Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/recastnavigation/Recast/Include/Recast.h
9913 views
1
//
2
// Copyright (c) 2009-2010 Mikko Mononen [email protected]
3
//
4
// This software is provided 'as-is', without any express or implied
5
// warranty. In no event will the authors be held liable for any damages
6
// arising from the use of this software.
7
// Permission is granted to anyone to use this software for any purpose,
8
// including commercial applications, and to alter it and redistribute it
9
// freely, subject to the following restrictions:
10
// 1. The origin of this software must not be misrepresented; you must not
11
// claim that you wrote the original software. If you use this software
12
// in a product, an acknowledgment in the product documentation would be
13
// appreciated but is not required.
14
// 2. Altered source versions must be plainly marked as such, and must not be
15
// misrepresented as being the original software.
16
// 3. This notice may not be removed or altered from any source distribution.
17
//
18
19
#ifndef RECAST_H
20
#define RECAST_H
21
22
/// The value of PI used by Recast.
23
static const float RC_PI = 3.14159265f;
24
25
/// Used to ignore unused function parameters and silence any compiler warnings.
26
template<class T> void rcIgnoreUnused(const T&) { }
27
28
/// Recast log categories.
29
/// @see rcContext
30
enum rcLogCategory
31
{
32
RC_LOG_PROGRESS = 1, ///< A progress log entry.
33
RC_LOG_WARNING, ///< A warning log entry.
34
RC_LOG_ERROR ///< An error log entry.
35
};
36
37
/// Recast performance timer categories.
38
/// @see rcContext
39
enum rcTimerLabel
40
{
41
/// The user defined total time of the build.
42
RC_TIMER_TOTAL,
43
/// A user defined build time.
44
RC_TIMER_TEMP,
45
/// The time to rasterize the triangles. (See: #rcRasterizeTriangle)
46
RC_TIMER_RASTERIZE_TRIANGLES,
47
/// The time to build the compact heightfield. (See: #rcBuildCompactHeightfield)
48
RC_TIMER_BUILD_COMPACTHEIGHTFIELD,
49
/// The total time to build the contours. (See: #rcBuildContours)
50
RC_TIMER_BUILD_CONTOURS,
51
/// The time to trace the boundaries of the contours. (See: #rcBuildContours)
52
RC_TIMER_BUILD_CONTOURS_TRACE,
53
/// The time to simplify the contours. (See: #rcBuildContours)
54
RC_TIMER_BUILD_CONTOURS_SIMPLIFY,
55
/// The time to filter ledge spans. (See: #rcFilterLedgeSpans)
56
RC_TIMER_FILTER_BORDER,
57
/// The time to filter low height spans. (See: #rcFilterWalkableLowHeightSpans)
58
RC_TIMER_FILTER_WALKABLE,
59
/// The time to apply the median filter. (See: #rcMedianFilterWalkableArea)
60
RC_TIMER_MEDIAN_AREA,
61
/// The time to filter low obstacles. (See: #rcFilterLowHangingWalkableObstacles)
62
RC_TIMER_FILTER_LOW_OBSTACLES,
63
/// The time to build the polygon mesh. (See: #rcBuildPolyMesh)
64
RC_TIMER_BUILD_POLYMESH,
65
/// The time to merge polygon meshes. (See: #rcMergePolyMeshes)
66
RC_TIMER_MERGE_POLYMESH,
67
/// The time to erode the walkable area. (See: #rcErodeWalkableArea)
68
RC_TIMER_ERODE_AREA,
69
/// The time to mark a box area. (See: #rcMarkBoxArea)
70
RC_TIMER_MARK_BOX_AREA,
71
/// The time to mark a cylinder area. (See: #rcMarkCylinderArea)
72
RC_TIMER_MARK_CYLINDER_AREA,
73
/// The time to mark a convex polygon area. (See: #rcMarkConvexPolyArea)
74
RC_TIMER_MARK_CONVEXPOLY_AREA,
75
/// The total time to build the distance field. (See: #rcBuildDistanceField)
76
RC_TIMER_BUILD_DISTANCEFIELD,
77
/// The time to build the distances of the distance field. (See: #rcBuildDistanceField)
78
RC_TIMER_BUILD_DISTANCEFIELD_DIST,
79
/// The time to blur the distance field. (See: #rcBuildDistanceField)
80
RC_TIMER_BUILD_DISTANCEFIELD_BLUR,
81
/// The total time to build the regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
82
RC_TIMER_BUILD_REGIONS,
83
/// The total time to apply the watershed algorithm. (See: #rcBuildRegions)
84
RC_TIMER_BUILD_REGIONS_WATERSHED,
85
/// The time to expand regions while applying the watershed algorithm. (See: #rcBuildRegions)
86
RC_TIMER_BUILD_REGIONS_EXPAND,
87
/// The time to flood regions while applying the watershed algorithm. (See: #rcBuildRegions)
88
RC_TIMER_BUILD_REGIONS_FLOOD,
89
/// The time to filter out small regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
90
RC_TIMER_BUILD_REGIONS_FILTER,
91
/// The time to build heightfield layers. (See: #rcBuildHeightfieldLayers)
92
RC_TIMER_BUILD_LAYERS,
93
/// The time to build the polygon mesh detail. (See: #rcBuildPolyMeshDetail)
94
RC_TIMER_BUILD_POLYMESHDETAIL,
95
/// The time to merge polygon mesh details. (See: #rcMergePolyMeshDetails)
96
RC_TIMER_MERGE_POLYMESHDETAIL,
97
/// The maximum number of timers. (Used for iterating timers.)
98
RC_MAX_TIMERS
99
};
100
101
/// Provides an interface for optional logging and performance tracking of the Recast
102
/// build process.
103
///
104
/// This class does not provide logging or timer functionality on its
105
/// own. Both must be provided by a concrete implementation
106
/// by overriding the protected member functions. Also, this class does not
107
/// provide an interface for extracting log messages. (Only adding them.)
108
/// So concrete implementations must provide one.
109
///
110
/// If no logging or timers are required, just pass an instance of this
111
/// class through the Recast build process.
112
///
113
/// @ingroup recast
114
class rcContext
115
{
116
public:
117
/// Constructor.
118
/// @param[in] state TRUE if the logging and performance timers should be enabled. [Default: true]
119
inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {}
120
virtual ~rcContext() {}
121
122
/// Enables or disables logging.
123
/// @param[in] state TRUE if logging should be enabled.
124
inline void enableLog(bool state) { m_logEnabled = state; }
125
126
/// Clears all log entries.
127
inline void resetLog() { if (m_logEnabled) doResetLog(); }
128
129
/// Logs a message.
130
///
131
/// Example:
132
/// @code
133
/// // Where ctx is an instance of rcContext and filepath is a char array.
134
/// ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Could not load '%s'", filepath);
135
/// @endcode
136
///
137
/// @param[in] category The category of the message.
138
/// @param[in] format The message.
139
void log(const rcLogCategory category, const char* format, ...);
140
141
/// Enables or disables the performance timers.
142
/// @param[in] state TRUE if timers should be enabled.
143
inline void enableTimer(bool state) { m_timerEnabled = state; }
144
145
/// Clears all performance timers. (Resets all to unused.)
146
inline void resetTimers() { if (m_timerEnabled) doResetTimers(); }
147
148
/// Starts the specified performance timer.
149
/// @param label The category of the timer.
150
inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); }
151
152
/// Stops the specified performance timer.
153
/// @param label The category of the timer.
154
inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); }
155
156
/// Returns the total accumulated time of the specified performance timer.
157
/// @param label The category of the timer.
158
/// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
159
inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; }
160
161
protected:
162
/// Clears all log entries.
163
virtual void doResetLog();
164
165
/// Logs a message.
166
/// @param[in] category The category of the message.
167
/// @param[in] msg The formatted message.
168
/// @param[in] len The length of the formatted message.
169
virtual void doLog(const rcLogCategory category, const char* msg, const int len) { rcIgnoreUnused(category); rcIgnoreUnused(msg); rcIgnoreUnused(len); }
170
171
/// Clears all timers. (Resets all to unused.)
172
virtual void doResetTimers() {}
173
174
/// Starts the specified performance timer.
175
/// @param[in] label The category of timer.
176
virtual void doStartTimer(const rcTimerLabel label) { rcIgnoreUnused(label); }
177
178
/// Stops the specified performance timer.
179
/// @param[in] label The category of the timer.
180
virtual void doStopTimer(const rcTimerLabel label) { rcIgnoreUnused(label); }
181
182
/// Returns the total accumulated time of the specified performance timer.
183
/// @param[in] label The category of the timer.
184
/// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
185
virtual int doGetAccumulatedTime(const rcTimerLabel label) const { rcIgnoreUnused(label); return -1; }
186
187
/// True if logging is enabled.
188
bool m_logEnabled;
189
190
/// True if the performance timers are enabled.
191
bool m_timerEnabled;
192
};
193
194
/// A helper to first start a timer and then stop it when this helper goes out of scope.
195
/// @see rcContext
196
class rcScopedTimer
197
{
198
public:
199
/// Constructs an instance and starts the timer.
200
/// @param[in] ctx The context to use.
201
/// @param[in] label The category of the timer.
202
inline rcScopedTimer(rcContext* ctx, const rcTimerLabel label) : m_ctx(ctx), m_label(label) { m_ctx->startTimer(m_label); }
203
inline ~rcScopedTimer() { m_ctx->stopTimer(m_label); }
204
205
private:
206
// Explicitly disabled copy constructor and copy assignment operator.
207
rcScopedTimer(const rcScopedTimer&);
208
rcScopedTimer& operator=(const rcScopedTimer&);
209
210
rcContext* const m_ctx;
211
const rcTimerLabel m_label;
212
};
213
214
/// Specifies a configuration to use when performing Recast builds.
215
/// @ingroup recast
216
struct rcConfig
217
{
218
/// The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
219
int width;
220
221
/// The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
222
int height;
223
224
/// The width/height size of tile's on the xz-plane. [Limit: >= 0] [Units: vx]
225
int tileSize;
226
227
/// The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
228
int borderSize;
229
230
/// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu]
231
float cs;
232
233
/// The y-axis cell size to use for fields. [Limit: > 0] [Units: wu]
234
float ch;
235
236
/// The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
237
float bmin[3];
238
239
/// The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
240
float bmax[3];
241
242
/// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees]
243
float walkableSlopeAngle;
244
245
/// Minimum floor to 'ceiling' height that will still allow the floor area to
246
/// be considered walkable. [Limit: >= 3] [Units: vx]
247
int walkableHeight;
248
249
/// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx]
250
int walkableClimb;
251
252
/// The distance to erode/shrink the walkable area of the heightfield away from
253
/// obstructions. [Limit: >=0] [Units: vx]
254
int walkableRadius;
255
256
/// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx]
257
int maxEdgeLen;
258
259
/// The maximum distance a simplified contour's border edges should deviate
260
/// the original raw contour. [Limit: >=0] [Units: vx]
261
float maxSimplificationError;
262
263
/// The minimum number of cells allowed to form isolated island areas. [Limit: >=0] [Units: vx]
264
int minRegionArea;
265
266
/// Any regions with a span count smaller than this value will, if possible,
267
/// be merged with larger regions. [Limit: >=0] [Units: vx]
268
int mergeRegionArea;
269
270
/// The maximum number of vertices allowed for polygons generated during the
271
/// contour to polygon conversion process. [Limit: >= 3]
272
int maxVertsPerPoly;
273
274
/// Sets the sampling distance to use when generating the detail mesh.
275
/// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu]
276
float detailSampleDist;
277
278
/// The maximum distance the detail mesh surface should deviate from heightfield
279
/// data. (For height detail only.) [Limit: >=0] [Units: wu]
280
float detailSampleMaxError;
281
};
282
283
/// Defines the number of bits allocated to rcSpan::smin and rcSpan::smax.
284
static const int RC_SPAN_HEIGHT_BITS = 13;
285
/// Defines the maximum value for rcSpan::smin and rcSpan::smax.
286
static const int RC_SPAN_MAX_HEIGHT = (1 << RC_SPAN_HEIGHT_BITS) - 1;
287
288
/// The number of spans allocated per span spool.
289
/// @see rcSpanPool
290
static const int RC_SPANS_PER_POOL = 2048;
291
292
/// Represents a span in a heightfield.
293
/// @see rcHeightfield
294
struct rcSpan
295
{
296
unsigned int smin : RC_SPAN_HEIGHT_BITS; ///< The lower limit of the span. [Limit: < #smax]
297
unsigned int smax : RC_SPAN_HEIGHT_BITS; ///< The upper limit of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT]
298
unsigned int area : 6; ///< The area id assigned to the span.
299
rcSpan* next; ///< The next span higher up in column.
300
};
301
302
/// A memory pool used for quick allocation of spans within a heightfield.
303
/// @see rcHeightfield
304
struct rcSpanPool
305
{
306
rcSpanPool* next; ///< The next span pool.
307
rcSpan items[RC_SPANS_PER_POOL]; ///< Array of spans in the pool.
308
};
309
310
/// A dynamic heightfield representing obstructed space.
311
/// @ingroup recast
312
struct rcHeightfield
313
{
314
rcHeightfield();
315
~rcHeightfield();
316
317
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
318
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
319
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
320
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
321
float cs; ///< The size of each cell. (On the xz-plane.)
322
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
323
rcSpan** spans; ///< Heightfield of spans (width*height).
324
rcSpanPool* pools; ///< Linked list of span pools.
325
rcSpan* freelist; ///< The next free span.
326
327
private:
328
// Explicitly-disabled copy constructor and copy assignment operator.
329
rcHeightfield(const rcHeightfield&);
330
rcHeightfield& operator=(const rcHeightfield&);
331
};
332
333
/// Provides information on the content of a cell column in a compact heightfield.
334
struct rcCompactCell
335
{
336
unsigned int index : 24; ///< Index to the first span in the column.
337
unsigned int count : 8; ///< Number of spans in the column.
338
};
339
340
/// Represents a span of unobstructed space within a compact heightfield.
341
struct rcCompactSpan
342
{
343
unsigned short y; ///< The lower extent of the span. (Measured from the heightfield's base.)
344
unsigned short reg; ///< The id of the region the span belongs to. (Or zero if not in a region.)
345
unsigned int con : 24; ///< Packed neighbor connection data.
346
unsigned int h : 8; ///< The height of the span. (Measured from #y.)
347
};
348
349
/// A compact, static heightfield representing unobstructed space.
350
/// @ingroup recast
351
struct rcCompactHeightfield
352
{
353
rcCompactHeightfield();
354
~rcCompactHeightfield();
355
356
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
357
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
358
int spanCount; ///< The number of spans in the heightfield.
359
int walkableHeight; ///< The walkable height used during the build of the field. (See: rcConfig::walkableHeight)
360
int walkableClimb; ///< The walkable climb used during the build of the field. (See: rcConfig::walkableClimb)
361
int borderSize; ///< The AABB border size used during the build of the field. (See: rcConfig::borderSize)
362
unsigned short maxDistance; ///< The maximum distance value of any span within the field.
363
unsigned short maxRegions; ///< The maximum region id of any span within the field.
364
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
365
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
366
float cs; ///< The size of each cell. (On the xz-plane.)
367
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
368
rcCompactCell* cells; ///< Array of cells. [Size: #width*#height]
369
rcCompactSpan* spans; ///< Array of spans. [Size: #spanCount]
370
unsigned short* dist; ///< Array containing border distance data. [Size: #spanCount]
371
unsigned char* areas; ///< Array containing area id data. [Size: #spanCount]
372
373
private:
374
// Explicitly-disabled copy constructor and copy assignment operator.
375
rcCompactHeightfield(const rcCompactHeightfield&);
376
rcCompactHeightfield& operator=(const rcCompactHeightfield&);
377
};
378
379
/// Represents a heightfield layer within a layer set.
380
/// @see rcHeightfieldLayerSet
381
struct rcHeightfieldLayer
382
{
383
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
384
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
385
float cs; ///< The size of each cell. (On the xz-plane.)
386
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
387
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
388
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
389
int minx; ///< The minimum x-bounds of usable data.
390
int maxx; ///< The maximum x-bounds of usable data.
391
int miny; ///< The minimum y-bounds of usable data. (Along the z-axis.)
392
int maxy; ///< The maximum y-bounds of usable data. (Along the z-axis.)
393
int hmin; ///< The minimum height bounds of usable data. (Along the y-axis.)
394
int hmax; ///< The maximum height bounds of usable data. (Along the y-axis.)
395
unsigned char* heights; ///< The heightfield. [Size: width * height]
396
unsigned char* areas; ///< Area ids. [Size: Same as #heights]
397
unsigned char* cons; ///< Packed neighbor connection information. [Size: Same as #heights]
398
};
399
400
/// Represents a set of heightfield layers.
401
/// @ingroup recast
402
/// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet
403
struct rcHeightfieldLayerSet
404
{
405
rcHeightfieldLayerSet();
406
~rcHeightfieldLayerSet();
407
408
rcHeightfieldLayer* layers; ///< The layers in the set. [Size: #nlayers]
409
int nlayers; ///< The number of layers in the set.
410
411
private:
412
// Explicitly-disabled copy constructor and copy assignment operator.
413
rcHeightfieldLayerSet(const rcHeightfieldLayerSet&);
414
rcHeightfieldLayerSet& operator=(const rcHeightfieldLayerSet&);
415
};
416
417
/// Represents a simple, non-overlapping contour in field space.
418
struct rcContour
419
{
420
int* verts; ///< Simplified contour vertex and connection data. [Size: 4 * #nverts]
421
int nverts; ///< The number of vertices in the simplified contour.
422
int* rverts; ///< Raw contour vertex and connection data. [Size: 4 * #nrverts]
423
int nrverts; ///< The number of vertices in the raw contour.
424
unsigned short reg; ///< The region id of the contour.
425
unsigned char area; ///< The area id of the contour.
426
};
427
428
/// Represents a group of related contours.
429
/// @ingroup recast
430
struct rcContourSet
431
{
432
rcContourSet();
433
~rcContourSet();
434
435
rcContour* conts; ///< An array of the contours in the set. [Size: #nconts]
436
int nconts; ///< The number of contours in the set.
437
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
438
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
439
float cs; ///< The size of each cell. (On the xz-plane.)
440
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
441
int width; ///< The width of the set. (Along the x-axis in cell units.)
442
int height; ///< The height of the set. (Along the z-axis in cell units.)
443
int borderSize; ///< The AABB border size used to generate the source data from which the contours were derived.
444
float maxError; ///< The max edge error that this contour set was simplified with.
445
446
private:
447
// Explicitly-disabled copy constructor and copy assignment operator.
448
rcContourSet(const rcContourSet&);
449
rcContourSet& operator=(const rcContourSet&);
450
};
451
452
/// Represents a polygon mesh suitable for use in building a navigation mesh.
453
/// @ingroup recast
454
struct rcPolyMesh
455
{
456
rcPolyMesh();
457
~rcPolyMesh();
458
459
unsigned short* verts; ///< The mesh vertices. [Form: (x, y, z) * #nverts]
460
unsigned short* polys; ///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp]
461
unsigned short* regs; ///< The region id assigned to each polygon. [Length: #maxpolys]
462
unsigned short* flags; ///< The user defined flags for each polygon. [Length: #maxpolys]
463
unsigned char* areas; ///< The area id assigned to each polygon. [Length: #maxpolys]
464
int nverts; ///< The number of vertices.
465
int npolys; ///< The number of polygons.
466
int maxpolys; ///< The number of allocated polygons.
467
int nvp; ///< The maximum number of vertices per polygon.
468
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
469
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
470
float cs; ///< The size of each cell. (On the xz-plane.)
471
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
472
int borderSize; ///< The AABB border size used to generate the source data from which the mesh was derived.
473
float maxEdgeError; ///< The max error of the polygon edges in the mesh.
474
475
private:
476
// Explicitly-disabled copy constructor and copy assignment operator.
477
rcPolyMesh(const rcPolyMesh&);
478
rcPolyMesh& operator=(const rcPolyMesh&);
479
};
480
481
/// Contains triangle meshes that represent detailed height data associated
482
/// with the polygons in its associated polygon mesh object.
483
/// @ingroup recast
484
struct rcPolyMeshDetail
485
{
486
rcPolyMeshDetail();
487
488
unsigned int* meshes; ///< The sub-mesh data. [Size: 4*#nmeshes]
489
float* verts; ///< The mesh vertices. [Size: 3*#nverts]
490
unsigned char* tris; ///< The mesh triangles. [Size: 4*#ntris]
491
int nmeshes; ///< The number of sub-meshes defined by #meshes.
492
int nverts; ///< The number of vertices in #verts.
493
int ntris; ///< The number of triangles in #tris.
494
495
private:
496
// Explicitly-disabled copy constructor and copy assignment operator.
497
rcPolyMeshDetail(const rcPolyMeshDetail&);
498
rcPolyMeshDetail& operator=(const rcPolyMeshDetail&);
499
};
500
501
/// @name Allocation Functions
502
/// Functions used to allocate and de-allocate Recast objects.
503
/// @see rcAllocSetCustom
504
/// @{
505
506
/// Allocates a heightfield object using the Recast allocator.
507
/// @return A heightfield that is ready for initialization, or null on failure.
508
/// @ingroup recast
509
/// @see rcCreateHeightfield, rcFreeHeightField
510
rcHeightfield* rcAllocHeightfield();
511
512
/// Frees the specified heightfield object using the Recast allocator.
513
/// @param[in] heightfield A heightfield allocated using #rcAllocHeightfield
514
/// @ingroup recast
515
/// @see rcAllocHeightfield
516
void rcFreeHeightField(rcHeightfield* heightfield);
517
518
/// Allocates a compact heightfield object using the Recast allocator.
519
/// @return A compact heightfield that is ready for initialization, or null on failure.
520
/// @ingroup recast
521
/// @see rcBuildCompactHeightfield, rcFreeCompactHeightfield
522
rcCompactHeightfield* rcAllocCompactHeightfield();
523
524
/// Frees the specified compact heightfield object using the Recast allocator.
525
/// @param[in] compactHeightfield A compact heightfield allocated using #rcAllocCompactHeightfield
526
/// @ingroup recast
527
/// @see rcAllocCompactHeightfield
528
void rcFreeCompactHeightfield(rcCompactHeightfield* compactHeightfield);
529
530
/// Allocates a heightfield layer set using the Recast allocator.
531
/// @return A heightfield layer set that is ready for initialization, or null on failure.
532
/// @ingroup recast
533
/// @see rcBuildHeightfieldLayers, rcFreeHeightfieldLayerSet
534
rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet();
535
536
/// Frees the specified heightfield layer set using the Recast allocator.
537
/// @param[in] layerSet A heightfield layer set allocated using #rcAllocHeightfieldLayerSet
538
/// @ingroup recast
539
/// @see rcAllocHeightfieldLayerSet
540
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* layerSet);
541
542
/// Allocates a contour set object using the Recast allocator.
543
/// @return A contour set that is ready for initialization, or null on failure.
544
/// @ingroup recast
545
/// @see rcBuildContours, rcFreeContourSet
546
rcContourSet* rcAllocContourSet();
547
548
/// Frees the specified contour set using the Recast allocator.
549
/// @param[in] contourSet A contour set allocated using #rcAllocContourSet
550
/// @ingroup recast
551
/// @see rcAllocContourSet
552
void rcFreeContourSet(rcContourSet* contourSet);
553
554
/// Allocates a polygon mesh object using the Recast allocator.
555
/// @return A polygon mesh that is ready for initialization, or null on failure.
556
/// @ingroup recast
557
/// @see rcBuildPolyMesh, rcFreePolyMesh
558
rcPolyMesh* rcAllocPolyMesh();
559
560
/// Frees the specified polygon mesh using the Recast allocator.
561
/// @param[in] polyMesh A polygon mesh allocated using #rcAllocPolyMesh
562
/// @ingroup recast
563
/// @see rcAllocPolyMesh
564
void rcFreePolyMesh(rcPolyMesh* polyMesh);
565
566
/// Allocates a detail mesh object using the Recast allocator.
567
/// @return A detail mesh that is ready for initialization, or null on failure.
568
/// @ingroup recast
569
/// @see rcBuildPolyMeshDetail, rcFreePolyMeshDetail
570
rcPolyMeshDetail* rcAllocPolyMeshDetail();
571
572
/// Frees the specified detail mesh using the Recast allocator.
573
/// @param[in] detailMesh A detail mesh allocated using #rcAllocPolyMeshDetail
574
/// @ingroup recast
575
/// @see rcAllocPolyMeshDetail
576
void rcFreePolyMeshDetail(rcPolyMeshDetail* detailMesh);
577
578
/// @}
579
580
/// Heightfield border flag.
581
/// If a heightfield region ID has this bit set, then the region is a border
582
/// region and its spans are considered un-walkable.
583
/// (Used during the region and contour build process.)
584
/// @see rcCompactSpan::reg
585
static const unsigned short RC_BORDER_REG = 0x8000;
586
587
/// Polygon touches multiple regions.
588
/// If a polygon has this region ID it was merged with or created
589
/// from polygons of different regions during the polymesh
590
/// build step that removes redundant border vertices.
591
/// (Used during the polymesh and detail polymesh build processes)
592
/// @see rcPolyMesh::regs
593
static const unsigned short RC_MULTIPLE_REGS = 0;
594
595
/// Border vertex flag.
596
/// If a region ID has this bit set, then the associated element lies on
597
/// a tile border. If a contour vertex's region ID has this bit set, the
598
/// vertex will later be removed in order to match the segments and vertices
599
/// at tile boundaries.
600
/// (Used during the build process.)
601
/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
602
static const int RC_BORDER_VERTEX = 0x10000;
603
604
/// Area border flag.
605
/// If a region ID has this bit set, then the associated element lies on
606
/// the border of an area.
607
/// (Used during the region and contour build process.)
608
/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
609
static const int RC_AREA_BORDER = 0x20000;
610
611
/// Contour build flags.
612
/// @see rcBuildContours
613
enum rcBuildContoursFlags
614
{
615
RC_CONTOUR_TESS_WALL_EDGES = 0x01, ///< Tessellate solid (impassable) edges during contour simplification.
616
RC_CONTOUR_TESS_AREA_EDGES = 0x02 ///< Tessellate edges between areas during contour simplification.
617
};
618
619
/// Applied to the region id field of contour vertices in order to extract the region id.
620
/// The region id field of a vertex may have several flags applied to it. So the
621
/// fields value can't be used directly.
622
/// @see rcContour::verts, rcContour::rverts
623
static const int RC_CONTOUR_REG_MASK = 0xffff;
624
625
/// An value which indicates an invalid index within a mesh.
626
/// @note This does not necessarily indicate an error.
627
/// @see rcPolyMesh::polys
628
static const unsigned short RC_MESH_NULL_IDX = 0xffff;
629
630
/// Represents the null area.
631
/// When a data element is given this value it is considered to no longer be
632
/// assigned to a usable area. (E.g. It is un-walkable.)
633
static const unsigned char RC_NULL_AREA = 0;
634
635
/// The default area id used to indicate a walkable polygon.
636
/// This is also the maximum allowed area id, and the only non-null area id
637
/// recognized by some steps in the build process.
638
static const unsigned char RC_WALKABLE_AREA = 63;
639
640
/// The value returned by #rcGetCon if the specified direction is not connected
641
/// to another span. (Has no neighbor.)
642
static const int RC_NOT_CONNECTED = 0x3f;
643
644
/// @name General helper functions
645
/// @{
646
647
/// Swaps the values of the two parameters.
648
/// @param[in,out] a Value A
649
/// @param[in,out] b Value B
650
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }
651
652
/// Returns the minimum of two values.
653
/// @param[in] a Value A
654
/// @param[in] b Value B
655
/// @return The minimum of the two values.
656
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }
657
658
/// Returns the maximum of two values.
659
/// @param[in] a Value A
660
/// @param[in] b Value B
661
/// @return The maximum of the two values.
662
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }
663
664
/// Returns the absolute value.
665
/// @param[in] a The value.
666
/// @return The absolute value of the specified value.
667
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }
668
669
/// Returns the square of the value.
670
/// @param[in] a The value.
671
/// @return The square of the value.
672
template<class T> inline T rcSqr(T a) { return a*a; }
673
674
/// Clamps the value to the specified range.
675
/// @param[in] value The value to clamp.
676
/// @param[in] minInclusive The minimum permitted return value.
677
/// @param[in] maxInclusive The maximum permitted return value.
678
/// @return The value, clamped to the specified range.
679
template<class T> inline T rcClamp(T value, T minInclusive, T maxInclusive)
680
{
681
return value < minInclusive ? minInclusive: (value > maxInclusive ? maxInclusive : value);
682
}
683
684
/// Returns the square root of the value.
685
/// @param[in] x The value.
686
/// @return The square root of the vlaue.
687
float rcSqrt(float x);
688
689
/// @}
690
/// @name Vector helper functions.
691
/// @{
692
693
/// Derives the cross product of two vectors. (@p v1 x @p v2)
694
/// @param[out] dest The cross product. [(x, y, z)]
695
/// @param[in] v1 A Vector [(x, y, z)]
696
/// @param[in] v2 A vector [(x, y, z)]
697
inline void rcVcross(float* dest, const float* v1, const float* v2)
698
{
699
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
700
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
701
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
702
}
703
704
/// Derives the dot product of two vectors. (@p v1 . @p v2)
705
/// @param[in] v1 A Vector [(x, y, z)]
706
/// @param[in] v2 A vector [(x, y, z)]
707
/// @return The dot product.
708
inline float rcVdot(const float* v1, const float* v2)
709
{
710
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
711
}
712
713
/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
714
/// @param[out] dest The result vector. [(x, y, z)]
715
/// @param[in] v1 The base vector. [(x, y, z)]
716
/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
717
/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
718
inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
719
{
720
dest[0] = v1[0]+v2[0]*s;
721
dest[1] = v1[1]+v2[1]*s;
722
dest[2] = v1[2]+v2[2]*s;
723
}
724
725
/// Performs a vector addition. (@p v1 + @p v2)
726
/// @param[out] dest The result vector. [(x, y, z)]
727
/// @param[in] v1 The base vector. [(x, y, z)]
728
/// @param[in] v2 The vector to add to @p v1. [(x, y, z)]
729
inline void rcVadd(float* dest, const float* v1, const float* v2)
730
{
731
dest[0] = v1[0]+v2[0];
732
dest[1] = v1[1]+v2[1];
733
dest[2] = v1[2]+v2[2];
734
}
735
736
/// Performs a vector subtraction. (@p v1 - @p v2)
737
/// @param[out] dest The result vector. [(x, y, z)]
738
/// @param[in] v1 The base vector. [(x, y, z)]
739
/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)]
740
inline void rcVsub(float* dest, const float* v1, const float* v2)
741
{
742
dest[0] = v1[0]-v2[0];
743
dest[1] = v1[1]-v2[1];
744
dest[2] = v1[2]-v2[2];
745
}
746
747
/// Selects the minimum value of each element from the specified vectors.
748
/// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)]
749
/// @param[in] v A vector. [(x, y, z)]
750
inline void rcVmin(float* mn, const float* v)
751
{
752
mn[0] = rcMin(mn[0], v[0]);
753
mn[1] = rcMin(mn[1], v[1]);
754
mn[2] = rcMin(mn[2], v[2]);
755
}
756
757
/// Selects the maximum value of each element from the specified vectors.
758
/// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)]
759
/// @param[in] v A vector. [(x, y, z)]
760
inline void rcVmax(float* mx, const float* v)
761
{
762
mx[0] = rcMax(mx[0], v[0]);
763
mx[1] = rcMax(mx[1], v[1]);
764
mx[2] = rcMax(mx[2], v[2]);
765
}
766
767
/// Performs a vector copy.
768
/// @param[out] dest The result. [(x, y, z)]
769
/// @param[in] v The vector to copy. [(x, y, z)]
770
inline void rcVcopy(float* dest, const float* v)
771
{
772
dest[0] = v[0];
773
dest[1] = v[1];
774
dest[2] = v[2];
775
}
776
777
/// Returns the distance between two points.
778
/// @param[in] v1 A point. [(x, y, z)]
779
/// @param[in] v2 A point. [(x, y, z)]
780
/// @return The distance between the two points.
781
inline float rcVdist(const float* v1, const float* v2)
782
{
783
float dx = v2[0] - v1[0];
784
float dy = v2[1] - v1[1];
785
float dz = v2[2] - v1[2];
786
return rcSqrt(dx*dx + dy*dy + dz*dz);
787
}
788
789
/// Returns the square of the distance between two points.
790
/// @param[in] v1 A point. [(x, y, z)]
791
/// @param[in] v2 A point. [(x, y, z)]
792
/// @return The square of the distance between the two points.
793
inline float rcVdistSqr(const float* v1, const float* v2)
794
{
795
float dx = v2[0] - v1[0];
796
float dy = v2[1] - v1[1];
797
float dz = v2[2] - v1[2];
798
return dx*dx + dy*dy + dz*dz;
799
}
800
801
/// Normalizes the vector.
802
/// @param[in,out] v The vector to normalize. [(x, y, z)]
803
inline void rcVnormalize(float* v)
804
{
805
float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
806
v[0] *= d;
807
v[1] *= d;
808
v[2] *= d;
809
}
810
811
/// @}
812
/// @name Heightfield Functions
813
/// @see rcHeightfield
814
/// @{
815
816
/// Calculates the bounding box of an array of vertices.
817
/// @ingroup recast
818
/// @param[in] verts An array of vertices. [(x, y, z) * @p nv]
819
/// @param[in] numVerts The number of vertices in the @p verts array.
820
/// @param[out] minBounds The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
821
/// @param[out] maxBounds The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
822
void rcCalcBounds(const float* verts, int numVerts, float* minBounds, float* maxBounds);
823
824
/// Calculates the grid size based on the bounding box and grid cell size.
825
/// @ingroup recast
826
/// @param[in] minBounds The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
827
/// @param[in] maxBounds The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
828
/// @param[in] cellSize The xz-plane cell size. [Limit: > 0] [Units: wu]
829
/// @param[out] sizeX The width along the x-axis. [Limit: >= 0] [Units: vx]
830
/// @param[out] sizeZ The height along the z-axis. [Limit: >= 0] [Units: vx]
831
void rcCalcGridSize(const float* minBounds, const float* maxBounds, float cellSize, int* sizeX, int* sizeZ);
832
833
/// Initializes a new heightfield.
834
/// See the #rcConfig documentation for more information on the configuration parameters.
835
///
836
/// @see rcAllocHeightfield, rcHeightfield
837
/// @ingroup recast
838
///
839
/// @param[in,out] context The build context to use during the operation.
840
/// @param[in,out] heightfield The allocated heightfield to initialize.
841
/// @param[in] sizeX The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
842
/// @param[in] sizeZ The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
843
/// @param[in] minBounds The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
844
/// @param[in] maxBounds The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
845
/// @param[in] cellSize The xz-plane cell size to use for the field. [Limit: > 0] [Units: wu]
846
/// @param[in] cellHeight The y-axis cell size to use for field. [Limit: > 0] [Units: wu]
847
/// @returns True if the operation completed successfully.
848
bool rcCreateHeightfield(rcContext* context, rcHeightfield& heightfield, int sizeX, int sizeZ,
849
const float* minBounds, const float* maxBounds,
850
float cellSize, float cellHeight);
851
852
/// Sets the area id of all triangles with a slope below the specified value
853
/// to #RC_WALKABLE_AREA.
854
///
855
/// Only sets the area id's for the walkable triangles. Does not alter the
856
/// area id's for un-walkable triangles.
857
///
858
/// See the #rcConfig documentation for more information on the configuration parameters.
859
///
860
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
861
///
862
/// @ingroup recast
863
/// @param[in,out] context The build context to use during the operation.
864
/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable.
865
/// [Limits: 0 <= value < 90] [Units: Degrees]
866
/// @param[in] verts The vertices. [(x, y, z) * @p nv]
867
/// @param[in] numVerts The number of vertices.
868
/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
869
/// @param[in] numTris The number of triangles.
870
/// @param[out] triAreaIDs The triangle area ids. [Length: >= @p nt]
871
void rcMarkWalkableTriangles(rcContext* context, float walkableSlopeAngle, const float* verts, int numVerts,
872
const int* tris, int numTris, unsigned char* triAreaIDs);
873
874
/// Sets the area id of all triangles with a slope greater than or equal to the specified value to #RC_NULL_AREA.
875
///
876
/// Only sets the area id's for the un-walkable triangles. Does not alter the
877
/// area id's for walkable triangles.
878
///
879
/// See the #rcConfig documentation for more information on the configuration parameters.
880
///
881
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
882
///
883
/// @ingroup recast
884
/// @param[in,out] context The build context to use during the operation.
885
/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable.
886
/// [Limits: 0 <= value < 90] [Units: Degrees]
887
/// @param[in] verts The vertices. [(x, y, z) * @p nv]
888
/// @param[in] numVerts The number of vertices.
889
/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
890
/// @param[in] numTris The number of triangles.
891
/// @param[out] triAreaIDs The triangle area ids. [Length: >= @p nt]
892
void rcClearUnwalkableTriangles(rcContext* context, float walkableSlopeAngle, const float* verts, int numVerts,
893
const int* tris, int numTris, unsigned char* triAreaIDs);
894
895
/// Adds a span to the specified heightfield.
896
///
897
/// The span addition can be set to favor flags. If the span is merged to
898
/// another span and the new @p spanMax is within @p flagMergeThreshold units
899
/// from the existing span, the span flags are merged.
900
///
901
/// @ingroup recast
902
/// @param[in,out] context The build context to use during the operation.
903
/// @param[in,out] heightfield An initialized heightfield.
904
/// @param[in] x The column x index where the span is to be added.
905
/// [Limits: 0 <= value < rcHeightfield::width]
906
/// @param[in] z The column z index where the span is to be added.
907
/// [Limits: 0 <= value < rcHeightfield::height]
908
/// @param[in] spanMin The minimum height of the span. [Limit: < @p spanMax] [Units: vx]
909
/// @param[in] spanMax The maximum height of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] [Units: vx]
910
/// @param[in] areaID The area id of the span. [Limit: <= #RC_WALKABLE_AREA)
911
/// @param[in] flagMergeThreshold The merge threshold. [Limit: >= 0] [Units: vx]
912
/// @returns True if the operation completed successfully.
913
bool rcAddSpan(rcContext* context, rcHeightfield& heightfield,
914
int x, int z,
915
unsigned short spanMin, unsigned short spanMax,
916
unsigned char areaID, int flagMergeThreshold);
917
918
/// Rasterizes a single triangle into the specified heightfield.
919
///
920
/// Calling this for each triangle in a mesh is less efficient than calling rcRasterizeTriangles
921
///
922
/// No spans will be added if the triangle does not overlap the heightfield grid.
923
///
924
/// @see rcHeightfield
925
/// @ingroup recast
926
/// @param[in,out] context The build context to use during the operation.
927
/// @param[in] v0 Triangle vertex 0 [(x, y, z)]
928
/// @param[in] v1 Triangle vertex 1 [(x, y, z)]
929
/// @param[in] v2 Triangle vertex 2 [(x, y, z)]
930
/// @param[in] areaID The area id of the triangle. [Limit: <= #RC_WALKABLE_AREA]
931
/// @param[in,out] heightfield An initialized heightfield.
932
/// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag.
933
/// [Limit: >= 0] [Units: vx]
934
/// @returns True if the operation completed successfully.
935
bool rcRasterizeTriangle(rcContext* context,
936
const float* v0, const float* v1, const float* v2,
937
unsigned char areaID, rcHeightfield& heightfield, int flagMergeThreshold = 1);
938
939
/// Rasterizes an indexed triangle mesh into the specified heightfield.
940
///
941
/// Spans will only be added for triangles that overlap the heightfield grid.
942
///
943
/// @see rcHeightfield
944
/// @ingroup recast
945
/// @param[in,out] context The build context to use during the operation.
946
/// @param[in] verts The vertices. [(x, y, z) * @p nv]
947
/// @param[in] numVerts The number of vertices. (unused) TODO (graham): Remove in next major release
948
/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
949
/// @param[in] triAreaIDs The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
950
/// @param[in] numTris The number of triangles.
951
/// @param[in,out] heightfield An initialized heightfield.
952
/// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag.
953
/// [Limit: >= 0] [Units: vx]
954
/// @returns True if the operation completed successfully.
955
bool rcRasterizeTriangles(rcContext* context,
956
const float* verts, int numVerts,
957
const int* tris, const unsigned char* triAreaIDs, int numTris,
958
rcHeightfield& heightfield, int flagMergeThreshold = 1);
959
960
/// Rasterizes an indexed triangle mesh into the specified heightfield.
961
///
962
/// Spans will only be added for triangles that overlap the heightfield grid.
963
///
964
/// @see rcHeightfield
965
/// @ingroup recast
966
/// @param[in,out] context The build context to use during the operation.
967
/// @param[in] verts The vertices. [(x, y, z) * @p nv]
968
/// @param[in] numVerts The number of vertices. (unused) TODO (graham): Remove in next major release
969
/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
970
/// @param[in] triAreaIDs The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
971
/// @param[in] numTris The number of triangles.
972
/// @param[in,out] heightfield An initialized heightfield.
973
/// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag.
974
/// [Limit: >= 0] [Units: vx]
975
/// @returns True if the operation completed successfully.
976
bool rcRasterizeTriangles(rcContext* context,
977
const float* verts, int numVerts,
978
const unsigned short* tris, const unsigned char* triAreaIDs, int numTris,
979
rcHeightfield& heightfield, int flagMergeThreshold = 1);
980
981
/// Rasterizes a triangle list into the specified heightfield.
982
///
983
/// Expects each triangle to be specified as three sequential vertices of 3 floats.
984
///
985
/// Spans will only be added for triangles that overlap the heightfield grid.
986
///
987
/// @see rcHeightfield
988
/// @ingroup recast
989
/// @param[in,out] context The build context to use during the operation.
990
/// @param[in] verts The triangle vertices. [(ax, ay, az, bx, by, bz, cx, by, cx) * @p nt]
991
/// @param[in] triAreaIDs The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
992
/// @param[in] numTris The number of triangles.
993
/// @param[in,out] heightfield An initialized heightfield.
994
/// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag.
995
/// [Limit: >= 0] [Units: vx]
996
/// @returns True if the operation completed successfully.
997
bool rcRasterizeTriangles(rcContext* context,
998
const float* verts, const unsigned char* triAreaIDs, int numTris,
999
rcHeightfield& heightfield, int flagMergeThreshold = 1);
1000
1001
/// Marks non-walkable spans as walkable if their maximum is within @p walkableClimb of a walkable neighbor.
1002
///
1003
/// Allows the formation of walkable regions that will flow over low lying
1004
/// objects such as curbs, and up structures such as stairways.
1005
///
1006
/// Two neighboring spans are walkable if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) < waklableClimb</tt>
1007
///
1008
/// @warning Will override the effect of #rcFilterLedgeSpans. So if both filters are used, call
1009
/// #rcFilterLedgeSpans after calling this filter.
1010
///
1011
/// @see rcHeightfield, rcConfig
1012
///
1013
/// @ingroup recast
1014
/// @param[in,out] context The build context to use during the operation.
1015
/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
1016
/// [Limit: >=0] [Units: vx]
1017
/// @param[in,out] heightfield A fully built heightfield. (All spans have been added.)
1018
void rcFilterLowHangingWalkableObstacles(rcContext* context, int walkableClimb, rcHeightfield& heightfield);
1019
1020
/// Marks spans that are ledges as not-walkable.
1021
///
1022
/// A ledge is a span with one or more neighbors whose maximum is further away than @p walkableClimb
1023
/// from the current span's maximum.
1024
/// This method removes the impact of the overestimation of conservative voxelization
1025
/// so the resulting mesh will not have regions hanging in the air over ledges.
1026
///
1027
/// A span is a ledge if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) > walkableClimb</tt>
1028
///
1029
/// @see rcHeightfield, rcConfig
1030
///
1031
/// @ingroup recast
1032
/// @param[in,out] context The build context to use during the operation.
1033
/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
1034
/// be considered walkable. [Limit: >= 3] [Units: vx]
1035
/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
1036
/// [Limit: >=0] [Units: vx]
1037
/// @param[in,out] heightfield A fully built heightfield. (All spans have been added.)
1038
void rcFilterLedgeSpans(rcContext* context, int walkableHeight, int walkableClimb, rcHeightfield& heightfield);
1039
1040
/// Marks walkable spans as not walkable if the clearance above the span is less than the specified height.
1041
///
1042
/// For this filter, the clearance above the span is the distance from the span's
1043
/// maximum to the next higher span's minimum. (Same grid column.)
1044
///
1045
/// @see rcHeightfield, rcConfig
1046
/// @ingroup recast
1047
///
1048
/// @param[in,out] context The build context to use during the operation.
1049
/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
1050
/// be considered walkable. [Limit: >= 3] [Units: vx]
1051
/// @param[in,out] heightfield A fully built heightfield. (All spans have been added.)
1052
void rcFilterWalkableLowHeightSpans(rcContext* context, int walkableHeight, rcHeightfield& heightfield);
1053
1054
/// Returns the number of spans contained in the specified heightfield.
1055
/// @ingroup recast
1056
/// @param[in,out] context The build context to use during the operation.
1057
/// @param[in] heightfield An initialized heightfield.
1058
/// @returns The number of spans in the heightfield.
1059
int rcGetHeightFieldSpanCount(rcContext* context, const rcHeightfield& heightfield);
1060
1061
/// @}
1062
/// @name Compact Heightfield Functions
1063
/// @see rcCompactHeightfield
1064
/// @{
1065
1066
/// Builds a compact heightfield representing open space, from a heightfield representing solid space.
1067
///
1068
/// This is just the beginning of the process of fully building a compact heightfield.
1069
/// Various filters may be applied, then the distance field and regions built.
1070
/// E.g: #rcBuildDistanceField and #rcBuildRegions
1071
///
1072
/// See the #rcConfig documentation for more information on the configuration parameters.
1073
///
1074
/// @see rcAllocCompactHeightfield, rcHeightfield, rcCompactHeightfield, rcConfig
1075
/// @ingroup recast
1076
///
1077
/// @param[in,out] context The build context to use during the operation.
1078
/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
1079
/// to be considered walkable. [Limit: >= 3] [Units: vx]
1080
/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
1081
/// [Limit: >=0] [Units: vx]
1082
/// @param[in] heightfield The heightfield to be compacted.
1083
/// @param[out] compactHeightfield The resulting compact heightfield. (Must be pre-allocated.)
1084
/// @returns True if the operation completed successfully.
1085
bool rcBuildCompactHeightfield(rcContext* context, int walkableHeight, int walkableClimb,
1086
const rcHeightfield& heightfield, rcCompactHeightfield& compactHeightfield);
1087
1088
/// Erodes the walkable area within the heightfield by the specified radius.
1089
/// @ingroup recast
1090
/// @param[in,out] ctx The build context to use during the operation.
1091
/// @param[in] radius The radius of erosion. [Limits: 0 < value < 255] [Units: vx]
1092
/// @param[in,out] chf The populated compact heightfield to erode.
1093
/// @returns True if the operation completed successfully.
1094
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf);
1095
1096
/// Applies a median filter to walkable area types (based on area id), removing noise.
1097
/// @ingroup recast
1098
/// @param[in,out] ctx The build context to use during the operation.
1099
/// @param[in,out] chf A populated compact heightfield.
1100
/// @returns True if the operation completed successfully.
1101
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf);
1102
1103
/// Applies an area id to all spans within the specified bounding box. (AABB)
1104
/// @ingroup recast
1105
/// @param[in,out] ctx The build context to use during the operation.
1106
/// @param[in] bmin The minimum of the bounding box. [(x, y, z)]
1107
/// @param[in] bmax The maximum of the bounding box. [(x, y, z)]
1108
/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
1109
/// @param[in,out] chf A populated compact heightfield.
1110
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
1111
rcCompactHeightfield& chf);
1112
1113
/// Applies the area id to the all spans within the specified convex polygon.
1114
/// @ingroup recast
1115
/// @param[in,out] ctx The build context to use during the operation.
1116
/// @param[in] verts The vertices of the polygon [Fomr: (x, y, z) * @p nverts]
1117
/// @param[in] nverts The number of vertices in the polygon.
1118
/// @param[in] hmin The height of the base of the polygon.
1119
/// @param[in] hmax The height of the top of the polygon.
1120
/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
1121
/// @param[in,out] chf A populated compact heightfield.
1122
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
1123
const float hmin, const float hmax, unsigned char areaId,
1124
rcCompactHeightfield& chf);
1125
1126
/// Helper function to offset voncex polygons for rcMarkConvexPolyArea.
1127
/// @ingroup recast
1128
/// @param[in] verts The vertices of the polygon [Form: (x, y, z) * @p nverts]
1129
/// @param[in] nverts The number of vertices in the polygon.
1130
/// @param[in] offset How much to offset the polygon by. [Units: wu]
1131
/// @param[out] outVerts The offset vertices (should hold up to 2 * @p nverts) [Form: (x, y, z) * return value]
1132
/// @param[in] maxOutVerts The max number of vertices that can be stored to @p outVerts.
1133
/// @returns Number of vertices in the offset polygon or 0 if too few vertices in @p outVerts.
1134
int rcOffsetPoly(const float* verts, const int nverts, const float offset,
1135
float* outVerts, const int maxOutVerts);
1136
1137
/// Applies the area id to all spans within the specified cylinder.
1138
/// @ingroup recast
1139
/// @param[in,out] ctx The build context to use during the operation.
1140
/// @param[in] pos The center of the base of the cylinder. [Form: (x, y, z)]
1141
/// @param[in] r The radius of the cylinder.
1142
/// @param[in] h The height of the cylinder.
1143
/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
1144
/// @param[in,out] chf A populated compact heightfield.
1145
void rcMarkCylinderArea(rcContext* ctx, const float* pos,
1146
const float r, const float h, unsigned char areaId,
1147
rcCompactHeightfield& chf);
1148
1149
/// Builds the distance field for the specified compact heightfield.
1150
/// @ingroup recast
1151
/// @param[in,out] ctx The build context to use during the operation.
1152
/// @param[in,out] chf A populated compact heightfield.
1153
/// @returns True if the operation completed successfully.
1154
bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf);
1155
1156
/// Builds region data for the heightfield using watershed partitioning.
1157
/// @ingroup recast
1158
/// @param[in,out] ctx The build context to use during the operation.
1159
/// @param[in,out] chf A populated compact heightfield.
1160
/// @param[in] borderSize The size of the non-navigable border around the heightfield.
1161
/// [Limit: >=0] [Units: vx]
1162
/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
1163
/// [Limit: >=0] [Units: vx].
1164
/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
1165
/// be merged with larger regions. [Limit: >=0] [Units: vx]
1166
/// @returns True if the operation completed successfully.
1167
bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf, int borderSize, int minRegionArea, int mergeRegionArea);
1168
1169
/// Builds region data for the heightfield by partitioning the heightfield in non-overlapping layers.
1170
/// @ingroup recast
1171
/// @param[in,out] ctx The build context to use during the operation.
1172
/// @param[in,out] chf A populated compact heightfield.
1173
/// @param[in] borderSize The size of the non-navigable border around the heightfield.
1174
/// [Limit: >=0] [Units: vx]
1175
/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
1176
/// [Limit: >=0] [Units: vx].
1177
/// @returns True if the operation completed successfully.
1178
bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf, int borderSize, int minRegionArea);
1179
1180
/// Builds region data for the heightfield using simple monotone partitioning.
1181
/// @ingroup recast
1182
/// @param[in,out] ctx The build context to use during the operation.
1183
/// @param[in,out] chf A populated compact heightfield.
1184
/// @param[in] borderSize The size of the non-navigable border around the heightfield.
1185
/// [Limit: >=0] [Units: vx]
1186
/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
1187
/// [Limit: >=0] [Units: vx].
1188
/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
1189
/// be merged with larger regions. [Limit: >=0] [Units: vx]
1190
/// @returns True if the operation completed successfully.
1191
bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
1192
int borderSize, int minRegionArea, int mergeRegionArea);
1193
1194
/// Sets the neighbor connection data for the specified direction.
1195
/// @param[in] span The span to update.
1196
/// @param[in] direction The direction to set. [Limits: 0 <= value < 4]
1197
/// @param[in] neighborIndex The index of the neighbor span.
1198
inline void rcSetCon(rcCompactSpan& span, int direction, int neighborIndex)
1199
{
1200
const unsigned int shift = (unsigned int)direction * 6;
1201
const unsigned int con = span.con;
1202
span.con = (con & ~(0x3f << shift)) | (((unsigned int)neighborIndex & 0x3f) << shift);
1203
}
1204
1205
/// Gets neighbor connection data for the specified direction.
1206
/// @param[in] span The span to check.
1207
/// @param[in] direction The direction to check. [Limits: 0 <= value < 4]
1208
/// @return The neighbor connection data for the specified direction, or #RC_NOT_CONNECTED if there is no connection.
1209
inline int rcGetCon(const rcCompactSpan& span, int direction)
1210
{
1211
const unsigned int shift = (unsigned int)direction * 6;
1212
return (span.con >> shift) & 0x3f;
1213
}
1214
1215
/// Gets the standard width (x-axis) offset for the specified direction.
1216
/// @param[in] direction The direction. [Limits: 0 <= value < 4]
1217
/// @return The width offset to apply to the current cell position to move in the direction.
1218
inline int rcGetDirOffsetX(int direction)
1219
{
1220
static const int offset[4] = { -1, 0, 1, 0, };
1221
return offset[direction & 0x03];
1222
}
1223
1224
// TODO (graham): Rename this to rcGetDirOffsetZ
1225
/// Gets the standard height (z-axis) offset for the specified direction.
1226
/// @param[in] direction The direction. [Limits: 0 <= value < 4]
1227
/// @return The height offset to apply to the current cell position to move in the direction.
1228
inline int rcGetDirOffsetY(int direction)
1229
{
1230
static const int offset[4] = { 0, 1, 0, -1 };
1231
return offset[direction & 0x03];
1232
}
1233
1234
/// Gets the direction for the specified offset. One of x and y should be 0.
1235
/// @param[in] offsetX The x offset. [Limits: -1 <= value <= 1]
1236
/// @param[in] offsetZ The z offset. [Limits: -1 <= value <= 1]
1237
/// @return The direction that represents the offset.
1238
inline int rcGetDirForOffset(int offsetX, int offsetZ)
1239
{
1240
static const int dirs[5] = { 3, 0, -1, 2, 1 };
1241
return dirs[((offsetZ + 1) << 1) + offsetX];
1242
}
1243
1244
/// @}
1245
/// @name Layer, Contour, Polymesh, and Detail Mesh Functions
1246
/// @see rcHeightfieldLayer, rcContourSet, rcPolyMesh, rcPolyMeshDetail
1247
/// @{
1248
1249
/// Builds a layer set from the specified compact heightfield.
1250
/// @ingroup recast
1251
/// @param[in,out] ctx The build context to use during the operation.
1252
/// @param[in] chf A fully built compact heightfield.
1253
/// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0]
1254
/// [Units: vx]
1255
/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
1256
/// to be considered walkable. [Limit: >= 3] [Units: vx]
1257
/// @param[out] lset The resulting layer set. (Must be pre-allocated.)
1258
/// @returns True if the operation completed successfully.
1259
bool rcBuildHeightfieldLayers(rcContext* ctx, const rcCompactHeightfield& chf,
1260
int borderSize, int walkableHeight,
1261
rcHeightfieldLayerSet& lset);
1262
1263
/// Builds a contour set from the region outlines in the provided compact heightfield.
1264
/// @ingroup recast
1265
/// @param[in,out] ctx The build context to use during the operation.
1266
/// @param[in] chf A fully built compact heightfield.
1267
/// @param[in] maxError The maximum distance a simplified contour's border edges should deviate
1268
/// the original raw contour. [Limit: >=0] [Units: wu]
1269
/// @param[in] maxEdgeLen The maximum allowed length for contour edges along the border of the mesh.
1270
/// [Limit: >=0] [Units: vx]
1271
/// @param[out] cset The resulting contour set. (Must be pre-allocated.)
1272
/// @param[in] buildFlags The build flags. (See: #rcBuildContoursFlags)
1273
/// @returns True if the operation completed successfully.
1274
bool rcBuildContours(rcContext* ctx, const rcCompactHeightfield& chf,
1275
float maxError, int maxEdgeLen,
1276
rcContourSet& cset, int buildFlags = RC_CONTOUR_TESS_WALL_EDGES);
1277
1278
/// Builds a polygon mesh from the provided contours.
1279
/// @ingroup recast
1280
/// @param[in,out] ctx The build context to use during the operation.
1281
/// @param[in] cset A fully built contour set.
1282
/// @param[in] nvp The maximum number of vertices allowed for polygons generated during the
1283
/// contour to polygon conversion process. [Limit: >= 3]
1284
/// @param[out] mesh The resulting polygon mesh. (Must be re-allocated.)
1285
/// @returns True if the operation completed successfully.
1286
bool rcBuildPolyMesh(rcContext* ctx, const rcContourSet& cset, const int nvp, rcPolyMesh& mesh);
1287
1288
/// Merges multiple polygon meshes into a single mesh.
1289
/// @ingroup recast
1290
/// @param[in,out] ctx The build context to use during the operation.
1291
/// @param[in] meshes An array of polygon meshes to merge. [Size: @p nmeshes]
1292
/// @param[in] nmeshes The number of polygon meshes in the meshes array.
1293
/// @param[in] mesh The resulting polygon mesh. (Must be pre-allocated.)
1294
/// @returns True if the operation completed successfully.
1295
bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
1296
1297
/// Builds a detail mesh from the provided polygon mesh.
1298
/// @ingroup recast
1299
/// @param[in,out] ctx The build context to use during the operation.
1300
/// @param[in] mesh A fully built polygon mesh.
1301
/// @param[in] chf The compact heightfield used to build the polygon mesh.
1302
/// @param[in] sampleDist Sets the distance to use when sampling the heightfield. [Limit: >=0] [Units: wu]
1303
/// @param[in] sampleMaxError The maximum distance the detail mesh surface should deviate from
1304
/// heightfield data. [Limit: >=0] [Units: wu]
1305
/// @param[out] dmesh The resulting detail mesh. (Must be pre-allocated.)
1306
/// @returns True if the operation completed successfully.
1307
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
1308
float sampleDist, float sampleMaxError,
1309
rcPolyMeshDetail& dmesh);
1310
1311
/// Copies the poly mesh data from src to dst.
1312
/// @ingroup recast
1313
/// @param[in,out] ctx The build context to use during the operation.
1314
/// @param[in] src The source mesh to copy from.
1315
/// @param[out] dst The resulting detail mesh. (Must be pre-allocated, must be empty mesh.)
1316
/// @returns True if the operation completed successfully.
1317
bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst);
1318
1319
/// Merges multiple detail meshes into a single detail mesh.
1320
/// @ingroup recast
1321
/// @param[in,out] ctx The build context to use during the operation.
1322
/// @param[in] meshes An array of detail meshes to merge. [Size: @p nmeshes]
1323
/// @param[in] nmeshes The number of detail meshes in the meshes array.
1324
/// @param[out] mesh The resulting detail mesh. (Must be pre-allocated.)
1325
/// @returns True if the operation completed successfully.
1326
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
1327
1328
/// @}
1329
1330
#endif // RECAST_H
1331
1332
///////////////////////////////////////////////////////////////////////////
1333
1334
// Due to the large amount of detail documentation for this file,
1335
// the content normally located at the end of the header file has been separated
1336
// out to a file in /Docs/Extern.
1337
1338