1059
meshopt_Allocator::storage().deallocate(data);
1060
}
1061
};
1062
1063
template <typename T>
1064
struct meshopt_IndexAdapter<T, true>
1065
{
1066
unsigned int* data;
1067
1068
meshopt_IndexAdapter(T* result, const T* input, size_t)
1069
: data(reinterpret_cast<unsigned int*>(result ? result : const_cast<T*>(input)))
1070
{
1071
}
1072
};
1073
1074
template <typename T>
1075
inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size)
1076
{
1077
meshopt_IndexAdapter<T> in(NULL, indices, indices ? index_count : 0);
1078
1079
return meshopt_generateVertexRemap(destination, indices ? in.data : NULL, index_count, vertices, vertex_count, vertex_size);
1080
}
1081
1082
template <typename T>
1083
inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count)
1084
{
1085
meshopt_IndexAdapter<T> in(NULL, indices, indices ? index_count : 0);
1086
1087
return meshopt_generateVertexRemapMulti(destination, indices ? in.data : NULL, index_count, vertex_count, streams, stream_count);
1088
}
1089
1090
template <typename F>
1091
inline size_t meshopt_generateVertexRemapCustom(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, F callback)
1092
{
1093
struct Call
1094
{
1095
static int compare(void* context, unsigned int lhs, unsigned int rhs) { return (*static_cast<F*>(context))(lhs, rhs) ? 1 : 0; }
1096
};
1097
1098
return meshopt_generateVertexRemapCustom(destination, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride, &Call::compare, &callback);
1099
}
1100
1101
template <typename T, typename F>
1102
inline size_t meshopt_generateVertexRemapCustom(unsigned int* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, F callback)
1103
{
1104
struct Call
1105
{
1106
static int compare(void* context, unsigned int lhs, unsigned int rhs) { return (*static_cast<F*>(context))(lhs, rhs) ? 1 : 0; }
1107
};
1108
1109
meshopt_IndexAdapter<T> in(NULL, indices, indices ? index_count : 0);
1110
1111
return meshopt_generateVertexRemapCustom(destination, indices ? in.data : NULL, index_count, vertex_positions, vertex_count, vertex_positions_stride, &Call::compare, &callback);
1112
}
1113
1114
template <typename T>
1115
inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap)
1116
{
1117
meshopt_IndexAdapter<T> in(NULL, indices, indices ? index_count : 0);
1118
meshopt_IndexAdapter<T> out(destination, 0, index_count);
1119
1120
meshopt_remapIndexBuffer(out.data, indices ? in.data : NULL, index_count, remap);
1121
}
1122
1123
template <typename T>
1124
inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride)
1125
{
1126
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1127
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
1128
1129
meshopt_generateShadowIndexBuffer(out.data, in.data, index_count, vertices, vertex_count, vertex_size, vertex_stride);
1130
}
1131
1132
template <typename T>
1133
inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count)
1134
{
1135
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1136
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
1137
1138
meshopt_generateShadowIndexBufferMulti(out.data, in.data, index_count, vertex_count, streams, stream_count);
1139
}
1140
1141
template <typename T>
1142
inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
1143
{
1144
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1145
meshopt_IndexAdapter<T> out(destination, NULL, index_count * 2);
1146
1147
meshopt_generateAdjacencyIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
1148
}
1149
1150
template <typename T>
1151
inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
1152
{
1153
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1154
meshopt_IndexAdapter<T> out(destination, NULL, index_count * 4);
1155
1156
meshopt_generateTessellationIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
1157
}
1158
1159
template <typename T>
1160
inline size_t meshopt_generateProvokingIndexBuffer(T* destination, unsigned int* reorder, const T* indices, size_t index_count, size_t vertex_count)
1161
{
1162
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1163
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
1164
1165
size_t bound = vertex_count + (index_count / 3);
1166
assert(size_t(T(bound - 1)) == bound - 1); // bound - 1 must fit in T
1167
(void)bound;
1168
1169
return meshopt_generateProvokingIndexBuffer(out.data, reorder, in.data, index_count, vertex_count);
1170
}
1171
1172
template <typename T>
1173
inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count)
1174
{
1175
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1176
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
1177
1178
meshopt_optimizeVertexCache(out.data, in.data, index_count, vertex_count);
1179
}
1180
1181
template <typename T>
1182
inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count)
1183
{
1184
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1185
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
1186
1187
meshopt_optimizeVertexCacheStrip(out.data, in.data, index_count, vertex_count);
1188
}
1189
1190
template <typename T>
1191
inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size)
1192
{
1193
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1194
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
1195
1196
meshopt_optimizeVertexCacheFifo(out.data, in.data, index_count, vertex_count, cache_size);
1197
}
1198
1199
template <typename T>
1200
inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold)
1201
{
1202
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1203
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
1204
1205
meshopt_optimizeOverdraw(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, threshold);
1206
}
1207
1208
template <typename T>
1209
inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count)
1210
{
1211
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1212
1213
return meshopt_optimizeVertexFetchRemap(destination, in.data, index_count, vertex_count);
1214
}
1215
1216
template <typename T>
1217
inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size)
1218
{
1219
meshopt_IndexAdapter<T> inout(indices, indices, index_count);
1220
1221
return meshopt_optimizeVertexFetch(destination, inout.data, index_count, vertices, vertex_count, vertex_size);
1222
}
1223
1224
template <typename T>
1225
inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count)
1226
{
1227
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1228
1229
return meshopt_encodeIndexBuffer(buffer, buffer_size, in.data, index_count);
1230
}
1231
1232
template <typename T>
1233
inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size)
1234
{
1235
char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1];
1236
(void)index_size_valid;
1237
1238
return meshopt_decodeIndexBuffer(destination, index_count, sizeof(T), buffer, buffer_size);
1239
}
1240
1241
template <typename T>
1242
inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count)
1243
{
1244
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1245
1246
return meshopt_encodeIndexSequence(buffer, buffer_size, in.data, index_count);
1247
}
1248
1249
template <typename T>
1250
inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size)
1251
{
1252
char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1];
1253
(void)index_size_valid;
1254
1255
return meshopt_decodeIndexSequence(destination, index_count, sizeof(T), buffer, buffer_size);
1256
}
1257
1258
inline size_t meshopt_encodeVertexBufferLevel(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size, int level)
1259
{
1260
return meshopt_encodeVertexBufferLevel(buffer, buffer_size, vertices, vertex_count, vertex_size, level, -1);
1261
}
1262
1263
template <typename T>
1264
inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* result_error)
1265
{
1266
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1267
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
1268
1269
return meshopt_simplify(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, options, result_error);
1270
}
1271
1272
template <typename T>
1273
inline size_t meshopt_simplifyWithAttributes(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* result_error)
1274
{
1275
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1276
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
1277
1278
return meshopt_simplifyWithAttributes(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, vertex_attributes, vertex_attributes_stride, attribute_weights, attribute_count, vertex_lock, target_index_count, target_error, options, result_error);
1279
}
1280
1281
template <typename T>
1282
inline size_t meshopt_simplifyWithUpdate(T* indices, size_t index_count, float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* result_error)
1283
{
1284
meshopt_IndexAdapter<T> inout(indices, indices, index_count);
1285
1286
return meshopt_simplifyWithUpdate(inout.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, vertex_attributes, vertex_attributes_stride, attribute_weights, attribute_count, vertex_lock, target_index_count, target_error, options, result_error);
1287
}
1288
1289
template <typename T>
1290
inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error)
1291
{
1292
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1293
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
1294
1295
return meshopt_simplifySloppy(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, NULL, target_index_count, target_error, result_error);
1296
}
1297
1298
template <typename T>
1299
inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const unsigned char* vertex_lock, size_t target_index_count, float target_error, float* result_error)
1300
{
1301
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1302
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
1303
1304
return meshopt_simplifySloppy(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, vertex_lock, target_index_count, target_error, result_error);
1305
}
1306
1307
template <typename T>
1308
inline size_t meshopt_simplifyPrune(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float target_error)
1309
{
1310
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1311
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
1312
1313
return meshopt_simplifyPrune(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_error);
1314
}
1315
1316
template <typename T>
1317
inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index)
1318
{
1319
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1320
meshopt_IndexAdapter<T> out(destination, NULL, (index_count / 3) * 5);
1321
1322
return meshopt_stripify(out.data, in.data, index_count, vertex_count, unsigned(restart_index));
1323
}
1324
1325
template <typename T>
1326
inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index)
1327
{
1328
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1329
meshopt_IndexAdapter<T> out(destination, NULL, (index_count - 2) * 3);
1330
1331
return meshopt_unstripify(out.data, in.data, index_count, unsigned(restart_index));
1332
}
1333
1334
template <typename T>
1335
inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int primgroup_size)
1336
{
1337
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1338
1339
return meshopt_analyzeVertexCache(in.data, index_count, vertex_count, cache_size, warp_size, primgroup_size);
1340
}
1341
1342
template <typename T>
1343
inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size)
1344
{
1345
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1346
1347
return meshopt_analyzeVertexFetch(in.data, index_count, vertex_count, vertex_size);
1348
}
1349
1350
template <typename T>
1351
inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
1352
{
1353
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1354
1355
return meshopt_analyzeOverdraw(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
1356
}
1357
1358
template <typename T>
1359
inline meshopt_CoverageStatistics meshopt_analyzeCoverage(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
1360
{
1361
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1362
1363
return meshopt_analyzeCoverage(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
1364
}
1365
1366
template <typename T>
1367
inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
1368
{
1369
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1370
1371
return meshopt_buildMeshlets(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, max_triangles, cone_weight);
1372
}
1373
1374
template <typename T>
1375
inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
1376
{
1377
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1378
1379
return meshopt_buildMeshletsScan(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_count, max_vertices, max_triangles);
1380
}
1381
1382
template <typename T>
1383
inline size_t meshopt_buildMeshletsFlex(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t min_triangles, size_t max_triangles, float cone_weight, float split_factor)
1384
{
1385
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1386
1387
return meshopt_buildMeshletsFlex(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, min_triangles, max_triangles, cone_weight, split_factor);
1388
}
1389
1390
template <typename T>
1391
inline size_t meshopt_buildMeshletsSpatial(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t min_triangles, size_t max_triangles, float fill_weight)
1392
{
1393
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1394
1395
return meshopt_buildMeshletsSpatial(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, min_triangles, max_triangles, fill_weight);
1396
}
1397
1398
template <typename T>
1399
inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
1400
{
1401
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1402
1403
return meshopt_computeClusterBounds(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
1404
}
1405
1406
template <typename T>
1407
inline size_t meshopt_partitionClusters(unsigned int* destination, const T* cluster_indices, size_t total_index_count, const unsigned int* cluster_index_counts, size_t cluster_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_partition_size)
1408
{
1409
meshopt_IndexAdapter<T> in(NULL, cluster_indices, total_index_count);
1410
1411
return meshopt_partitionClusters(destination, in.data, total_index_count, cluster_index_counts, cluster_count, vertex_positions, vertex_count, vertex_positions_stride, target_partition_size);
1412
}
1413
1414
template <typename T>
1415
inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
1416
{
1417
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
1418
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
1419
1420
meshopt_spatialSortTriangles(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
1421
}
1422
#endif
1423
1424
/**
1425
* Copyright (c) 2016-2025 Arseny Kapoulkine
1426
*
1427
* Permission is hereby granted, free of charge, to any person
1428
* obtaining a copy of this software and associated documentation
1429
* files (the "Software"), to deal in the Software without
1430
* restriction, including without limitation the rights to use,
1431
* copy, modify, merge, publish, distribute, sublicense, and/or sell
1432
* copies of the Software, and to permit persons to whom the
1433
* Software is furnished to do so, subject to the following
1434
* conditions:
1435
*
1436
* The above copyright notice and this permission notice shall be
1437
* included in all copies or substantial portions of the Software.
1438
*
1439
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
1440
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
1441
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
1442
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
1443
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
1444
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
1445
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
1446
* OTHER DEALINGS IN THE SOFTWARE.
1447
*/
1448
1449