Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/recastnavigation/Recast/Include/RecastAlloc.h
9913 views
1
//
2
// Copyright (c) 2009-2010 Mikko Mononen [email protected]
3
//
4
// This software is provided 'as-is', without any express or implied
5
// warranty. In no event will the authors be held liable for any damages
6
// arising from the use of this software.
7
// Permission is granted to anyone to use this software for any purpose,
8
// including commercial applications, and to alter it and redistribute it
9
// freely, subject to the following restrictions:
10
// 1. The origin of this software must not be misrepresented; you must not
11
// claim that you wrote the original software. If you use this software
12
// in a product, an acknowledgment in the product documentation would be
13
// appreciated but is not required.
14
// 2. Altered source versions must be plainly marked as such, and must not be
15
// misrepresented as being the original software.
16
// 3. This notice may not be removed or altered from any source distribution.
17
//
18
19
#ifndef RECASTALLOC_H
20
#define RECASTALLOC_H
21
22
#include "RecastAssert.h"
23
24
#include <stdlib.h>
25
#include <stdint.h>
26
27
/// Provides hint values to the memory allocator on how long the
28
/// memory is expected to be used.
29
enum rcAllocHint
30
{
31
RC_ALLOC_PERM, ///< Memory will persist after a function call.
32
RC_ALLOC_TEMP ///< Memory used temporarily within a function.
33
};
34
35
/// A memory allocation function.
36
// @param[in] size The size, in bytes of memory, to allocate.
37
// @param[in] rcAllocHint A hint to the allocator on how long the memory is expected to be in use.
38
// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
39
/// @see rcAllocSetCustom
40
typedef void* (rcAllocFunc)(size_t size, rcAllocHint hint);
41
42
/// A memory deallocation function.
43
/// @param[in] ptr A pointer to a memory block previously allocated using #rcAllocFunc.
44
/// @see rcAllocSetCustom
45
typedef void (rcFreeFunc)(void* ptr);
46
47
/// Sets the base custom allocation functions to be used by Recast.
48
/// @param[in] allocFunc The memory allocation function to be used by #rcAlloc
49
/// @param[in] freeFunc The memory de-allocation function to be used by #rcFree
50
///
51
/// @see rcAlloc, rcFree
52
void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc);
53
54
/// Allocates a memory block.
55
///
56
/// @param[in] size The size, in bytes of memory, to allocate.
57
/// @param[in] hint A hint to the allocator on how long the memory is expected to be in use.
58
/// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
59
///
60
/// @see rcFree, rcAllocSetCustom
61
void* rcAlloc(size_t size, rcAllocHint hint);
62
63
/// Deallocates a memory block. If @p ptr is NULL, this does nothing.
64
///
65
/// @warning This function leaves the value of @p ptr unchanged. So it still
66
/// points to the same (now invalid) location, and not to null.
67
///
68
/// @param[in] ptr A pointer to a memory block previously allocated using #rcAlloc.
69
///
70
/// @see rcAlloc, rcAllocSetCustom
71
void rcFree(void* ptr);
72
73
/// An implementation of operator new usable for placement new. The default one is part of STL (which we don't use).
74
/// rcNewTag is a dummy type used to differentiate our operator from the STL one, in case users import both Recast
75
/// and STL.
76
struct rcNewTag {};
77
inline void* operator new(size_t, const rcNewTag&, void* p) { return p; }
78
inline void operator delete(void*, const rcNewTag&, void*) {}
79
80
/// Signed to avoid warnnings when comparing to int loop indexes, and common error with comparing to zero.
81
/// MSVC2010 has a bug where ssize_t is unsigned (!!!).
82
typedef intptr_t rcSizeType;
83
#define RC_SIZE_MAX INTPTR_MAX
84
85
/// Macros to hint to the compiler about the likeliest branch. Please add a benchmark that demonstrates a performance
86
/// improvement before introducing use cases.
87
#if defined(__GNUC__) || defined(__clang__)
88
#define rcLikely(x) __builtin_expect((x), true)
89
#define rcUnlikely(x) __builtin_expect((x), false)
90
#else
91
#define rcLikely(x) (x)
92
#define rcUnlikely(x) (x)
93
#endif
94
95
/// Variable-sized storage type. Mimics the interface of std::vector<T> with some notable differences:
96
/// * Uses rcAlloc()/rcFree() to handle storage.
97
/// * No support for a custom allocator.
98
/// * Uses signed size instead of size_t to avoid warnings in for loops: "for (int i = 0; i < foo.size(); i++)"
99
/// * Omits methods of limited utility: insert/erase, (bad performance), at (we don't use exceptions), operator=.
100
/// * assign() and the pre-sizing constructor follow C++11 semantics -- they don't construct a temporary if no value is provided.
101
/// * push_back() and resize() support adding values from the current vector. Range-based constructors and assign(begin, end) do not.
102
/// * No specialization for bool.
103
template <typename T, rcAllocHint H>
104
class rcVectorBase {
105
rcSizeType m_size;
106
rcSizeType m_cap;
107
T* m_data;
108
// Constructs a T at the give address with either the copy constructor or the default.
109
static void construct(T* p, const T& v) { ::new(rcNewTag(), (void*)p) T(v); }
110
static void construct(T* p) { ::new(rcNewTag(), (void*)p) T; }
111
static void construct_range(T* begin, T* end);
112
static void construct_range(T* begin, T* end, const T& value);
113
static void copy_range(T* dst, const T* begin, const T* end);
114
void destroy_range(rcSizeType begin, rcSizeType end);
115
// Creates an array of the given size, copies all of this vector's data into it, and returns it.
116
T* allocate_and_copy(rcSizeType size);
117
void resize_impl(rcSizeType size, const T* value);
118
// Requires: min_capacity > m_cap.
119
rcSizeType get_new_capacity(rcSizeType min_capacity);
120
public:
121
typedef rcSizeType size_type;
122
typedef T value_type;
123
124
rcVectorBase() : m_size(0), m_cap(0), m_data(0) {}
125
rcVectorBase(const rcVectorBase<T, H>& other) : m_size(0), m_cap(0), m_data(0) { assign(other.begin(), other.end()); }
126
explicit rcVectorBase(rcSizeType count) : m_size(0), m_cap(0), m_data(0) { resize(count); }
127
rcVectorBase(rcSizeType count, const T& value) : m_size(0), m_cap(0), m_data(0) { resize(count, value); }
128
rcVectorBase(const T* begin, const T* end) : m_size(0), m_cap(0), m_data(0) { assign(begin, end); }
129
~rcVectorBase() { destroy_range(0, m_size); rcFree(m_data); }
130
131
// Unlike in std::vector, we return a bool to indicate whether the alloc was successful.
132
bool reserve(rcSizeType size);
133
134
void assign(rcSizeType count, const T& value) { clear(); resize(count, value); }
135
void assign(const T* begin, const T* end);
136
137
void resize(rcSizeType size) { resize_impl(size, NULL); }
138
void resize(rcSizeType size, const T& value) { resize_impl(size, &value); }
139
// Not implemented as resize(0) because resize requires T to be default-constructible.
140
void clear() { destroy_range(0, m_size); m_size = 0; }
141
142
void push_back(const T& value);
143
void pop_back() { rcAssert(m_size > 0); back().~T(); m_size--; }
144
145
rcSizeType size() const { return m_size; }
146
rcSizeType capacity() const { return m_cap; }
147
bool empty() const { return size() == 0; }
148
149
const T& operator[](rcSizeType i) const { rcAssert(i >= 0 && i < m_size); return m_data[i]; }
150
T& operator[](rcSizeType i) { rcAssert(i >= 0 && i < m_size); return m_data[i]; }
151
152
const T& front() const { rcAssert(m_size); return m_data[0]; }
153
T& front() { rcAssert(m_size); return m_data[0]; }
154
const T& back() const { rcAssert(m_size); return m_data[m_size - 1]; }
155
T& back() { rcAssert(m_size); return m_data[m_size - 1]; }
156
const T* data() const { return m_data; }
157
T* data() { return m_data; }
158
159
T* begin() { return m_data; }
160
T* end() { return m_data + m_size; }
161
const T* begin() const { return m_data; }
162
const T* end() const { return m_data + m_size; }
163
164
void swap(rcVectorBase<T, H>& other);
165
166
// Explicitly deleted.
167
rcVectorBase& operator=(const rcVectorBase<T, H>& other);
168
};
169
170
template<typename T, rcAllocHint H>
171
bool rcVectorBase<T, H>::reserve(rcSizeType count) {
172
if (count <= m_cap) {
173
return true;
174
}
175
T* new_data = allocate_and_copy(count);
176
if (!new_data) {
177
return false;
178
}
179
destroy_range(0, m_size);
180
rcFree(m_data);
181
m_data = new_data;
182
m_cap = count;
183
return true;
184
}
185
template <typename T, rcAllocHint H>
186
T* rcVectorBase<T, H>::allocate_and_copy(rcSizeType size) {
187
rcAssert(RC_SIZE_MAX / static_cast<rcSizeType>(sizeof(T)) >= size);
188
T* new_data = static_cast<T*>(rcAlloc(sizeof(T) * size, H));
189
if (new_data) {
190
copy_range(new_data, m_data, m_data + m_size);
191
}
192
return new_data;
193
}
194
template <typename T, rcAllocHint H>
195
void rcVectorBase<T, H>::assign(const T* begin, const T* end) {
196
clear();
197
reserve(end - begin);
198
m_size = end - begin;
199
copy_range(m_data, begin, end);
200
}
201
template <typename T, rcAllocHint H>
202
void rcVectorBase<T, H>::push_back(const T& value) {
203
// rcLikely increases performance by ~50% on BM_rcVector_PushPreallocated,
204
// and by ~2-5% on BM_rcVector_Push.
205
if (rcLikely(m_size < m_cap)) {
206
construct(m_data + m_size++, value);
207
return;
208
}
209
210
const rcSizeType new_cap = get_new_capacity(m_cap + 1);
211
T* data = allocate_and_copy(new_cap);
212
// construct between allocate and destroy+free in case value is
213
// in this vector.
214
construct(data + m_size, value);
215
destroy_range(0, m_size);
216
m_size++;
217
m_cap = new_cap;
218
rcFree(m_data);
219
m_data = data;
220
}
221
222
template <typename T, rcAllocHint H>
223
rcSizeType rcVectorBase<T, H>::get_new_capacity(rcSizeType min_capacity) {
224
rcAssert(min_capacity <= RC_SIZE_MAX);
225
if (rcUnlikely(m_cap >= RC_SIZE_MAX / 2))
226
return RC_SIZE_MAX;
227
return 2 * m_cap > min_capacity ? 2 * m_cap : min_capacity;
228
}
229
230
template <typename T, rcAllocHint H>
231
void rcVectorBase<T, H>::resize_impl(rcSizeType size, const T* value) {
232
if (size < m_size) {
233
destroy_range(size, m_size);
234
m_size = size;
235
} else if (size > m_size) {
236
if (size <= m_cap) {
237
if (value) {
238
construct_range(m_data + m_size, m_data + size, *value);
239
} else {
240
construct_range(m_data + m_size, m_data + size);
241
}
242
m_size = size;
243
} else {
244
const rcSizeType new_cap = get_new_capacity(size);
245
T* new_data = allocate_and_copy(new_cap);
246
// We defer deconstructing/freeing old data until after constructing
247
// new elements in case "value" is there.
248
if (value) {
249
construct_range(new_data + m_size, new_data + size, *value);
250
} else {
251
construct_range(new_data + m_size, new_data + size);
252
}
253
destroy_range(0, m_size);
254
rcFree(m_data);
255
m_data = new_data;
256
m_cap = new_cap;
257
m_size = size;
258
}
259
}
260
}
261
template <typename T, rcAllocHint H>
262
void rcVectorBase<T, H>::swap(rcVectorBase<T, H>& other) {
263
// TODO: Reorganize headers so we can use rcSwap here.
264
rcSizeType tmp_cap = other.m_cap;
265
rcSizeType tmp_size = other.m_size;
266
T* tmp_data = other.m_data;
267
268
other.m_cap = m_cap;
269
other.m_size = m_size;
270
other.m_data = m_data;
271
272
m_cap = tmp_cap;
273
m_size = tmp_size;
274
m_data = tmp_data;
275
}
276
// static
277
template <typename T, rcAllocHint H>
278
void rcVectorBase<T, H>::construct_range(T* begin, T* end) {
279
for (T* p = begin; p < end; p++) {
280
construct(p);
281
}
282
}
283
// static
284
template <typename T, rcAllocHint H>
285
void rcVectorBase<T, H>::construct_range(T* begin, T* end, const T& value) {
286
for (T* p = begin; p < end; p++) {
287
construct(p, value);
288
}
289
}
290
// static
291
template <typename T, rcAllocHint H>
292
void rcVectorBase<T, H>::copy_range(T* dst, const T* begin, const T* end) {
293
for (rcSizeType i = 0 ; i < end - begin; i++) {
294
construct(dst + i, begin[i]);
295
}
296
}
297
template <typename T, rcAllocHint H>
298
void rcVectorBase<T, H>::destroy_range(rcSizeType begin, rcSizeType end) {
299
for (rcSizeType i = begin; i < end; i++) {
300
m_data[i].~T();
301
}
302
}
303
304
template <typename T>
305
class rcTempVector : public rcVectorBase<T, RC_ALLOC_TEMP> {
306
typedef rcVectorBase<T, RC_ALLOC_TEMP> Base;
307
public:
308
rcTempVector() : Base() {}
309
explicit rcTempVector(rcSizeType size) : Base(size) {}
310
rcTempVector(rcSizeType size, const T& value) : Base(size, value) {}
311
rcTempVector(const rcTempVector<T>& other) : Base(other) {}
312
rcTempVector(const T* begin, const T* end) : Base(begin, end) {}
313
};
314
template <typename T>
315
class rcPermVector : public rcVectorBase<T, RC_ALLOC_PERM> {
316
typedef rcVectorBase<T, RC_ALLOC_PERM> Base;
317
public:
318
rcPermVector() : Base() {}
319
explicit rcPermVector(rcSizeType size) : Base(size) {}
320
rcPermVector(rcSizeType size, const T& value) : Base(size, value) {}
321
rcPermVector(const rcPermVector<T>& other) : Base(other) {}
322
rcPermVector(const T* begin, const T* end) : Base(begin, end) {}
323
};
324
325
326
/// Legacy class. Prefer rcVector<int>.
327
class rcIntArray
328
{
329
rcTempVector<int> m_impl;
330
public:
331
rcIntArray() {}
332
rcIntArray(int n) : m_impl(n, 0) {}
333
void push(int item) { m_impl.push_back(item); }
334
void resize(int size) { m_impl.resize(size); }
335
void clear() { m_impl.clear(); }
336
int pop()
337
{
338
int v = m_impl.back();
339
m_impl.pop_back();
340
return v;
341
}
342
int size() const { return static_cast<int>(m_impl.size()); }
343
int& operator[](int index) { return m_impl[index]; }
344
int operator[](int index) const { return m_impl[index]; }
345
};
346
347
/// A simple helper class used to delete an array when it goes out of scope.
348
/// @note This class is rarely if ever used by the end user.
349
template<class T> class rcScopedDelete
350
{
351
T* ptr;
352
public:
353
354
/// Constructs an instance with a null pointer.
355
inline rcScopedDelete() : ptr(0) {}
356
357
/// Constructs an instance with the specified pointer.
358
/// @param[in] p An pointer to an allocated array.
359
inline rcScopedDelete(T* p) : ptr(p) {}
360
inline ~rcScopedDelete() { rcFree(ptr); }
361
362
/// The root array pointer.
363
/// @return The root array pointer.
364
inline operator T*() { return ptr; }
365
366
private:
367
// Explicitly disabled copy constructor and copy assignment operator.
368
rcScopedDelete(const rcScopedDelete&);
369
rcScopedDelete& operator=(const rcScopedDelete&);
370
};
371
372
#endif
373
374