Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/meshoptimizer/rasterizer.cpp
9903 views
1
// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
2
#include "meshoptimizer.h"
3
4
#include <assert.h>
5
#include <float.h>
6
#include <string.h>
7
8
// This work is based on:
9
// Nicolas Capens. Advanced Rasterization. 2004
10
namespace meshopt
11
{
12
13
const int kViewport = 256;
14
15
struct OverdrawBuffer
16
{
17
float z[kViewport][kViewport][2];
18
unsigned int overdraw[kViewport][kViewport][2];
19
};
20
21
static float computeDepthGradients(float& dzdx, float& dzdy, float x1, float y1, float z1, float x2, float y2, float z2, float x3, float y3, float z3)
22
{
23
// z2 = z1 + dzdx * (x2 - x1) + dzdy * (y2 - y1)
24
// z3 = z1 + dzdx * (x3 - x1) + dzdy * (y3 - y1)
25
// (x2-x1 y2-y1)(dzdx) = (z2-z1)
26
// (x3-x1 y3-y1)(dzdy) (z3-z1)
27
// we'll solve it with Cramer's rule
28
float det = (x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1);
29
float invdet = (det == 0) ? 0 : 1 / det;
30
31
dzdx = ((z2 - z1) * (y3 - y1) - (y2 - y1) * (z3 - z1)) * invdet;
32
dzdy = ((x2 - x1) * (z3 - z1) - (z2 - z1) * (x3 - x1)) * invdet;
33
34
return det;
35
}
36
37
// half-space fixed point triangle rasterizer
38
static void rasterize(OverdrawBuffer* buffer, float v1x, float v1y, float v1z, float v2x, float v2y, float v2z, float v3x, float v3y, float v3z)
39
{
40
// compute depth gradients
41
float DZx, DZy;
42
float det = computeDepthGradients(DZx, DZy, v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z);
43
int sign = det > 0;
44
45
// flip backfacing triangles to simplify rasterization logic
46
if (sign)
47
{
48
// flipping v2 & v3 preserves depth gradients since they're based on v1; only v1z is used below
49
float t;
50
t = v2x, v2x = v3x, v3x = t;
51
t = v2y, v2y = v3y, v3y = t;
52
53
// flip depth since we rasterize backfacing triangles to second buffer with reverse Z; only v1z is used below
54
v1z = kViewport - v1z;
55
DZx = -DZx;
56
DZy = -DZy;
57
}
58
59
// coordinates, 28.4 fixed point
60
int X1 = int(16.0f * v1x + 0.5f);
61
int X2 = int(16.0f * v2x + 0.5f);
62
int X3 = int(16.0f * v3x + 0.5f);
63
64
int Y1 = int(16.0f * v1y + 0.5f);
65
int Y2 = int(16.0f * v2y + 0.5f);
66
int Y3 = int(16.0f * v3y + 0.5f);
67
68
// bounding rectangle, clipped against viewport
69
// since we rasterize pixels with covered centers, min >0.5 should round up
70
// as for max, due to top-left filling convention we will never rasterize right/bottom edges
71
// so max >= 0.5 should round down for inclusive bounds, and up for exclusive (in our case)
72
int minx = X1 < X2 ? X1 : X2;
73
minx = minx < X3 ? minx : X3;
74
minx = (minx + 7) >> 4;
75
minx = minx < 0 ? 0 : minx;
76
77
int miny = Y1 < Y2 ? Y1 : Y2;
78
miny = miny < Y3 ? miny : Y3;
79
miny = (miny + 7) >> 4;
80
miny = miny < 0 ? 0 : miny;
81
82
int maxx = X1 > X2 ? X1 : X2;
83
maxx = maxx > X3 ? maxx : X3;
84
maxx = (maxx + 7) >> 4;
85
maxx = maxx > kViewport ? kViewport : maxx;
86
87
int maxy = Y1 > Y2 ? Y1 : Y2;
88
maxy = maxy > Y3 ? maxy : Y3;
89
maxy = (maxy + 7) >> 4;
90
maxy = maxy > kViewport ? kViewport : maxy;
91
92
// deltas, 28.4 fixed point
93
int DX12 = X1 - X2;
94
int DX23 = X2 - X3;
95
int DX31 = X3 - X1;
96
97
int DY12 = Y1 - Y2;
98
int DY23 = Y2 - Y3;
99
int DY31 = Y3 - Y1;
100
101
// fill convention correction
102
int TL1 = DY12 < 0 || (DY12 == 0 && DX12 > 0);
103
int TL2 = DY23 < 0 || (DY23 == 0 && DX23 > 0);
104
int TL3 = DY31 < 0 || (DY31 == 0 && DX31 > 0);
105
106
// half edge equations, 24.8 fixed point
107
// note that we offset minx/miny by half pixel since we want to rasterize pixels with covered centers
108
int FX = (minx << 4) + 8;
109
int FY = (miny << 4) + 8;
110
int CY1 = DX12 * (FY - Y1) - DY12 * (FX - X1) + TL1 - 1;
111
int CY2 = DX23 * (FY - Y2) - DY23 * (FX - X2) + TL2 - 1;
112
int CY3 = DX31 * (FY - Y3) - DY31 * (FX - X3) + TL3 - 1;
113
float ZY = v1z + (DZx * float(FX - X1) + DZy * float(FY - Y1)) * (1 / 16.f);
114
115
for (int y = miny; y < maxy; y++)
116
{
117
int CX1 = CY1;
118
int CX2 = CY2;
119
int CX3 = CY3;
120
float ZX = ZY;
121
122
for (int x = minx; x < maxx; x++)
123
{
124
// check if all CXn are non-negative
125
if ((CX1 | CX2 | CX3) >= 0)
126
{
127
if (ZX >= buffer->z[y][x][sign])
128
{
129
buffer->z[y][x][sign] = ZX;
130
buffer->overdraw[y][x][sign]++;
131
}
132
}
133
134
// signed left shift is UB for negative numbers so use unsigned-signed casts
135
CX1 -= int(unsigned(DY12) << 4);
136
CX2 -= int(unsigned(DY23) << 4);
137
CX3 -= int(unsigned(DY31) << 4);
138
ZX += DZx;
139
}
140
141
// signed left shift is UB for negative numbers so use unsigned-signed casts
142
CY1 += int(unsigned(DX12) << 4);
143
CY2 += int(unsigned(DX23) << 4);
144
CY3 += int(unsigned(DX31) << 4);
145
ZY += DZy;
146
}
147
}
148
149
static float transformTriangles(float* triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
150
{
151
size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
152
153
float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
154
float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
155
156
for (size_t i = 0; i < vertex_count; ++i)
157
{
158
const float* v = vertex_positions + i * vertex_stride_float;
159
160
for (int j = 0; j < 3; ++j)
161
{
162
float vj = v[j];
163
164
minv[j] = minv[j] > vj ? vj : minv[j];
165
maxv[j] = maxv[j] < vj ? vj : maxv[j];
166
}
167
}
168
169
float extent = 0.f;
170
171
extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]);
172
extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]);
173
extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]);
174
175
float scale = kViewport / extent;
176
177
for (size_t i = 0; i < index_count; ++i)
178
{
179
unsigned int index = indices[i];
180
assert(index < vertex_count);
181
182
const float* v = vertex_positions + index * vertex_stride_float;
183
184
triangles[i * 3 + 0] = (v[0] - minv[0]) * scale;
185
triangles[i * 3 + 1] = (v[1] - minv[1]) * scale;
186
triangles[i * 3 + 2] = (v[2] - minv[2]) * scale;
187
}
188
189
return extent;
190
}
191
192
static void rasterizeTriangles(OverdrawBuffer* buffer, const float* triangles, size_t index_count, int axis)
193
{
194
for (size_t i = 0; i < index_count; i += 3)
195
{
196
const float* vn0 = &triangles[3 * (i + 0)];
197
const float* vn1 = &triangles[3 * (i + 1)];
198
const float* vn2 = &triangles[3 * (i + 2)];
199
200
switch (axis)
201
{
202
case 0:
203
rasterize(buffer, vn0[2], vn0[1], vn0[0], vn1[2], vn1[1], vn1[0], vn2[2], vn2[1], vn2[0]);
204
break;
205
case 1:
206
rasterize(buffer, vn0[0], vn0[2], vn0[1], vn1[0], vn1[2], vn1[1], vn2[0], vn2[2], vn2[1]);
207
break;
208
case 2:
209
rasterize(buffer, vn0[1], vn0[0], vn0[2], vn1[1], vn1[0], vn1[2], vn2[1], vn2[0], vn2[2]);
210
break;
211
}
212
}
213
}
214
215
} // namespace meshopt
216
217
meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
218
{
219
using namespace meshopt;
220
221
assert(index_count % 3 == 0);
222
assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
223
assert(vertex_positions_stride % sizeof(float) == 0);
224
225
meshopt_Allocator allocator;
226
227
meshopt_OverdrawStatistics result = {};
228
229
float* triangles = allocator.allocate<float>(index_count * 3);
230
transformTriangles(triangles, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride);
231
232
OverdrawBuffer* buffer = allocator.allocate<OverdrawBuffer>(1);
233
234
for (int axis = 0; axis < 3; ++axis)
235
{
236
memset(buffer, 0, sizeof(OverdrawBuffer));
237
rasterizeTriangles(buffer, triangles, index_count, axis);
238
239
for (int y = 0; y < kViewport; ++y)
240
for (int x = 0; x < kViewport; ++x)
241
for (int s = 0; s < 2; ++s)
242
{
243
unsigned int overdraw = buffer->overdraw[y][x][s];
244
245
result.pixels_covered += overdraw > 0;
246
result.pixels_shaded += overdraw;
247
}
248
}
249
250
result.overdraw = result.pixels_covered ? float(result.pixels_shaded) / float(result.pixels_covered) : 0.f;
251
252
return result;
253
}
254
255
meshopt_CoverageStatistics meshopt_analyzeCoverage(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
256
{
257
using namespace meshopt;
258
259
assert(index_count % 3 == 0);
260
assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
261
assert(vertex_positions_stride % sizeof(float) == 0);
262
263
meshopt_Allocator allocator;
264
265
meshopt_CoverageStatistics result = {};
266
267
float* triangles = allocator.allocate<float>(index_count * 3);
268
float extent = transformTriangles(triangles, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride);
269
270
OverdrawBuffer* buffer = allocator.allocate<OverdrawBuffer>(1);
271
272
for (int axis = 0; axis < 3; ++axis)
273
{
274
memset(buffer, 0, sizeof(OverdrawBuffer));
275
rasterizeTriangles(buffer, triangles, index_count, axis);
276
277
unsigned int covered = 0;
278
279
for (int y = 0; y < kViewport; ++y)
280
for (int x = 0; x < kViewport; ++x)
281
covered += (buffer->overdraw[y][x][0] | buffer->overdraw[y][x][1]) > 0;
282
283
result.coverage[axis] = float(covered) / float(kViewport * kViewport);
284
}
285
286
result.extent = extent;
287
288
return result;
289
}
290
291