Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/recastnavigation/Recast/Source/RecastContour.cpp
9913 views
1
//
2
// Copyright (c) 2009-2010 Mikko Mononen [email protected]
3
//
4
// This software is provided 'as-is', without any express or implied
5
// warranty. In no event will the authors be held liable for any damages
6
// arising from the use of this software.
7
// Permission is granted to anyone to use this software for any purpose,
8
// including commercial applications, and to alter it and redistribute it
9
// freely, subject to the following restrictions:
10
// 1. The origin of this software must not be misrepresented; you must not
11
// claim that you wrote the original software. If you use this software
12
// in a product, an acknowledgment in the product documentation would be
13
// appreciated but is not required.
14
// 2. Altered source versions must be plainly marked as such, and must not be
15
// misrepresented as being the original software.
16
// 3. This notice may not be removed or altered from any source distribution.
17
//
18
19
#include <math.h>
20
#include <string.h>
21
#include <stdio.h>
22
#include <stdlib.h>
23
#include "Recast.h"
24
#include "RecastAlloc.h"
25
#include "RecastAssert.h"
26
27
28
static int getCornerHeight(int x, int y, int i, int dir,
29
const rcCompactHeightfield& chf,
30
bool& isBorderVertex)
31
{
32
const rcCompactSpan& s = chf.spans[i];
33
int ch = (int)s.y;
34
int dirp = (dir+1) & 0x3;
35
36
unsigned int regs[4] = {0,0,0,0};
37
38
// Combine region and area codes in order to prevent
39
// border vertices which are in between two areas to be removed.
40
regs[0] = chf.spans[i].reg | (chf.areas[i] << 16);
41
42
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
43
{
44
const int ax = x + rcGetDirOffsetX(dir);
45
const int ay = y + rcGetDirOffsetY(dir);
46
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
47
const rcCompactSpan& as = chf.spans[ai];
48
ch = rcMax(ch, (int)as.y);
49
regs[1] = chf.spans[ai].reg | (chf.areas[ai] << 16);
50
if (rcGetCon(as, dirp) != RC_NOT_CONNECTED)
51
{
52
const int ax2 = ax + rcGetDirOffsetX(dirp);
53
const int ay2 = ay + rcGetDirOffsetY(dirp);
54
const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp);
55
const rcCompactSpan& as2 = chf.spans[ai2];
56
ch = rcMax(ch, (int)as2.y);
57
regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
58
}
59
}
60
if (rcGetCon(s, dirp) != RC_NOT_CONNECTED)
61
{
62
const int ax = x + rcGetDirOffsetX(dirp);
63
const int ay = y + rcGetDirOffsetY(dirp);
64
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp);
65
const rcCompactSpan& as = chf.spans[ai];
66
ch = rcMax(ch, (int)as.y);
67
regs[3] = chf.spans[ai].reg | (chf.areas[ai] << 16);
68
if (rcGetCon(as, dir) != RC_NOT_CONNECTED)
69
{
70
const int ax2 = ax + rcGetDirOffsetX(dir);
71
const int ay2 = ay + rcGetDirOffsetY(dir);
72
const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir);
73
const rcCompactSpan& as2 = chf.spans[ai2];
74
ch = rcMax(ch, (int)as2.y);
75
regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
76
}
77
}
78
79
// Check if the vertex is special edge vertex, these vertices will be removed later.
80
for (int j = 0; j < 4; ++j)
81
{
82
const int a = j;
83
const int b = (j+1) & 0x3;
84
const int c = (j+2) & 0x3;
85
const int d = (j+3) & 0x3;
86
87
// The vertex is a border vertex there are two same exterior cells in a row,
88
// followed by two interior cells and none of the regions are out of bounds.
89
const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b];
90
const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0;
91
const bool intsSameArea = (regs[c]>>16) == (regs[d]>>16);
92
const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0;
93
if (twoSameExts && twoInts && intsSameArea && noZeros)
94
{
95
isBorderVertex = true;
96
break;
97
}
98
}
99
100
return ch;
101
}
102
103
static void walkContour(int x, int y, int i,
104
const rcCompactHeightfield& chf,
105
unsigned char* flags, rcIntArray& points)
106
{
107
// Choose the first non-connected edge
108
unsigned char dir = 0;
109
while ((flags[i] & (1 << dir)) == 0)
110
dir++;
111
112
unsigned char startDir = dir;
113
int starti = i;
114
115
const unsigned char area = chf.areas[i];
116
117
int iter = 0;
118
while (++iter < 40000)
119
{
120
if (flags[i] & (1 << dir))
121
{
122
// Choose the edge corner
123
bool isBorderVertex = false;
124
bool isAreaBorder = false;
125
int px = x;
126
int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex);
127
int pz = y;
128
switch(dir)
129
{
130
case 0: pz++; break;
131
case 1: px++; pz++; break;
132
case 2: px++; break;
133
}
134
int r = 0;
135
const rcCompactSpan& s = chf.spans[i];
136
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
137
{
138
const int ax = x + rcGetDirOffsetX(dir);
139
const int ay = y + rcGetDirOffsetY(dir);
140
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
141
r = (int)chf.spans[ai].reg;
142
if (area != chf.areas[ai])
143
isAreaBorder = true;
144
}
145
if (isBorderVertex)
146
r |= RC_BORDER_VERTEX;
147
if (isAreaBorder)
148
r |= RC_AREA_BORDER;
149
points.push(px);
150
points.push(py);
151
points.push(pz);
152
points.push(r);
153
154
flags[i] &= ~(1 << dir); // Remove visited edges
155
dir = (dir+1) & 0x3; // Rotate CW
156
}
157
else
158
{
159
int ni = -1;
160
const int nx = x + rcGetDirOffsetX(dir);
161
const int ny = y + rcGetDirOffsetY(dir);
162
const rcCompactSpan& s = chf.spans[i];
163
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
164
{
165
const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
166
ni = (int)nc.index + rcGetCon(s, dir);
167
}
168
if (ni == -1)
169
{
170
// Should not happen.
171
return;
172
}
173
x = nx;
174
y = ny;
175
i = ni;
176
dir = (dir+3) & 0x3; // Rotate CCW
177
}
178
179
if (starti == i && startDir == dir)
180
{
181
break;
182
}
183
}
184
}
185
186
static float distancePtSeg(const int x, const int z,
187
const int px, const int pz,
188
const int qx, const int qz)
189
{
190
float pqx = (float)(qx - px);
191
float pqz = (float)(qz - pz);
192
float dx = (float)(x - px);
193
float dz = (float)(z - pz);
194
float d = pqx*pqx + pqz*pqz;
195
float t = pqx*dx + pqz*dz;
196
if (d > 0)
197
t /= d;
198
if (t < 0)
199
t = 0;
200
else if (t > 1)
201
t = 1;
202
203
dx = px + t*pqx - x;
204
dz = pz + t*pqz - z;
205
206
return dx*dx + dz*dz;
207
}
208
209
static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
210
const float maxError, const int maxEdgeLen, const int buildFlags)
211
{
212
// Add initial points.
213
bool hasConnections = false;
214
for (int i = 0; i < points.size(); i += 4)
215
{
216
if ((points[i+3] & RC_CONTOUR_REG_MASK) != 0)
217
{
218
hasConnections = true;
219
break;
220
}
221
}
222
223
if (hasConnections)
224
{
225
// The contour has some portals to other regions.
226
// Add a new point to every location where the region changes.
227
for (int i = 0, ni = points.size()/4; i < ni; ++i)
228
{
229
int ii = (i+1) % ni;
230
const bool differentRegs = (points[i*4+3] & RC_CONTOUR_REG_MASK) != (points[ii*4+3] & RC_CONTOUR_REG_MASK);
231
const bool areaBorders = (points[i*4+3] & RC_AREA_BORDER) != (points[ii*4+3] & RC_AREA_BORDER);
232
if (differentRegs || areaBorders)
233
{
234
simplified.push(points[i*4+0]);
235
simplified.push(points[i*4+1]);
236
simplified.push(points[i*4+2]);
237
simplified.push(i);
238
}
239
}
240
}
241
242
if (simplified.size() == 0)
243
{
244
// If there is no connections at all,
245
// create some initial points for the simplification process.
246
// Find lower-left and upper-right vertices of the contour.
247
int llx = points[0];
248
int lly = points[1];
249
int llz = points[2];
250
int lli = 0;
251
int urx = points[0];
252
int ury = points[1];
253
int urz = points[2];
254
int uri = 0;
255
for (int i = 0; i < points.size(); i += 4)
256
{
257
int x = points[i+0];
258
int y = points[i+1];
259
int z = points[i+2];
260
if (x < llx || (x == llx && z < llz))
261
{
262
llx = x;
263
lly = y;
264
llz = z;
265
lli = i/4;
266
}
267
if (x > urx || (x == urx && z > urz))
268
{
269
urx = x;
270
ury = y;
271
urz = z;
272
uri = i/4;
273
}
274
}
275
simplified.push(llx);
276
simplified.push(lly);
277
simplified.push(llz);
278
simplified.push(lli);
279
280
simplified.push(urx);
281
simplified.push(ury);
282
simplified.push(urz);
283
simplified.push(uri);
284
}
285
286
// Add points until all raw points are within
287
// error tolerance to the simplified shape.
288
const int pn = points.size()/4;
289
for (int i = 0; i < simplified.size()/4; )
290
{
291
int ii = (i+1) % (simplified.size()/4);
292
293
int ax = simplified[i*4+0];
294
int az = simplified[i*4+2];
295
int ai = simplified[i*4+3];
296
297
int bx = simplified[ii*4+0];
298
int bz = simplified[ii*4+2];
299
int bi = simplified[ii*4+3];
300
301
// Find maximum deviation from the segment.
302
float maxd = 0;
303
int maxi = -1;
304
int ci, cinc, endi;
305
306
// Traverse the segment in lexilogical order so that the
307
// max deviation is calculated similarly when traversing
308
// opposite segments.
309
if (bx > ax || (bx == ax && bz > az))
310
{
311
cinc = 1;
312
ci = (ai+cinc) % pn;
313
endi = bi;
314
}
315
else
316
{
317
cinc = pn-1;
318
ci = (bi+cinc) % pn;
319
endi = ai;
320
rcSwap(ax, bx);
321
rcSwap(az, bz);
322
}
323
324
// Tessellate only outer edges or edges between areas.
325
if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 ||
326
(points[ci*4+3] & RC_AREA_BORDER))
327
{
328
while (ci != endi)
329
{
330
float d = distancePtSeg(points[ci*4+0], points[ci*4+2], ax, az, bx, bz);
331
if (d > maxd)
332
{
333
maxd = d;
334
maxi = ci;
335
}
336
ci = (ci+cinc) % pn;
337
}
338
}
339
340
341
// If the max deviation is larger than accepted error,
342
// add new point, else continue to next segment.
343
if (maxi != -1 && maxd > (maxError*maxError))
344
{
345
// Add space for the new point.
346
simplified.resize(simplified.size()+4);
347
const int n = simplified.size()/4;
348
for (int j = n-1; j > i; --j)
349
{
350
simplified[j*4+0] = simplified[(j-1)*4+0];
351
simplified[j*4+1] = simplified[(j-1)*4+1];
352
simplified[j*4+2] = simplified[(j-1)*4+2];
353
simplified[j*4+3] = simplified[(j-1)*4+3];
354
}
355
// Add the point.
356
simplified[(i+1)*4+0] = points[maxi*4+0];
357
simplified[(i+1)*4+1] = points[maxi*4+1];
358
simplified[(i+1)*4+2] = points[maxi*4+2];
359
simplified[(i+1)*4+3] = maxi;
360
}
361
else
362
{
363
++i;
364
}
365
}
366
367
// Split too long edges.
368
if (maxEdgeLen > 0 && (buildFlags & (RC_CONTOUR_TESS_WALL_EDGES|RC_CONTOUR_TESS_AREA_EDGES)) != 0)
369
{
370
for (int i = 0; i < simplified.size()/4; )
371
{
372
const int ii = (i+1) % (simplified.size()/4);
373
374
const int ax = simplified[i*4+0];
375
const int az = simplified[i*4+2];
376
const int ai = simplified[i*4+3];
377
378
const int bx = simplified[ii*4+0];
379
const int bz = simplified[ii*4+2];
380
const int bi = simplified[ii*4+3];
381
382
// Find maximum deviation from the segment.
383
int maxi = -1;
384
int ci = (ai+1) % pn;
385
386
// Tessellate only outer edges or edges between areas.
387
bool tess = false;
388
// Wall edges.
389
if ((buildFlags & RC_CONTOUR_TESS_WALL_EDGES) && (points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0)
390
tess = true;
391
// Edges between areas.
392
if ((buildFlags & RC_CONTOUR_TESS_AREA_EDGES) && (points[ci*4+3] & RC_AREA_BORDER))
393
tess = true;
394
395
if (tess)
396
{
397
int dx = bx - ax;
398
int dz = bz - az;
399
if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen)
400
{
401
// Round based on the segments in lexilogical order so that the
402
// max tesselation is consistent regardles in which direction
403
// segments are traversed.
404
const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
405
if (n > 1)
406
{
407
if (bx > ax || (bx == ax && bz > az))
408
maxi = (ai + n/2) % pn;
409
else
410
maxi = (ai + (n+1)/2) % pn;
411
}
412
}
413
}
414
415
// If the max deviation is larger than accepted error,
416
// add new point, else continue to next segment.
417
if (maxi != -1)
418
{
419
// Add space for the new point.
420
simplified.resize(simplified.size()+4);
421
const int n = simplified.size()/4;
422
for (int j = n-1; j > i; --j)
423
{
424
simplified[j*4+0] = simplified[(j-1)*4+0];
425
simplified[j*4+1] = simplified[(j-1)*4+1];
426
simplified[j*4+2] = simplified[(j-1)*4+2];
427
simplified[j*4+3] = simplified[(j-1)*4+3];
428
}
429
// Add the point.
430
simplified[(i+1)*4+0] = points[maxi*4+0];
431
simplified[(i+1)*4+1] = points[maxi*4+1];
432
simplified[(i+1)*4+2] = points[maxi*4+2];
433
simplified[(i+1)*4+3] = maxi;
434
}
435
else
436
{
437
++i;
438
}
439
}
440
}
441
442
for (int i = 0; i < simplified.size()/4; ++i)
443
{
444
// The edge vertex flag is take from the current raw point,
445
// and the neighbour region is take from the next raw point.
446
const int ai = (simplified[i*4+3]+1) % pn;
447
const int bi = simplified[i*4+3];
448
simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX);
449
}
450
451
}
452
453
static int calcAreaOfPolygon2D(const int* verts, const int nverts)
454
{
455
int area = 0;
456
for (int i = 0, j = nverts-1; i < nverts; j=i++)
457
{
458
const int* vi = &verts[i*4];
459
const int* vj = &verts[j*4];
460
area += vi[0] * vj[2] - vj[0] * vi[2];
461
}
462
return (area+1) / 2;
463
}
464
465
// TODO: these are the same as in RecastMesh.cpp, consider using the same.
466
// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
467
inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
468
inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
469
470
inline int area2(const int* a, const int* b, const int* c)
471
{
472
return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
473
}
474
475
// Exclusive or: true iff exactly one argument is true.
476
// The arguments are negated to ensure that they are 0/1
477
// values. Then the bitwise Xor operator may apply.
478
// (This idea is due to Michael Baldwin.)
479
inline bool xorb(bool x, bool y)
480
{
481
return !x ^ !y;
482
}
483
484
// Returns true iff c is strictly to the left of the directed
485
// line through a to b.
486
inline bool left(const int* a, const int* b, const int* c)
487
{
488
return area2(a, b, c) < 0;
489
}
490
491
inline bool leftOn(const int* a, const int* b, const int* c)
492
{
493
return area2(a, b, c) <= 0;
494
}
495
496
inline bool collinear(const int* a, const int* b, const int* c)
497
{
498
return area2(a, b, c) == 0;
499
}
500
501
// Returns true iff ab properly intersects cd: they share
502
// a point interior to both segments. The properness of the
503
// intersection is ensured by using strict leftness.
504
static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
505
{
506
// Eliminate improper cases.
507
if (collinear(a,b,c) || collinear(a,b,d) ||
508
collinear(c,d,a) || collinear(c,d,b))
509
return false;
510
511
return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
512
}
513
514
// Returns T iff (a,b,c) are collinear and point c lies
515
// on the closed segement ab.
516
static bool between(const int* a, const int* b, const int* c)
517
{
518
if (!collinear(a, b, c))
519
return false;
520
// If ab not vertical, check betweenness on x; else on y.
521
if (a[0] != b[0])
522
return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
523
else
524
return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
525
}
526
527
// Returns true iff segments ab and cd intersect, properly or improperly.
528
static bool intersect(const int* a, const int* b, const int* c, const int* d)
529
{
530
if (intersectProp(a, b, c, d))
531
return true;
532
else if (between(a, b, c) || between(a, b, d) ||
533
between(c, d, a) || between(c, d, b))
534
return true;
535
else
536
return false;
537
}
538
539
static bool vequal(const int* a, const int* b)
540
{
541
return a[0] == b[0] && a[2] == b[2];
542
}
543
544
static bool intersectSegContour(const int* d0, const int* d1, int i, int n, const int* verts)
545
{
546
// For each edge (k,k+1) of P
547
for (int k = 0; k < n; k++)
548
{
549
int k1 = next(k, n);
550
// Skip edges incident to i.
551
if (i == k || i == k1)
552
continue;
553
const int* p0 = &verts[k * 4];
554
const int* p1 = &verts[k1 * 4];
555
if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
556
continue;
557
558
if (intersect(d0, d1, p0, p1))
559
return true;
560
}
561
return false;
562
}
563
564
static bool inCone(int i, int n, const int* verts, const int* pj)
565
{
566
const int* pi = &verts[i * 4];
567
const int* pi1 = &verts[next(i, n) * 4];
568
const int* pin1 = &verts[prev(i, n) * 4];
569
570
// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
571
if (leftOn(pin1, pi, pi1))
572
return left(pi, pj, pin1) && left(pj, pi, pi1);
573
// Assume (i-1,i,i+1) not collinear.
574
// else P[i] is reflex.
575
return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
576
}
577
578
579
static void removeDegenerateSegments(rcIntArray& simplified)
580
{
581
// Remove adjacent vertices which are equal on xz-plane,
582
// or else the triangulator will get confused.
583
int npts = simplified.size()/4;
584
for (int i = 0; i < npts; ++i)
585
{
586
int ni = next(i, npts);
587
588
if (vequal(&simplified[i*4], &simplified[ni*4]))
589
{
590
// Degenerate segment, remove.
591
for (int j = i; j < simplified.size()/4-1; ++j)
592
{
593
simplified[j*4+0] = simplified[(j+1)*4+0];
594
simplified[j*4+1] = simplified[(j+1)*4+1];
595
simplified[j*4+2] = simplified[(j+1)*4+2];
596
simplified[j*4+3] = simplified[(j+1)*4+3];
597
}
598
simplified.resize(simplified.size()-4);
599
npts--;
600
}
601
}
602
}
603
604
605
static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
606
{
607
const int maxVerts = ca.nverts + cb.nverts + 2;
608
int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM);
609
if (!verts)
610
return false;
611
612
int nv = 0;
613
614
// Copy contour A.
615
for (int i = 0; i <= ca.nverts; ++i)
616
{
617
int* dst = &verts[nv*4];
618
const int* src = &ca.verts[((ia+i)%ca.nverts)*4];
619
dst[0] = src[0];
620
dst[1] = src[1];
621
dst[2] = src[2];
622
dst[3] = src[3];
623
nv++;
624
}
625
626
// Copy contour B
627
for (int i = 0; i <= cb.nverts; ++i)
628
{
629
int* dst = &verts[nv*4];
630
const int* src = &cb.verts[((ib+i)%cb.nverts)*4];
631
dst[0] = src[0];
632
dst[1] = src[1];
633
dst[2] = src[2];
634
dst[3] = src[3];
635
nv++;
636
}
637
638
rcFree(ca.verts);
639
ca.verts = verts;
640
ca.nverts = nv;
641
642
rcFree(cb.verts);
643
cb.verts = 0;
644
cb.nverts = 0;
645
646
return true;
647
}
648
649
struct rcContourHole
650
{
651
rcContour* contour;
652
int minx, minz, leftmost;
653
};
654
655
struct rcContourRegion
656
{
657
rcContour* outline;
658
rcContourHole* holes;
659
int nholes;
660
};
661
662
struct rcPotentialDiagonal
663
{
664
int vert;
665
int dist;
666
};
667
668
// Finds the lowest leftmost vertex of a contour.
669
static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost)
670
{
671
*minx = contour->verts[0];
672
*minz = contour->verts[2];
673
*leftmost = 0;
674
for (int i = 1; i < contour->nverts; i++)
675
{
676
const int x = contour->verts[i*4+0];
677
const int z = contour->verts[i*4+2];
678
if (x < *minx || (x == *minx && z < *minz))
679
{
680
*minx = x;
681
*minz = z;
682
*leftmost = i;
683
}
684
}
685
}
686
687
static int compareHoles(const void* va, const void* vb)
688
{
689
const rcContourHole* a = (const rcContourHole*)va;
690
const rcContourHole* b = (const rcContourHole*)vb;
691
if (a->minx == b->minx)
692
{
693
if (a->minz < b->minz)
694
return -1;
695
if (a->minz > b->minz)
696
return 1;
697
}
698
else
699
{
700
if (a->minx < b->minx)
701
return -1;
702
if (a->minx > b->minx)
703
return 1;
704
}
705
return 0;
706
}
707
708
709
static int compareDiagDist(const void* va, const void* vb)
710
{
711
const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va;
712
const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb;
713
if (a->dist < b->dist)
714
return -1;
715
if (a->dist > b->dist)
716
return 1;
717
return 0;
718
}
719
720
721
static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
722
{
723
// Sort holes from left to right.
724
for (int i = 0; i < region.nholes; i++)
725
findLeftMostVertex(region.holes[i].contour, &region.holes[i].minx, &region.holes[i].minz, &region.holes[i].leftmost);
726
727
qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles);
728
729
int maxVerts = region.outline->nverts;
730
for (int i = 0; i < region.nholes; i++)
731
maxVerts += region.holes[i].contour->nverts;
732
733
rcScopedDelete<rcPotentialDiagonal> diags((rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP));
734
if (!diags)
735
{
736
ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts);
737
return;
738
}
739
740
rcContour* outline = region.outline;
741
742
// Merge holes into the outline one by one.
743
for (int i = 0; i < region.nholes; i++)
744
{
745
rcContour* hole = region.holes[i].contour;
746
747
int index = -1;
748
int bestVertex = region.holes[i].leftmost;
749
for (int iter = 0; iter < hole->nverts; iter++)
750
{
751
// Find potential diagonals.
752
// The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline.
753
// ..o j-1
754
// |
755
// | * best
756
// |
757
// j o-----o j+1
758
// :
759
int ndiags = 0;
760
const int* corner = &hole->verts[bestVertex*4];
761
for (int j = 0; j < outline->nverts; j++)
762
{
763
if (inCone(j, outline->nverts, outline->verts, corner))
764
{
765
int dx = outline->verts[j*4+0] - corner[0];
766
int dz = outline->verts[j*4+2] - corner[2];
767
diags[ndiags].vert = j;
768
diags[ndiags].dist = dx*dx + dz*dz;
769
ndiags++;
770
}
771
}
772
// Sort potential diagonals by distance, we want to make the connection as short as possible.
773
qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist);
774
775
// Find a diagonal that is not intersecting the outline not the remaining holes.
776
index = -1;
777
for (int j = 0; j < ndiags; j++)
778
{
779
const int* pt = &outline->verts[diags[j].vert*4];
780
bool intersect = intersectSegContour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
781
for (int k = i; k < region.nholes && !intersect; k++)
782
intersect |= intersectSegContour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
783
if (!intersect)
784
{
785
index = diags[j].vert;
786
break;
787
}
788
}
789
// If found non-intersecting diagonal, stop looking.
790
if (index != -1)
791
break;
792
// All the potential diagonals for the current vertex were intersecting, try next vertex.
793
bestVertex = (bestVertex + 1) % hole->nverts;
794
}
795
796
if (index == -1)
797
{
798
ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole);
799
continue;
800
}
801
if (!mergeContours(*region.outline, *hole, index, bestVertex))
802
{
803
ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole);
804
continue;
805
}
806
}
807
}
808
809
810
/// @par
811
///
812
/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
813
/// parameters control how closely the simplified contours will match the raw contours.
814
///
815
/// Simplified contours are generated such that the vertices for portals between areas match up.
816
/// (They are considered mandatory vertices.)
817
///
818
/// Setting @p maxEdgeLength to zero will disabled the edge length feature.
819
///
820
/// See the #rcConfig documentation for more information on the configuration parameters.
821
///
822
/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
823
bool rcBuildContours(rcContext* ctx, const rcCompactHeightfield& chf,
824
const float maxError, const int maxEdgeLen,
825
rcContourSet& cset, const int buildFlags)
826
{
827
rcAssert(ctx);
828
829
const int w = chf.width;
830
const int h = chf.height;
831
const int borderSize = chf.borderSize;
832
833
rcScopedTimer timer(ctx, RC_TIMER_BUILD_CONTOURS);
834
835
rcVcopy(cset.bmin, chf.bmin);
836
rcVcopy(cset.bmax, chf.bmax);
837
if (borderSize > 0)
838
{
839
// If the heightfield was build with bordersize, remove the offset.
840
const float pad = borderSize*chf.cs;
841
cset.bmin[0] += pad;
842
cset.bmin[2] += pad;
843
cset.bmax[0] -= pad;
844
cset.bmax[2] -= pad;
845
}
846
cset.cs = chf.cs;
847
cset.ch = chf.ch;
848
cset.width = chf.width - chf.borderSize*2;
849
cset.height = chf.height - chf.borderSize*2;
850
cset.borderSize = chf.borderSize;
851
cset.maxError = maxError;
852
853
int maxContours = rcMax((int)chf.maxRegions, 8);
854
cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
855
if (!cset.conts)
856
return false;
857
cset.nconts = 0;
858
859
rcScopedDelete<unsigned char> flags((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
860
if (!flags)
861
{
862
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount);
863
return false;
864
}
865
866
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
867
868
// Mark boundaries.
869
for (int y = 0; y < h; ++y)
870
{
871
for (int x = 0; x < w; ++x)
872
{
873
const rcCompactCell& c = chf.cells[x+y*w];
874
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
875
{
876
unsigned char res = 0;
877
const rcCompactSpan& s = chf.spans[i];
878
if (!chf.spans[i].reg || (chf.spans[i].reg & RC_BORDER_REG))
879
{
880
flags[i] = 0;
881
continue;
882
}
883
for (int dir = 0; dir < 4; ++dir)
884
{
885
unsigned short r = 0;
886
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
887
{
888
const int ax = x + rcGetDirOffsetX(dir);
889
const int ay = y + rcGetDirOffsetY(dir);
890
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
891
r = chf.spans[ai].reg;
892
}
893
if (r == chf.spans[i].reg)
894
res |= (1 << dir);
895
}
896
flags[i] = res ^ 0xf; // Inverse, mark non connected edges.
897
}
898
}
899
}
900
901
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
902
903
rcIntArray verts(256);
904
rcIntArray simplified(64);
905
906
for (int y = 0; y < h; ++y)
907
{
908
for (int x = 0; x < w; ++x)
909
{
910
const rcCompactCell& c = chf.cells[x+y*w];
911
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
912
{
913
if (flags[i] == 0 || flags[i] == 0xf)
914
{
915
flags[i] = 0;
916
continue;
917
}
918
const unsigned short reg = chf.spans[i].reg;
919
if (!reg || (reg & RC_BORDER_REG))
920
continue;
921
const unsigned char area = chf.areas[i];
922
923
verts.clear();
924
simplified.clear();
925
926
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
927
walkContour(x, y, i, chf, flags, verts);
928
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
929
930
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
931
simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
932
removeDegenerateSegments(simplified);
933
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
934
935
936
// Store region->contour remap info.
937
// Create contour.
938
if (simplified.size()/4 >= 3)
939
{
940
if (cset.nconts >= maxContours)
941
{
942
// Allocate more contours.
943
// This happens when a region has holes.
944
const int oldMax = maxContours;
945
maxContours *= 2;
946
rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
947
for (int j = 0; j < cset.nconts; ++j)
948
{
949
newConts[j] = cset.conts[j];
950
// Reset source pointers to prevent data deletion.
951
cset.conts[j].verts = 0;
952
cset.conts[j].rverts = 0;
953
}
954
rcFree(cset.conts);
955
cset.conts = newConts;
956
957
ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
958
}
959
960
rcContour* cont = &cset.conts[cset.nconts++];
961
962
cont->nverts = simplified.size()/4;
963
cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM);
964
if (!cont->verts)
965
{
966
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts);
967
return false;
968
}
969
memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4);
970
if (borderSize > 0)
971
{
972
// If the heightfield was build with bordersize, remove the offset.
973
for (int j = 0; j < cont->nverts; ++j)
974
{
975
int* v = &cont->verts[j*4];
976
v[0] -= borderSize;
977
v[2] -= borderSize;
978
}
979
}
980
981
cont->nrverts = verts.size()/4;
982
cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM);
983
if (!cont->rverts)
984
{
985
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts);
986
return false;
987
}
988
memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4);
989
if (borderSize > 0)
990
{
991
// If the heightfield was build with bordersize, remove the offset.
992
for (int j = 0; j < cont->nrverts; ++j)
993
{
994
int* v = &cont->rverts[j*4];
995
v[0] -= borderSize;
996
v[2] -= borderSize;
997
}
998
}
999
1000
cont->reg = reg;
1001
cont->area = area;
1002
}
1003
}
1004
}
1005
}
1006
1007
// Merge holes if needed.
1008
if (cset.nconts > 0)
1009
{
1010
// Calculate winding of all polygons.
1011
rcScopedDelete<signed char> winding((signed char*)rcAlloc(sizeof(signed char)*cset.nconts, RC_ALLOC_TEMP));
1012
if (!winding)
1013
{
1014
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);
1015
return false;
1016
}
1017
int nholes = 0;
1018
for (int i = 0; i < cset.nconts; ++i)
1019
{
1020
rcContour& cont = cset.conts[i];
1021
// If the contour is wound backwards, it is a hole.
1022
winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1;
1023
if (winding[i] < 0)
1024
nholes++;
1025
}
1026
1027
if (nholes > 0)
1028
{
1029
// Collect outline contour and holes contours per region.
1030
// We assume that there is one outline and multiple holes.
1031
const int nregions = chf.maxRegions+1;
1032
rcScopedDelete<rcContourRegion> regions((rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP));
1033
if (!regions)
1034
{
1035
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions);
1036
return false;
1037
}
1038
memset(regions, 0, sizeof(rcContourRegion)*nregions);
1039
1040
rcScopedDelete<rcContourHole> holes((rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP));
1041
if (!holes)
1042
{
1043
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts);
1044
return false;
1045
}
1046
memset(holes, 0, sizeof(rcContourHole)*cset.nconts);
1047
1048
for (int i = 0; i < cset.nconts; ++i)
1049
{
1050
rcContour& cont = cset.conts[i];
1051
// Positively would contours are outlines, negative holes.
1052
if (winding[i] > 0)
1053
{
1054
if (regions[cont.reg].outline)
1055
ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg);
1056
regions[cont.reg].outline = &cont;
1057
}
1058
else
1059
{
1060
regions[cont.reg].nholes++;
1061
}
1062
}
1063
int index = 0;
1064
for (int i = 0; i < nregions; i++)
1065
{
1066
if (regions[i].nholes > 0)
1067
{
1068
regions[i].holes = &holes[index];
1069
index += regions[i].nholes;
1070
regions[i].nholes = 0;
1071
}
1072
}
1073
for (int i = 0; i < cset.nconts; ++i)
1074
{
1075
rcContour& cont = cset.conts[i];
1076
rcContourRegion& reg = regions[cont.reg];
1077
if (winding[i] < 0)
1078
reg.holes[reg.nholes++].contour = &cont;
1079
}
1080
1081
// Finally merge each regions holes into the outline.
1082
for (int i = 0; i < nregions; i++)
1083
{
1084
rcContourRegion& reg = regions[i];
1085
if (!reg.nholes) continue;
1086
1087
if (reg.outline)
1088
{
1089
mergeRegionHoles(ctx, reg);
1090
}
1091
else
1092
{
1093
// The region does not have an outline.
1094
// This can happen if the contour becaomes selfoverlapping because of
1095
// too aggressive simplification settings.
1096
ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i);
1097
}
1098
}
1099
}
1100
1101
}
1102
1103
return true;
1104
}
1105
1106