Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/misc/ok_color.h
9903 views
1
// Copyright(c) 2021 Björn Ottosson
2
//
3
// Permission is hereby granted, free of charge, to any person obtaining a copy of
4
// this software and associated documentation files(the "Software"), to deal in
5
// the Software without restriction, including without limitation the rights to
6
// use, copy, modify, merge, publish, distribute, sublicense, and /or sell copies
7
// of the Software, and to permit persons to whom the Software is furnished to do
8
// so, subject to the following conditions :
9
// The above copyright notice and this permission notice shall be included in all
10
// copies or substantial portions of the Software.
11
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
12
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
14
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
15
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
16
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17
// SOFTWARE.
18
19
#ifndef OK_COLOR_H
20
#define OK_COLOR_H
21
22
#include <cmath>
23
#include <cfloat>
24
25
class ok_color
26
{
27
public:
28
29
struct Lab { float L; float a; float b; };
30
struct RGB { float r; float g; float b; };
31
struct HSV { float h; float s; float v; };
32
struct HSL { float h; float s; float l; };
33
struct LC { float L; float C; };
34
35
// Alternative representation of (L_cusp, C_cusp)
36
// Encoded so S = C_cusp/L_cusp and T = C_cusp/(1-L_cusp)
37
// The maximum value for C in the triangle is then found as fmin(S*L, T*(1-L)), for a given L
38
struct ST { float S; float T; };
39
40
static constexpr float pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062f;
41
42
static float clamp(float x, float min, float max)
43
{
44
if (x < min)
45
return min;
46
if (x > max)
47
return max;
48
49
return x;
50
}
51
52
static float sgn(float x)
53
{
54
return (float)(0.f < x) - (float)(x < 0.f);
55
}
56
57
static float srgb_transfer_function(float a)
58
{
59
return .0031308f >= a ? 12.92f * a : 1.055f * powf(a, .4166666666666667f) - .055f;
60
}
61
62
static float srgb_transfer_function_inv(float a)
63
{
64
return .04045f < a ? powf((a + .055f) / 1.055f, 2.4f) : a / 12.92f;
65
}
66
67
static Lab linear_srgb_to_oklab(RGB c)
68
{
69
float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b;
70
float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b;
71
float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b;
72
73
float l_ = cbrtf(l);
74
float m_ = cbrtf(m);
75
float s_ = cbrtf(s);
76
77
return {
78
0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_,
79
1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_,
80
0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_,
81
};
82
}
83
84
static RGB oklab_to_linear_srgb(Lab c)
85
{
86
float l_ = c.L + 0.3963377774f * c.a + 0.2158037573f * c.b;
87
float m_ = c.L - 0.1055613458f * c.a - 0.0638541728f * c.b;
88
float s_ = c.L - 0.0894841775f * c.a - 1.2914855480f * c.b;
89
90
float l = l_ * l_ * l_;
91
float m = m_ * m_ * m_;
92
float s = s_ * s_ * s_;
93
94
return {
95
+4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s,
96
-1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s,
97
-0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s,
98
};
99
}
100
101
// Finds the maximum saturation possible for a given hue that fits in sRGB
102
// Saturation here is defined as S = C/L
103
// a and b must be normalized so a^2 + b^2 == 1
104
static float compute_max_saturation(float a, float b)
105
{
106
// Max saturation will be when one of r, g or b goes below zero.
107
108
// Select different coefficients depending on which component goes below zero first
109
float k0, k1, k2, k3, k4, wl, wm, ws;
110
111
if (-1.88170328f * a - 0.80936493f * b > 1)
112
{
113
// Red component
114
k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f;
115
wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f;
116
}
117
else if (1.81444104f * a - 1.19445276f * b > 1)
118
{
119
// Green component
120
k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f;
121
wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f;
122
}
123
else
124
{
125
// Blue component
126
k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f;
127
wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f;
128
}
129
130
// Approximate max saturation using a polynomial:
131
float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;
132
133
// Do one step Halley's method to get closer
134
// this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite
135
// this should be sufficient for most applications, otherwise do two/three steps
136
137
float k_l = +0.3963377774f * a + 0.2158037573f * b;
138
float k_m = -0.1055613458f * a - 0.0638541728f * b;
139
float k_s = -0.0894841775f * a - 1.2914855480f * b;
140
141
{
142
float l_ = 1.f + S * k_l;
143
float m_ = 1.f + S * k_m;
144
float s_ = 1.f + S * k_s;
145
146
float l = l_ * l_ * l_;
147
float m = m_ * m_ * m_;
148
float s = s_ * s_ * s_;
149
150
float l_dS = 3.f * k_l * l_ * l_;
151
float m_dS = 3.f * k_m * m_ * m_;
152
float s_dS = 3.f * k_s * s_ * s_;
153
154
float l_dS2 = 6.f * k_l * k_l * l_;
155
float m_dS2 = 6.f * k_m * k_m * m_;
156
float s_dS2 = 6.f * k_s * k_s * s_;
157
158
float f = wl * l + wm * m + ws * s;
159
float f1 = wl * l_dS + wm * m_dS + ws * s_dS;
160
float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;
161
162
S = S - f * f1 / (f1 * f1 - 0.5f * f * f2);
163
}
164
165
return S;
166
}
167
168
// finds L_cusp and C_cusp for a given hue
169
// a and b must be normalized so a^2 + b^2 == 1
170
static LC find_cusp(float a, float b)
171
{
172
// First, find the maximum saturation (saturation S = C/L)
173
float S_cusp = compute_max_saturation(a, b);
174
175
// Convert to linear sRGB to find the first point where at least one of r,g or b >= 1:
176
RGB rgb_at_max = oklab_to_linear_srgb({ 1, S_cusp * a, S_cusp * b });
177
float L_cusp = cbrtf(1.f / fmax(fmax(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b));
178
float C_cusp = L_cusp * S_cusp;
179
180
return { L_cusp , C_cusp };
181
}
182
183
// Finds intersection of the line defined by
184
// L = L0 * (1 - t) + t * L1;
185
// C = t * C1;
186
// a and b must be normalized so a^2 + b^2 == 1
187
static float find_gamut_intersection(float a, float b, float L1, float C1, float L0, LC cusp)
188
{
189
// Find the intersection for upper and lower half seprately
190
float t;
191
if (((L1 - L0) * cusp.C - (cusp.L - L0) * C1) <= 0.f)
192
{
193
// Lower half
194
195
t = cusp.C * L0 / (C1 * cusp.L + cusp.C * (L0 - L1));
196
}
197
else
198
{
199
// Upper half
200
201
// First intersect with triangle
202
t = cusp.C * (L0 - 1.f) / (C1 * (cusp.L - 1.f) + cusp.C * (L0 - L1));
203
204
// Then one step Halley's method
205
{
206
float dL = L1 - L0;
207
float dC = C1;
208
209
float k_l = +0.3963377774f * a + 0.2158037573f * b;
210
float k_m = -0.1055613458f * a - 0.0638541728f * b;
211
float k_s = -0.0894841775f * a - 1.2914855480f * b;
212
213
float l_dt = dL + dC * k_l;
214
float m_dt = dL + dC * k_m;
215
float s_dt = dL + dC * k_s;
216
217
218
// If higher accuracy is required, 2 or 3 iterations of the following block can be used:
219
{
220
float L = L0 * (1.f - t) + t * L1;
221
float C = t * C1;
222
223
float l_ = L + C * k_l;
224
float m_ = L + C * k_m;
225
float s_ = L + C * k_s;
226
227
float l = l_ * l_ * l_;
228
float m = m_ * m_ * m_;
229
float s = s_ * s_ * s_;
230
231
float ldt = 3 * l_dt * l_ * l_;
232
float mdt = 3 * m_dt * m_ * m_;
233
float sdt = 3 * s_dt * s_ * s_;
234
235
float ldt2 = 6 * l_dt * l_dt * l_;
236
float mdt2 = 6 * m_dt * m_dt * m_;
237
float sdt2 = 6 * s_dt * s_dt * s_;
238
239
float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1;
240
float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt;
241
float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2;
242
243
float u_r = r1 / (r1 * r1 - 0.5f * r * r2);
244
float t_r = -r * u_r;
245
246
float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1;
247
float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt;
248
float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2;
249
250
float u_g = g1 / (g1 * g1 - 0.5f * g * g2);
251
float t_g = -g * u_g;
252
253
b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1;
254
float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt;
255
float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2;
256
257
float u_b = b1 / (b1 * b1 - 0.5f * b * b2);
258
float t_b = -b * u_b;
259
260
t_r = u_r >= 0.f ? t_r : FLT_MAX;
261
t_g = u_g >= 0.f ? t_g : FLT_MAX;
262
t_b = u_b >= 0.f ? t_b : FLT_MAX;
263
264
t += fmin(t_r, fmin(t_g, t_b));
265
}
266
}
267
}
268
269
return t;
270
}
271
272
static float find_gamut_intersection(float a, float b, float L1, float C1, float L0)
273
{
274
// Find the cusp of the gamut triangle
275
LC cusp = find_cusp(a, b);
276
277
return find_gamut_intersection(a, b, L1, C1, L0, cusp);
278
}
279
280
static RGB gamut_clip_preserve_chroma(RGB rgb)
281
{
282
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
283
return rgb;
284
285
Lab lab = linear_srgb_to_oklab(rgb);
286
287
float L = lab.L;
288
float eps = 0.00001f;
289
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
290
float a_ = lab.a / C;
291
float b_ = lab.b / C;
292
293
float L0 = clamp(L, 0, 1);
294
295
float t = find_gamut_intersection(a_, b_, L, C, L0);
296
float L_clipped = L0 * (1 - t) + t * L;
297
float C_clipped = t * C;
298
299
return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
300
}
301
302
static RGB gamut_clip_project_to_0_5(RGB rgb)
303
{
304
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
305
return rgb;
306
307
Lab lab = linear_srgb_to_oklab(rgb);
308
309
float L = lab.L;
310
float eps = 0.00001f;
311
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
312
float a_ = lab.a / C;
313
float b_ = lab.b / C;
314
315
float L0 = 0.5;
316
317
float t = find_gamut_intersection(a_, b_, L, C, L0);
318
float L_clipped = L0 * (1 - t) + t * L;
319
float C_clipped = t * C;
320
321
return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
322
}
323
324
static RGB gamut_clip_project_to_L_cusp(RGB rgb)
325
{
326
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
327
return rgb;
328
329
Lab lab = linear_srgb_to_oklab(rgb);
330
331
float L = lab.L;
332
float eps = 0.00001f;
333
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
334
float a_ = lab.a / C;
335
float b_ = lab.b / C;
336
337
// The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
338
LC cusp = find_cusp(a_, b_);
339
340
float L0 = cusp.L;
341
342
float t = find_gamut_intersection(a_, b_, L, C, L0);
343
344
float L_clipped = L0 * (1 - t) + t * L;
345
float C_clipped = t * C;
346
347
return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
348
}
349
350
static RGB gamut_clip_adaptive_L0_0_5(RGB rgb, float alpha = 0.05f)
351
{
352
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
353
return rgb;
354
355
Lab lab = linear_srgb_to_oklab(rgb);
356
357
float L = lab.L;
358
float eps = 0.00001f;
359
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
360
float a_ = lab.a / C;
361
float b_ = lab.b / C;
362
363
float Ld = L - 0.5f;
364
float e1 = 0.5f + fabs(Ld) + alpha * C;
365
float L0 = 0.5f * (1.f + sgn(Ld) * (e1 - sqrtf(e1 * e1 - 2.f * fabs(Ld))));
366
367
float t = find_gamut_intersection(a_, b_, L, C, L0);
368
float L_clipped = L0 * (1.f - t) + t * L;
369
float C_clipped = t * C;
370
371
return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
372
}
373
374
static RGB gamut_clip_adaptive_L0_L_cusp(RGB rgb, float alpha = 0.05f)
375
{
376
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
377
return rgb;
378
379
Lab lab = linear_srgb_to_oklab(rgb);
380
381
float L = lab.L;
382
float eps = 0.00001f;
383
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
384
float a_ = lab.a / C;
385
float b_ = lab.b / C;
386
387
// The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
388
LC cusp = find_cusp(a_, b_);
389
390
float Ld = L - cusp.L;
391
float k = 2.f * (Ld > 0 ? 1.f - cusp.L : cusp.L);
392
393
float e1 = 0.5f * k + fabs(Ld) + alpha * C / k;
394
float L0 = cusp.L + 0.5f * (sgn(Ld) * (e1 - sqrtf(e1 * e1 - 2.f * k * fabs(Ld))));
395
396
float t = find_gamut_intersection(a_, b_, L, C, L0);
397
float L_clipped = L0 * (1.f - t) + t * L;
398
float C_clipped = t * C;
399
400
return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
401
}
402
403
static float toe(float x)
404
{
405
constexpr float k_1 = 0.206f;
406
constexpr float k_2 = 0.03f;
407
constexpr float k_3 = (1.f + k_1) / (1.f + k_2);
408
return 0.5f * (k_3 * x - k_1 + sqrtf((k_3 * x - k_1) * (k_3 * x - k_1) + 4 * k_2 * k_3 * x));
409
}
410
411
static float toe_inv(float x)
412
{
413
constexpr float k_1 = 0.206f;
414
constexpr float k_2 = 0.03f;
415
constexpr float k_3 = (1.f + k_1) / (1.f + k_2);
416
return (x * x + k_1 * x) / (k_3 * (x + k_2));
417
}
418
419
static ST to_ST(LC cusp)
420
{
421
float L = cusp.L;
422
float C = cusp.C;
423
return { C / L, C / (1 - L) };
424
}
425
426
// Returns a smooth approximation of the location of the cusp
427
// This polynomial was created by an optimization process
428
// It has been designed so that S_mid < S_max and T_mid < T_max
429
static ST get_ST_mid(float a_, float b_)
430
{
431
float S = 0.11516993f + 1.f / (
432
+7.44778970f + 4.15901240f * b_
433
+ a_ * (-2.19557347f + 1.75198401f * b_
434
+ a_ * (-2.13704948f - 10.02301043f * b_
435
+ a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_
436
)))
437
);
438
439
float T = 0.11239642f + 1.f / (
440
+1.61320320f - 0.68124379f * b_
441
+ a_ * (+0.40370612f + 0.90148123f * b_
442
+ a_ * (-0.27087943f + 0.61223990f * b_
443
+ a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_
444
)))
445
);
446
447
return { S, T };
448
}
449
450
struct Cs { float C_0; float C_mid; float C_max; };
451
static Cs get_Cs(float L, float a_, float b_)
452
{
453
LC cusp = find_cusp(a_, b_);
454
455
float C_max = find_gamut_intersection(a_, b_, L, 1, L, cusp);
456
ST ST_max = to_ST(cusp);
457
458
// Scale factor to compensate for the curved part of gamut shape:
459
float k = C_max / fmin((L * ST_max.S), (1 - L) * ST_max.T);
460
461
float C_mid;
462
{
463
ST ST_mid = get_ST_mid(a_, b_);
464
465
// Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
466
float C_a = L * ST_mid.S;
467
float C_b = (1.f - L) * ST_mid.T;
468
C_mid = 0.9f * k * sqrtf(sqrtf(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b))));
469
}
470
471
float C_0;
472
{
473
// for C_0, the shape is independent of hue, so ST are constant. Values picked to roughly be the average values of ST.
474
float C_a = L * 0.4f;
475
float C_b = (1.f - L) * 0.8f;
476
477
// Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
478
C_0 = sqrtf(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b)));
479
}
480
481
return { C_0, C_mid, C_max };
482
}
483
484
static RGB okhsl_to_srgb(HSL hsl)
485
{
486
float h = hsl.h;
487
float s = hsl.s;
488
float l = hsl.l;
489
490
if (l == 1.0f)
491
{
492
return { 1.f, 1.f, 1.f };
493
}
494
495
else if (l == 0.f)
496
{
497
return { 0.f, 0.f, 0.f };
498
}
499
500
float a_ = cosf(2.f * pi * h);
501
float b_ = sinf(2.f * pi * h);
502
float L = toe_inv(l);
503
504
Cs cs = get_Cs(L, a_, b_);
505
float C_0 = cs.C_0;
506
float C_mid = cs.C_mid;
507
float C_max = cs.C_max;
508
509
float mid = 0.8f;
510
float mid_inv = 1.25f;
511
512
float C, t, k_0, k_1, k_2;
513
514
if (s < mid)
515
{
516
t = mid_inv * s;
517
518
k_1 = mid * C_0;
519
k_2 = (1.f - k_1 / C_mid);
520
521
C = t * k_1 / (1.f - k_2 * t);
522
}
523
else
524
{
525
t = (s - mid)/ (1 - mid);
526
527
k_0 = C_mid;
528
k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
529
k_2 = (1.f - (k_1) / (C_max - C_mid));
530
531
C = k_0 + t * k_1 / (1.f - k_2 * t);
532
}
533
534
RGB rgb = oklab_to_linear_srgb({ L, C * a_, C * b_ });
535
return {
536
srgb_transfer_function(rgb.r),
537
srgb_transfer_function(rgb.g),
538
srgb_transfer_function(rgb.b),
539
};
540
}
541
542
static HSL srgb_to_okhsl(RGB rgb)
543
{
544
Lab lab = linear_srgb_to_oklab({
545
srgb_transfer_function_inv(rgb.r),
546
srgb_transfer_function_inv(rgb.g),
547
srgb_transfer_function_inv(rgb.b)
548
});
549
550
float C = sqrtf(lab.a * lab.a + lab.b * lab.b);
551
float a_ = lab.a / C;
552
float b_ = lab.b / C;
553
554
float L = lab.L;
555
float h = 0.5f + 0.5f * atan2f(-lab.b, -lab.a) / pi;
556
557
Cs cs = get_Cs(L, a_, b_);
558
float C_0 = cs.C_0;
559
float C_mid = cs.C_mid;
560
float C_max = cs.C_max;
561
562
// Inverse of the interpolation in okhsl_to_srgb:
563
564
float mid = 0.8f;
565
float mid_inv = 1.25f;
566
567
float s;
568
if (C < C_mid)
569
{
570
float k_1 = mid * C_0;
571
float k_2 = (1.f - k_1 / C_mid);
572
573
float t = C / (k_1 + k_2 * C);
574
s = t * mid;
575
}
576
else
577
{
578
float k_0 = C_mid;
579
float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
580
float k_2 = (1.f - (k_1) / (C_max - C_mid));
581
582
float t = (C - k_0) / (k_1 + k_2 * (C - k_0));
583
s = mid + (1.f - mid) * t;
584
}
585
586
float l = toe(L);
587
return { h, s, l };
588
}
589
590
591
static RGB okhsv_to_srgb(HSV hsv)
592
{
593
float h = hsv.h;
594
float s = hsv.s;
595
float v = hsv.v;
596
597
float a_ = cosf(2.f * pi * h);
598
float b_ = sinf(2.f * pi * h);
599
600
LC cusp = find_cusp(a_, b_);
601
ST ST_max = to_ST(cusp);
602
float S_max = ST_max.S;
603
float T_max = ST_max.T;
604
float S_0 = 0.5f;
605
float k = 1 - S_0 / S_max;
606
607
// first we compute L and V as if the gamut is a perfect triangle:
608
609
// L, C when v==1:
610
float L_v = 1 - s * S_0 / (S_0 + T_max - T_max * k * s);
611
float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s);
612
613
float L = v * L_v;
614
float C = v * C_v;
615
616
// then we compensate for both toe and the curved top part of the triangle:
617
float L_vt = toe_inv(L_v);
618
float C_vt = C_v * L_vt / L_v;
619
620
float L_new = toe_inv(L);
621
C = C * L_new / L;
622
L = L_new;
623
624
RGB rgb_scale = oklab_to_linear_srgb({ L_vt, a_ * C_vt, b_ * C_vt });
625
float scale_L = cbrtf(1.f / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.f)));
626
627
L = L * scale_L;
628
C = C * scale_L;
629
630
RGB rgb = oklab_to_linear_srgb({ L, C * a_, C * b_ });
631
return {
632
srgb_transfer_function(rgb.r),
633
srgb_transfer_function(rgb.g),
634
srgb_transfer_function(rgb.b),
635
};
636
}
637
638
static HSV srgb_to_okhsv(RGB rgb)
639
{
640
Lab lab = linear_srgb_to_oklab({
641
srgb_transfer_function_inv(rgb.r),
642
srgb_transfer_function_inv(rgb.g),
643
srgb_transfer_function_inv(rgb.b)
644
});
645
646
float C = sqrtf(lab.a * lab.a + lab.b * lab.b);
647
float a_ = lab.a / C;
648
float b_ = lab.b / C;
649
650
float L = lab.L;
651
float h = 0.5f + 0.5f * atan2f(-lab.b, -lab.a) / pi;
652
653
LC cusp = find_cusp(a_, b_);
654
ST ST_max = to_ST(cusp);
655
float S_max = ST_max.S;
656
float T_max = ST_max.T;
657
float S_0 = 0.5f;
658
float k = 1 - S_0 / S_max;
659
660
// first we find L_v, C_v, L_vt and C_vt
661
662
float t = T_max / (C + L * T_max);
663
float L_v = t * L;
664
float C_v = t * C;
665
666
float L_vt = toe_inv(L_v);
667
float C_vt = C_v * L_vt / L_v;
668
669
// we can then use these to invert the step that compensates for the toe and the curved top part of the triangle:
670
RGB rgb_scale = oklab_to_linear_srgb({ L_vt, a_ * C_vt, b_ * C_vt });
671
float scale_L = cbrtf(1.f / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.f)));
672
673
L = L / scale_L;
674
C = C / scale_L;
675
676
C = C * toe(L) / L;
677
L = toe(L);
678
679
// we can now compute v and s:
680
681
float v = L / L_v;
682
float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v);
683
684
return { h, s, v };
685
}
686
687
};
688
#endif // OK_COLOR_H
689
690